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Abstract. We prove an identity for five arguments, valid in the lattice of natural
numbers with gcd and lcm as lattice operations. More generally, this identity
characterizes arbitrary distributive lattices. Fixing three of the five arguments, we
always get associative products, and thus every distributive lattice carries many
semigroup structures. In the arithmetic case, we explicitly compute multiplication
tables of such semigroups and describe some of their properties. Many of them
are periodic, and can be seen as “non-commutative analogs” of the rings Z/nZ.

1. Introduction

For a quintuplet (x, a, y, b, z) of elements of a lattice X with operations ∧ (meet)
and ∨ (join), we define two other elements by

(1.1)
L = L(x, a, y, b, z) :=

(
b ∧ (z ∨ (a ∧ y))

)
∨

(
z ∧ (b ∨ (x ∧ y))

)
∨(

x ∧ (a ∨ (z ∧ y))
)
∨

(
a ∧ (x ∨ (b ∧ y))

)
,

(1.2)
U = U(x, a, y, b, z) :=

(
a ∨ (z ∧ (b ∨ y))

)
∧

(
x ∨ (b ∧ (z ∨ y))

)
∧(

z ∨ (a ∧ (x ∨ y))
)
∧

(
b ∨ (x ∧ (a ∨ y))

)
.

The terms defining L and U will also be denoted by L = L1 ∨ L2 ∨ L3 ∨ L4 and
U = U1 ∧U2 ∧U3 ∧U4 (related to two other terms L5, U5, cf. Eqn. (2.1)). We study
the maps L,U : X 5 → X thus defined for the following kinds of lattices:

(1) the arithmetic case: X = N0 is the lattice of natural numbers (with 0), with
∧ = lcm (least common multiple) and ∨ = gcd (greatest common divisor),

(2) the totally orderd, or chain case: here M is a totally ordered set, with
∨ = max and ∧ = min,

(3) the power set case: X = P(M) is the power set of a set M , with ∧ = ∩
being intersection and ∨ = ∪ union,

(4) the Grassmannian case: W is a (right) module over a unital ring K, and X
the space of all submodules of W , with meet ∧ = ∩ and join ∨ = +.

Theorem 1.1. In cases (1) – (3), we have U = L, i.e.,

(1.3) ∀x, a, y, b, z ∈ X : L(x, a, y, b, z) = U(x, a, y, b, z).

In the Grassmannian case (4), we have L ≤ U , i.e.,

(1.4) ∀x, a, y, b, z ∈ X : L(x, a, y, b, z) ⊂ U(x, a, y, b, z).
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The starting point of the present work was the discovery, triggered by computer
checks (cf. Remark 6.3), that (to our big surprise), in the arithmetic case Inequality
(1.4) becomes an equality. From the point of view of abstract lattice theory, this
fact is explained as follows (Theorem 3.1):

Theorem 1.2. Let X be a lattice. Then the following are equivalent:

(i) The identity U = L holds in X .
(ii) The lattice X is distributive : ∀x, y, z ∈ X , x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Moreover, we see that the lattice is modular when Inequality (1.4) holds, and one
may conjecture that the converse also holds (see Remark 3.3) – we shall come back
to this problem in subequent work.

The most important issue about the quintary map L = U thus defined is that fix-
ing three of the five arguments, it defines associative products on X . More precisely,
the “central” variable y shall be among the three fixed argments. For instance, fix-
ing (a, y, b), we define the principal product • : X 2 → X by

(1.5) x • z := x •a,y,b z := L(x, a, y, b, z) = U(x, a, y, b, z).

Because of the obvious invariance of L under the Klein four-group V acting on the
variables (x, a, b, z) = (v1, v2, v3, v4) (Lemma 2.1), we get 24

4
= 6 different kinds of

“products” on X . Following a terminology used by Conway and Smith ([CS03]), we
present these six products as a “hexad” of products, labelled by the action of the
symmetric group S3 = S4/V (e.g., ((23)•)(x, z) = z • x is the opposite product of
•; in general, opposite vertices correspond to opposite products),

(1.6) •

(12)• (13)•

(132)• (123)•

(23)•

Theorem 1.3. Let X be a distributive lattice. Then the six products given by the
above “hexad” are all associative. In other terms, they define semigroup structures
on X . These semigroups are weak bands, in the sense that they satisfy the identity

∀v, w ∈ X : v2w = vw = vw2.

Instead of checking associativity by direct (and necessarily long) computation,
we proceed by using representation theory for distributive lattices: they can be
imbedded into power set lattices (case (3) mentioned above); and in the power
set case, we can decompose the product into “atoms”, where the atoms are six
elementary products called “true, false, left, right, and, or”, and which obviously
are associative and weak bands.

https://en.wikipedia.org/wiki/Distributive_lattice
https://en.wikipedia.org/wiki/Distributive_lattice#Representation_theory
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In the arithmetic case, we study these products further: many of them are pe-
riodic, and then essentially reduce to finite semigroups (Theorem 6.4). In Section
6, we give several examples of “multiplication tables” of such finite semigroups. To
give an idea, the product x •3,2,4 z has “column period” 3, and “line period” 4:

x •3,2,4 z 0 1 2 3 4 5 6
0 12 4 4 12 4 4 12
1 3 1 1 3 1 1 3
2 6 2 2 6 2 2 6
3 3 1 1 3 1 1 3
4 12 4 4 12 4 4 12

To illustrate associativity: (5 • 6) • 6 = 3 • 6 = 3 = 5 • 6 = 5 • (6 • 6). Note
that the set {1, . . . , 12}, as well as the set of divisors of 12, form semigroups for
•. Principal products are periodic, and thus can be seen as analogs of the usual
quotient rings Z/nZ. The parastrophes are not always periodic. One may wonder
if these semigroups have non-trivial applications in number theory.

Motivation for the present work comes from joint work with Michael Kinyon on
associative geometries, [BeKi10a, BeKi10b, BeKi12]. An associative geometry has
as underlying space a Grassmannian (case (4) in the above list), whence an underly-
ing lattice structure playing an important role in the theory. The algebraic structure
of an associative geometry is encoded by a quintary structure map Γ : X 5 → X ,
(x, a, y, b, z) 7→ Γ(x, a, y, b, z). This structure map has interesting algebraic prop-
erties showing a “geometric flavor”. Thus it is a natural question to ask how it
looks like in the arithmetic case W = K = Z, and to find a good algorithm for
computing it. The answer is that, in this case, simply L = Γ = U , which furnishes
an excellent algorithm. In the case of general Grassmannians, the situation is much
more complicated – we intend to study the relation between L,U and Γ in the case
of Grassmannians, and of modular lattices, in subsequent work.

Acknowledgment. I thank Michael Kinyon for helpful comments, and for having
first checked the equivalence (i) ⇔ (ii) from Theorem 1.2 by using the automated
theorem prover Prover9.

2. Prelimary remarks on the general case

In every lattice X , the expressions L,U, L1, . . . , U4 defined by (1.1), (1.2), are
closely related to the following expressions (see the following proof for explanations
concerning the labelling)

L5 := L
(3)
5 := (b ∧ z) ∨ (a ∧ x), U5 := U

(2)
5 := (a ∨ z) ∧ (b ∨ x),(2.1)

L
(1)
5 := (b ∧ a) ∨ (z ∧ x), U

(1)
5 := (a ∨ b) ∧ (z ∨ x),(2.2)

L
(2)
5 := (b ∧ x) ∨ (a ∧ z), U

(3)
5 := (a ∨ x) ∧ (b ∨ z).(2.3)

Lemma 2.1. In any lattice, the expressions L(x, a, y, b, z) and U(x, a, y, b, z) defined
by (1.1) and (1.2) are invariant under the action of the Klein 4-group (double

transpositions), acting on the variables (x, a, b, z), and so are the terms L5, . . . , U
(3)
5

defined above.

https://www.cs.unm.edu/~mccune/mace4/
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Proof. This follows immediately from the definitions. For instance, exchanging
simultaneously (a, b) and (x, z) exchanges (L2, L3) and (L1, L4), and so on; due to
commutativity of ∧ and ∨, the order is irrelevant. More formally, to fix the action
of the symmetric group S5 on the five variables, we fix the correspondence

x := (x1, x2, x5, x3, x4) := (x, a, y, b, z).

We let act S4 on the variables (x, a, b, z) = (x1, x2, x3, x4), and S3 on (x, a, b) =
(x1, x2, x3), in the usual way, and hence these groups also act on functions of these

variables, like L1, . . . , U5. Thus, for instance, L
(3)
5 is obtained by applying the

transposition (13) to L
(1)
5 , and so on. Note that the upper index 3 in L

(3)
5 indicates

the variable x3 = b with which x4 = z is paired via b ∧ z in Formula (2.1), etc. �

As we will see, in general lattices, L(x, a, y, b, z) is in general different from
U(x, a, y, b, z). However, some “diagonal values” of L and U always agree:

Theorem 2.2. Let (X ,∧,∨) be a lattice and (x, a, y, b, z) ∈ X 5. Then:

(1) for a = z and b = x, we get L(x, z, y, x, z) = z ∧ x = U(x, z, y, x, z),
(2) for b = z and x = a, we get L(x, x, y, z, z) = x ∨ z = U(x, x, y, z, z),
(3) for a = y = b, we get L(x, y, y, y, z) = y = U(x, y, y, y, z),
(4) if X is bounded, with maximal element 1 and minimal element 0, then

L(x, 1, 0, 1, z) = x ∨ z = U(x, 1, 0, 1, z),
L(x, 0, 1, 0, z) = x ∧ z = U(x, 0, 1, 0, z),
L(x, 1, 1, 0, z) = x = U(x, 1, 1, 0, z),
L(x, 0, 0, 1, z) = z = U(x, 0, 0, 1, z),
L(x, a, 0, b, z) = L5(x, a, y, b, z) = (b ∧ z) ∨ (a ∧ x),
U(x, a, 1, b, z) = U5(x, a, y, b, z) = (a ∨ z) ∧ (b ∨ x),
L(x, 0, y, b, z) = L2(x, a, y, b, z) = z ∧ (b ∨ (x ∧ y)),
U(x, 1, y, b, z) = U2(x, a, y, b, z) = x ∨ (b ∧ (z ∧ y)).

Proof. All claims follow by direct computation using the defining identities of a
lattice, in particular, a ∨ (a ∧ x) = a = a ∧ (a ∨ x). �

Lemma 2.3. The function L is monotonic: if x ≤ x′ (meaning that xi ≤ x′i
for i = 1, . . . , 5), then L(x) ≤ L(x′). The same holds for U,Li, Ui, i = 1, . . . , 5.
Moreover, for i = 1, . . . , 4,

Li ≤ L, U ≤ Ui,

and when the lattice X is bounded, this also holds for i = 5.

Proof. Since both ∧ and ∨ are monotonic operations, the same holds for L, etc.
The inequalities for i = 1, . . . , 4 follow directly from the definition of L, resp. U , as
join, resp. meet, of these expressions. For i = 5, in the bounded case, this follows
by monotony from Item (4) of the preceding theorem, since 0 ≤ y and y ≤ 1. �

Clearly, monotonic lattice morphisms induce morphisms of L and of U . The
following is obvious from Formulae (1.1), (1.2):
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Lemma 2.4. If φ : X → X is an antitone lattice morphism, i.e., φ(a ∨ b) =
φ(a) ∧ φ(b) and φ(a ∧ b) = φ(a) ∨ φ(b), then

φL(x, a, y, b, z) = U(φx, φb, φy, φa, φz),

φU(x, a, y, b, z) = L(φx, φb, φy, φa, φz).

3. Characterization of distributive lattices

Recall that a lattice X is called distributive if, for all x, y, z ∈ X ,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

This is equivalent to the dual identity

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Theorem 3.1. For every lattice X , the following properties are equivalent:

(i) The identity U = L holds in X .
(ii) The lattice X is distributive.

Proof. (ii) ⇒ (i): If X is distributive, the expressions Li, Ui can be transformed

L1 = (b ∧ (z ∨ (a ∧ y))) = (b ∧ z) ∨ (b ∧ a ∧ y),

L2 = (z ∧ b) ∨ (z ∧ x ∧ y),

L3 = (x ∧ a) ∨ (x ∧ z ∧ y),

L4 = (a ∧ x) ∨ (a ∧ b ∧ y),

U1 = (a ∨ (z ∧ (b ∨ y))) = (a ∨ z) ∧ (a ∨ b ∨ y)

U2 = (x ∨ b) ∧ (x ∨ z ∨ y)

U3 = (z ∨ a) ∧ (z ∨ x ∨ y)

U4 = (b ∨ x) ∧ (b ∨ a ∨ y).

Using this, we get, using the terms defined by (2.1), (2.2), (2.3),

L = (a ∧ x) ∨ (b ∧ z) ∨ (a ∧ b ∧ y) ∨ (x ∧ z ∧ y) = L
(3)
5 ∨ (L

(1)
5 ∧ y),(3.1)

U = (a ∨ z) ∧ (x ∨ b) ∧ (a ∨ b ∨ y) ∧ (x ∨ z ∨ y) = U
(2)
5 ∧ (U

(1)
5 ∨ y),(3.2)

where we have abbreviated L
(i)
5 = L

(i)
5 (x, a, y, b, z), and U

(i)
5 = U

(i)
5 (x, a, y, b, z).

These elements generate a lattice having a remarkably simple structure:

Proposition 3.2. Fix elements x, a, b, z in a distributive lattice X . Then for

{i, j, k} = {1, 2, 3}, writing L
(i)
5 = L

(i)
5 (x, a, y, b, z), and U

(i)
5 = U

(i)
5 (x, a, y, b, z),

U
(i)
5 ∧ U

(j)
5 = L

(k)
5 , L

(i)
5 ∨ L

(j)
5 = U

(k)
5 .

https://en.wikipedia.org/wiki/Distributive_lattice
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The 6 elements L
(i)
5 , U

(i)
5 (i = 1, 2, 3) generate a lattice of 8 elements, which is a

homomorphic image of the lattice of subsets of {1, 2, 3}, as indicated by the diagram:

U
(3)
5 ∨ U

(2)
5 ∨ U

(1)
5

U
(3)
5 U

(2)
5 U

(1)
5

L
(1)
5 L

(2)
5 L

(3)
5

L
(1)
5 ∧ L

(2)
5 ∧ L

(3)
5

Proof. In the following, we drop the lower index 5. For instance, if (i, j, k) = (1, 2, 3),
then by distributivity,

L(3) = (b ∧ z) ∨ (a ∧ x) = (b ∨ a) ∧ (z ∨ x) ∧ (b ∨ x) ∧ (z ∨ a) = U (1) ∧ U (2),

and similarly for the other relations. It follows, for {1, 2, 3} = {i, j, k}, that

L(i) ∧ L(j) = (U (j) ∧ U (k)) ∧ (U (i) ∧ U (k))

= U (1) ∧ U (2) ∧ U (3)

= L(i) ∧ L(k),

whence

L(i) ∧ L(j) = L(1) ∧ L(2) ∧ L(3).

In the same way,

U (i) ∨ U (j) = L(1) ∨ L(2) ∨ L(3) = U (1) ∨ U (2) ∨ U (3)

which implies also U (i) ∧ L(i) = L(1) ∨ L(2) ∨ L(3), etc. �

As a particular case of the proposition, we have

U
(2)
5 ∧ L

(3)
5 = (L

(1)
5 ∨ L

(3)
5 ) ∧ L(3)

5 = L
(3)
5 = U

(1)
5 ∧ U

(2)
5 .

This is used in the fifth equality of the followig computation, along with distribu-

tivity and the relation L
(3)
5 ∨ L

(1)
5 = U

(2)
5 :

L = L
(3)
5 ∨ (L

(1)
5 ∧ y)

= (L
(3)
5 ∨ L

(1)
5 ) ∧ (L

(3)
5 ∨ y)

= U
(2)
5 ∧ (L

(3)
5 ∨ y)

= (U
(2)
5 ∧ L

(3)
5 ) ∨ (U

(2)
5 ∧ y)

= (U
(1)
5 ∧ U

(2)
5 ) ∨ (U

(2)
5 ∧ y)

= U
(2)
5 ∧ (U

(1)
5 ∨ y) = U,
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(i) ⇒ (ii): Since every non-distributive lattice contains a sublattice isomorphic
to the diamond lattice M3 or to the pentagon lattice N5 (see [BS]), it is enough to
show that the identity L = U is not satisfied in M3 and in N5. First assume that
X is the diamond lattice

M3 = {0, u, v, w, 1}, u ∧ v = 0 = u ∧ w = v ∧ w, u ∨ v = 1 = v ∨ w = w ∨ u,
and choose x = z = u, y = v, a = b = w, as indicated by the Hasse diagram:

1

x = z y a = b

0

We have a ∧ y = 0 = x ∧ y = z ∧ y = b ∧ y, and a ∨ y = 1 = x ∨ y = z ∨ y = b ∨ y,
and (with the four terms ordered as in Equations (1.1) and (1.2)

L(x, a, y, a, x) = (b ∧ z) ∨ (z ∧ b) ∨ (x ∧ a) ∨ (b ∧ x)

= 0 ∨ 0 ∨ 0 ∨ 0 = 0,

U(x, a, y, a, x) = (a ∨ z) ∧ (x ∨ b) ∧ (x ∨ a) ∧ (b ∨ x)

= 1 ∧ 1 ∧ 1 ∧ 1 = 1.

Thus L = U does not hold in M3. Next, assume that X = N5 is the pentagon
lattice, and choose a = y = u, b = w, z = v, and x any of the elements of N5:

N5 = {0, u, v, w, 1}, 0 < u < w < 1, 0 < v < 1,

1

b z

a = y

0

Since L = L1 ∨ L2 ∨ L3 ∨ L4, we have L1 ≤ L, and likewise U ≤ U1. But

L1 = b ∧ (z ∨ (a ∧ y)) = b ∧ (z ∨ a) = b ∧ 1 = b,

U1 = a ∨ (z ∧ (b ∨ y)) = a ∨ (z ∧ b) = a ∨ 0 = a,

whence U ≤ U1 = a < b = L1 ≤ L, and hence L is not equal to U in N5. �

Remark 3.1. The characterization of distributive lattices by the identity L = U can
be seen as a “higher” analog of the known fact (cf. [Bi], II., Theorem 8) that X is
distributive iff it satisfies the median law

(x ∨ y) ∧ (y ∨ z) ∧ (z ∧ x) = (x ∧ y) ∨ (y ∧ z) ∨ (y ∧ x).

https://en.wikipedia.org/wiki/Distributive_lattice#Characteristic_properties
https://en.wikipedia.org/wiki/Distributive_lattice#Characteristic_properties
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Remark 3.2. The cubic lattice from Prop. 3.2 can be seen as part of the free dis-
tributive lattice on 4 generators. Its top element is the join of the 6 possible meets
of the generators, and its bottom element the meet of the 6 possible joins. When
two of the generators coincide (say, x = a), then we get another part, which is just a
square (say, L(1) = U (2) = L(3) and U (1) = L(2) = U (3)). This square is the product
of the trivial lattice given by the median element (preceding remark) and a lattice
with 2 generators.

Corollary 3.3. The following identities hold:

(1) In the arithmetic case (lattice N0 with ∨ = gcd, ∧ = lcm)

gcd
(
lcm(a, x), lcm(b, z), lcm(a, b, y), lcm(x, y, z)

)
=

lcm(gcd(a, z), gcd(x, b), gcd(a, b, y), gcd(x, y, z)).

(2) In the totally ordered case (chain with ∨ = max, ∧ = min)

max(min(a, x),min(b, z),min(a, b, y),min(x, y, z)) =

min(max(a, z),max(x, b),max(a, b, y),max(x, y, z)).

(3) In the Boolean case (power set X = P(M) with ∨ = ∪, ∧ = ∩)

(a ∩ x) ∪ (b ∩ z) ∪ (a ∩ b ∩ y) ∪ (x ∩ y ∩ z) =

(a ∪ z) ∩ (x ∪ b) ∩ (a ∪ b ∪ y) ∩ (x ∪ y ∪ z).

Proof. All three lattices are well-known to be distributive, hence satisfy L = U in
the form given by (3.1) and (3.2). �

Theorem 3.4. Assume X is a lattice satisfying the identity L ≤ U . Then this
lattice is modular.

Proof. If X is not modular, then it contains the pentagon lattice N5 as sublattice
(see [Bi], I., Theorem 12), and as we have seen in the preceding proof, L ≤ U does
not hold in N5. �

Remark 3.3. What about the converse: does modularity imply L ≤ U? As men-
tioned in the introduction, the identity L ≤ U does hold in Grassmannians, which
form an important class of modular lattices. We shall come back to this question
in subsequent work.

Theorem 3.5. Let X be a distributive lattice, and φ : X → X antitone. Then

φU(x, a, y, b, z) = U(φx, φb, φy, φa, φz).

In particular, this holds when X is a Boolean algebra (complemented distributive
lattice), with complement map φ = ¬ : X → X .

Proof. This follows from U = L, together with Lemma 2.4. �

Example 3.1. The lattice N0 does not carry any anti-automorphism. But let N ∈ N,
N > 1, and K a divisor of N . Then the distributive lattice (interval) X = [K,N ] =
{d ∈ N | K|d, d|N} carries an anti-automorphism φ(d) = KN

d
. If N

K
contains only

simple prime-powers as factors, then φ is a complement map, but otherwise it’s not.

https://en.wikipedia.org/wiki/Modular_lattice#Examples
https://en.wikipedia.org/wiki/Boolean_algebra_(structure)
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In the distributive case, the six versions σ.L = σ.U (σ ∈ S3) of L = U , organized
as a “hexad” according to the scheme from (1.6), are explicitly given as follows, in

terms of L
(i)
5 and U

(i)
5 . We use that σ.L

(i)
5 = L

(σ(i))
5 , resp. σ.U

(i)
5 = U

(σ(i))
5 . Note that

the invariance group in S4 of each term L
(i)
5 , resp., U

(i)
5 , is the subgroup of order

8 generated by the Klein 4-group together with the transposition (i4). There are 3
such subgroups, all isomorphic to a dihedral group D4.

L = L
(3)
5 ∨ (L

(1)
5 ∧ y)

(12)L = L
(3)
5 ∨ (L

(2)
5 ∧ y) (13)L = L

(1)
5 ∨ (L

(3)
5 ∧ y)

(132)L = L
(2)
5 ∨ (L

(3)
5 ∧ y) (123)L = L

(1)
5 ∨ (L

(2)
5 ∧ y)

(23)L = L
(2)
5 ∨ (L

(1)
5 ∧ y)

When L = U , this hexad coincides with

U = U
(2)
5 ∧ (U

(1)
5 ∨ y)

(12)U = U
(1)
5 ∧ (U

(2)
5 ∨ y) (13)U = U

(2)
5 ∧ (U

(3)
5 ∨ y)

(132)U = U
(1)
5 ∧ (U

(3)
5 ∨ y) (123)U = U

(3)
5 ∧ (U

(2)
5 ∨ y)

(23)U = U
(3)
5 ∧ (U

(1)
5 ∨ y)

Remark 3.4. Under duality of lattices, i.e., exchange of ∧ and ∨, that is, exchange of

≤ and ≥, U
(i)
5 and L

(i)
5 exchange, for i = 1, 2, 3, and hence the first hexad exchanges

with the “dual” of the second (where by “dual” hexad we mean the one obtained
after applying a central symmetry). When the lattice is distributive, duality thus
correponds to central symmetry.

4. A glimpse on the chain case

The statement of Item (2) of Corollary 3.3 can be refined:

Theorem 4.1. Let M be a totally ordered set, with ∧ = min and ∨ = max. Then

(1) if a ≤ y ≤ b, then U = L = max(a,min(z, b)) = min(max(a, z), b),
(2) if b ≤ y ≤ a, then U = L = min(a,max(x, b)) = max(min(a, x), b),
(3) if x ≤ y ≤ z, then U = L = max(x,min(b, z)) = min(max(x, b), z),
(4) if z ≤ y ≤ x, then U = L = min(x,max(a, z)) = max(min(x, a), z),
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(5) if a, b ≤ y ≤ x, z, then U = L = y,
(6) if x, z ≤ y ≤ a, b, then U = L = y,
(7) if a, x, b, z ≤ y, then U = L = L5 = min(max(b, z),max(a, x)),
(8) if y ≤ a, x, b, z, then U = L = U5 = max(min(a, z),min(b, x)).

Proof. This follows in each case by inspection of the expressions appearing in Item
(2) of Corollary 3.3. (In principle, there are 5! = 120 cases to be checked; due
to invariance under double transpositions, this reduces to 30 cases, which can be
checked by hand or by machine.) �

Remark 4.1. What is the order-theoretic interpretation of these relations? Just as
the total order ≤ is encoded by min and max, the expression L = U should encode
some order-theoretic concept. One may think of the cyclic order corresponding to
the total order, defined on the one-point completion of M . When M = R, then this
one-point completion is the projective line RP1 = S1, and L is in this case related
to the cross-ratio. Thus L could play the role of a “cross-ratio type invariant for
chains”.

5. Associativity

In a distributive lattice X , fixing a triple (a, y, b), we define a binary “product”

(5.1) x • z := x ·a,y,b z := L(x, a, y, b, z) = U(x, a, y, b, z).

We are going to show that this product is always associative, hence defines a semi-
group struture on X . More generally, let us define:

Definition 5.1. Let X be an arbitrary lattice. Fixing three of the five components
of X 5, we define “product maps” X 2 → X by considering the remaining two compo-
nents as “variables”. More specifically, the central component y shall always belong
to the “fixed” variables. Explicitly, for (x, a, y, b, z) ∈ X 5, we let

L
(x,z)
(a,y,b) := L

(z,x)
(b,y,a) := x •La,y,b z := L(x, a, y, b, z) = L(z, a, y, b, x)

L
(a,z)
(x,y,b) := L

(z,a)
(b,y,x) := L(x, a, y, b, z) = L(a, z, y, x, b),

L
(b,z)
(x,a,y) := L

(z,b)
(a,x,y) := L(x, a, y, b, z) = L(a, x, b, z, b).

Retaining only the subscripts, this is represented by the “hexad” of binary products

L(a,y,b)

L(x,y,b) L(x,a,y)

L(a,x,y) L(b,y,x)

L(b,y,a)

https://en.wikipedia.org/wiki/Cyclic_order
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The same definitions and conventions can be given for U , and for any other quintary
map X 5 → X that is invariant under the Klein 4-group acting on (x, a, b, z). In
other words, the “hexad” (5.1) comes from • via the canonical action of the group
S3 = S4/V acting on the 4 variables (v1, v2, v3, v4) = (x, a, b, z) (Diagram (1.6)).
Following a terminology from the theory of loops and quasigroups, for a fixed triple
(a, y, b), we call the six products in the “hexad” given above the parastrophes of the
“principal” product •.

Theorem 5.2. Let X be a bounded distributive lattice, and fix a triple of elements
in X . Then any of the six products by the “hexad” given above is associative.
Products belonging to opposite vertices of the hexad are opposite in the algebraic
sense (u·opv = v ·u). In particular, products of type La,y,a or La,a,y are commutative.
Moreover, all semigroups (X , ·) thus obtained are weak bands, i.e., left and right
multiplications are idempotent:

∀u, v ∈ X : u(uv) = uv = (uv)v.

Proof. By the representation theorem for bounded distributive lattices ([S38], cf.
[Bi], Chapter IX, Theorem 11), we can imbed X as a sublattice into the lattice of
subsets P(M) of a set M . Associativity (and the weak band property) are algebraic
identities for L in the sense of universal algebra; if they hold in the lattice P(M),
then they hold also in the lattice X . Thus we shall assume in the sequel that
X = P(M), and we prove the claim in this case. The advantage of P(M) is that it
has a complementation, which makes it a Boolean lattice.

Definition 5.3. Assume X = P(M), and denote for u ∈ X by ¬u := M \ u its
complement. Fix a triple (a, y, b) ∈ X 3. With respect to this datum, we decompose

M = M true tM false tM right tM left tMand tMor

into a disjoint union of six subsets, as follows:

(1) M true := a ∧ y ∧ b
(2) M false := ¬a ∧ ¬y ∧ ¬b
(3) M right := b \ a = b ∧ (¬a)
(4) M left := a \ b = a ∧ (¬b)
(5) Mor := (a ∧ b) \ y = a ∧ b ∧ (¬y)
(6) Mand := y \ (a ∨ b) = y ∧ (¬a) ∧ (¬b)

In other words, an element ω ∈M belongs to these sets iff the triple of propositions
(ω ∈ a, ω ∈ y, ω ∈ b) has the following Boolean values:

(1) (1, 1, 1)
(2) (0, 0, 0)
(3) (0, 0, 1) or (0, 1, 1)
(4) (1, 0, 0) or (1, 1, 0)
(5) (1, 0, 1)
(6) (0, 1, 0)

Remark 5.1. The following arguments not only establish associativity of the “prin-
cipal” product (5.1), but also give an independent proof of the identity L = U in
case of a power set lattice X = P(M).

https://en.wikipedia.org/wiki/Distributive_lattice#Representation_theory
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Now let (x, a, y, b, z) ∈ X 5 and ω ∈M . Then ω may belong, or not, to some of the
5 compenents of this quintuplet – there are 25 = 32 possible cases. In the following
tables, we write 0 if ω does not belong to the set, and 1 if ω belongs to the set.
These 32 cases can be partitioned according to the 6 cases defined above, as follows.
For further information, we list also the Boolean values for ω belonging to elements
of the lists L = (L1, L2, L3, L4) and U = (U1, U2, U3, U4), as well as for L5 and U5.

(1) Let ω ∈M true. The Boolean values for ω ∈ (or /∈) L,U, L1, U1, L4, U4 all coincide.

x a y b z list L ∨L = ∧U list U L5 U5

1 1 1 1 1 (1, 1, 1, 1) 1 (1, 1, 1, 1) 1 1
1 1 1 1 0 (1, 0, 1, 1) 1 (1, 1, 1, 1) 1 1
0 1 1 1 1 (1, 1, 0, 1) 1 (1, 1, 1, 1) 1 1
0 1 1 1 0 (1, 0, 0, 1) 1 (1, 1, 1, 1) 0 1

(2) Let ω ∈M false. The Boolean values for ω ∈ (or /∈) L,U, L1, U1, L4, U4 coincide.

x a y b z list L ∨L = ∧U list U L5 U5

0 0 0 0 0 (0, 0, 0, 0) 0 (0, 0, 0, 0) 0 0
0 0 0 0 1 (0, 0, 0, 0) 0 (0, 0, 1, 0) 0 0
1 0 0 0 0 (0, 0, 0, 0) 0 (0, 1, 0, 0) 0 0
1 0 0 0 1 (0, 0, 0, 0) 0 (0, 1, 1, 0) 0 1

(3) Let ω ∈M right. The Boolean values for ω ∈ (or /∈) L,U, L1, U1, L5, U5 coincide.

x a y b z list L ∨L = ∧U list U L5 U5

0 0 0 1 0 (0, 0, 0, 0) 0 (0, 0, 0, 1) 0 0
0 0 0 1 1 (1, 1, 0, 0) 1 (1, 1, 1, 1) 1 1
1 0 0 1 0 (0, 0, 0, 0) 0 (0, 1, 0, 1) 0 0
1 0 0 1 1 (1, 1, 0, 0) 1 (1, 1, 1, 1) 1 1
0 0 1 1 0 (0, 0, 0, 0) 0 (0, 1, 0, 1) 0 0
0 0 1 1 1 (1, 1, 0, 0) 1 (1, 1, 1, 1) 1 1
1 0 1 1 0 (0, 0, 0, 0) 0 (0, 1, 0, 1) 0 0
1 0 1 1 1 (1, 1, 0, 0) 1 (1, 1, 1, 1) 1 1

(4) Let ω ∈M left. The Boolean values for ω ∈ (or /∈) L,U, L4, U4, L5, U5 coincide.

x a y b z list L ∨L = ∧U list U L5 U5

0 1 0 0 0 (0, 0, 0, 0) 0 (1, 0, 0, 0) 0 0
0 1 0 0 1 (0, 0, 0, 0) 0 (1, 0, 1, 0) 0 0
1 1 0 0 0 (0, 0, 1, 1) 1 (1, 1, 1, 1) 1 1
1 1 0 0 1 (0, 0, 1, 1) 1 (1, 1, 1, 1) 1 1
0 1 1 0 0 (0, 0, 0, 0) 0 (1, 0, 0, 0) 0 0
0 1 1 0 1 (0, 0, 0, 0) 0 (1, 0, 1, 0) 0 0
1 1 1 0 0 (0, 0, 1, 1) 1 (1, 1, 1, 1) 1 1
1 1 1 0 1 (0, 1, 1, 1) 1 (1, 1, 1, 1) 1 1
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(5) Let ω ∈Mor. The Boolean values for ω ∈ (or /∈) L,U, L5, U2, U3 coincide.

x a y b z list L ∨L = ∧U list U L5 U5

0 1 0 1 0 (0, 0, 0, 0) 0 (1, 0, 0, 1) 0 1
0 1 0 1 1 (1, 1, 0, 0) 1 (1, 1, 1, 1) 1 1
1 1 0 1 0 (0, 0, 1, 1) 1 (1, 1, 1, 1) 1 1
1 1 0 1 1 (1, 1, 1, 1) 1 (1, 1, 1, 1) 1 1

(6) Let ω ∈Mand. The Boolean values for ω ∈ (or /∈) L,U, U5, L2, L3 coincide.

x a y b z list L ∨L = ∧U list U L5 U5

0 0 1 0 0 (0, 0, 0, 0) 0 (0, 0, 0, 0) 0 0
0 0 1 0 1 (0, 0, 0, 0) 0 (1, 0, 1, 0) 0 0
1 0 1 0 0 (0, 0, 0, 0) 0 (0, 1, 0, 1) 0 0
1 0 1 0 1 (0, 1, 1, 0) 1 (1, 1, 1, 1) 0 1

Remark 5.2. Simple inspection of the tables shows that the Boolean values for L
and U coincide in all possible cases, whence a proof of L = U in the power set case.
Moreover, one may observe that in all but one cases, L coincides with L23 := L2∨L3,
resp. with L14 := L1∨L4, and in all but one cases, U coincides with U14 := U1∧U4,
resp. with U23 := U2 ∧ U3. In all but two cases, L coincides with L5. Likewise for
U and U5. Also, the rule of defining L and U is rather close to a majority function
(“the winner takes it all”: if ω belongs to at least 3 of the 5 sets, then it belongs to
L and to U) – however, 4 among the 32 cases violate this rule.

Coming back to the proof of associativity of the product (x, z) 7→ x•z = x ·a,y,b z,
direct inspection of the tables shows that, when restricting • to the six subsets from
Def. 5.3 , we get in the respective cases:

(1) on M true, • is the “true” connector (x, z) 7→ 1Mtrue ,
(2) on M false, it is the “false” connector (x, z) 7→ 0M false ,
(3) on M right, it is the “second” connector (x, z) 7→ z,
(4) on M left, it is the “first” connector (x, z) 7→ x,
(5) on Mor, it is the “or” connector (x, z) 7→ x ∨ z,
(6) on Mand, it is the “and” connector (x, z) 7→ x ∧ z.

Now, each of the six binary operations listed above obviously is associative.1 From
this it follows that • is also associative: for i ∈ I := {true, false, right, left, or, and},
and x ∈ P(M), let xi := x ∩M i, so x = ti∈Ixi (disjoint union). Then, by what we
have just seen, (x • z)i = xi • zi is given by the connector corresponding to i, hence

(x • w) • z = ti∈I((x • w) • z)i = ti∈I(xi • wi) • zi

= ti∈Ixi • (wi • zi) = x • (w • z).

Moreover, each of the six connectors has the “weak band property”, as is immedi-
ately checked, and hence by the same argument, • also is a weak band. Notice also
that the opposite product of • is gotten by exchanging a and b (which corresponds

1Remarkably, these six products correspond exactly to the six semigroup laws on the set of two
elements which are not group laws, and also to the free distributive lattice on 2 generators.

https://en.wikipedia.org/wiki/Majority_function
https://en.wikipedia.org/wiki/Semigroup_with_two_elements
https://en.wikipedia.org/wiki/Semigroup_with_two_elements
https://en.wikipedia.org/wiki/Distributive_lattice
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to exchanging the indices “right” and “left” and keeping the other four), which
corresponds to the opposite vertex in the “hexad”.

Next, consider the product L(x,a,y). We present the information contained in
the precding tables, structured in a different way: fix the Boolean values for (ω ∈
x, ω ∈ a, ω ∈ y) and consider those for ω ∈ L(x, a, y, b, z) as a function of those of
(ω ∈ b, ω ∈ z).

1. When ω is in at most one of the sets x, a, y, then we get the “and”-connector:

x a y b z L = U
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1

x a y b z L = U
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 1

x a y b z L = U
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 1

x a y b z L = U
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1

2. When ω /∈ x and ω ∈ a ∧ y, then we get the “left”-connector:

x a y b z L = U
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 1
0 1 1 1 1 1

3. When ω /∈ a and ω ∈ x ∧ y, then we get the “right”-connector:

x a y b z L = U
1 0 1 0 0 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 1 1

4. When ω ∈ x ∧ a, then we get the “true” connector:

x a y b z L = U
1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1

x a y b z L = U
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

In all four cases, we get a semigroup law satisfying the “weak band” property, and
decomposing M into a disjoint union of sets where these properties hold, it follows
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as above that the product L(x,a,y) has these properties on M . The product L(a,x,y)

is the opposite product of L(x,a,y), and hence also has the same properties – note
that exchange of (a, x) just exchanges cases 2. and 3. above. Next, fix the Boolean
values for ω ∈ x, y, b and list those of ω ∈ L(x, a, y, b, z) as function of those of
ω ∈ (a, z). The result is similar as above, in a “dual” way:

(1) When ω is in at most one of ¬x,¬b,¬y, then we get the “or”-connector.

(2) When ω ∈ x and ω ∈ (¬b ∧ ¬y), then we get the “left”-connector.

(3) When ω ∈ b and ω ∈ (¬x ∧ ¬y), then we get the “right”-connector.

(4) When ω ∈ (¬x ∧ ¬b), then we get the “false” connector.

As above, this implies the statements of Theorem 5.2 for L(x,y,b) and L(b,y,x), and
finishes its proof. �

Definition 5.4. For each of the products from the “hexad”, we call its bottom the
set corresponding to the “true” connector, and we shall the use the notation M true

already used for •. We call its top the set corresponding to the “false” connector,
and we shall use the notation M false already used for •. Thus, for all u, v ∈ X ,

M true ≤ u · v ≤ (M \M false) = ¬M false.

Theorem 5.5. Let X = P(M) be the lattice of the power set of a set M . For the
six products from the hexad, bottom and top are given by

(1) for • = L(a,y,b), we have M true = a ∧ y ∧ b and M false = ¬(a ∨ y ∨ b),
(2) for L(x,a,y), we have M true = x ∧ a, and M false = ∅,
(3) for L(x,y,b), we have M false = (¬x ∧ ¬b) = ¬(x ∨ b), and M true = ∅,
(4) products belonging to opposite hexad vertices have same bottom and top.

Proof. All statements follow by direct inspection from the tables given above. �

Remark 5.3. We’ll see in the arithmetic case that the existence of a non-empty bot-
tom causes a certain square periodicity of the respective products. More precisely,
there may also be a periodicity in a single argument, related to the following result.

Theorem 5.6. Let X = P(M) be the lattice of the power set of a set M . Fix a
triple (a, y, b) ∈ X 3. Then the principal product x • z = x ·a,y,b z is

(1) a ∧ y-periodic in x, i.e., for all x and z: (x ∨ (a ∧ y)) • z = x • z,
(2) b ∧ y-periodic in z, i.e., for all x and z: x • z = x • (z ∨ (b ∧ y)).

Proof. Claim (1) amounts so saying that L′ = L(x ∨ (a ∧ y), a, y, b, z) and L =
L(x, a, y, b, z) have same Boolean values for ω ∈ M . Now, looking at the tables
of Boolean values describing •, the cases ω ∈ a ∧ y correspond to M true (where
L′ and L both always have value 1), and M left (containing two lines which are
distinguished only by one entry, corresponding to the periodicity claim). Likewise
for Claim (2). �

Ternary products. – In certain contexts it is useful to switch the viewpoint from
binary to ternary products, e.g., when looking at the “affine analog” of groups,
which have been called torsor in [BeKi10a]. Fix a pair (a, b) ∈ X 2, and consider the
remaining three arguments (x, y, z) as variables, i.e., we define a ternary product

(5.2) X 3 → X , (x, y, z) 7→ (xyz)ab := L(x, a, y, b, z) = x ·a,y,b z.
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Theorem 5.7. Let X be a bounded distributive lattice, and fix (a, b) ∈ X 2. Then:

(1) the product (5.2) is associative and para-associative: ∀x, x′, y, z, z′ ∈ X ,

((xx′y)abz
′z)ab = (x(x′yz′)abz)ab

= (x(z′yx′)abz)ab = (xx′(yz′z)ab)ab,

(2) the “middle” operator Mx,z(y) := (xyz)ab is idempotent; more precisely,

Mx,z ◦Mx,z = Mx,z = Mx,z ◦Mz,x.

Proof. (1) As for the binary products, it suffices to prove the theorem for X =
P(M), a power set lattice. With respect to the fixed pair (a, b), we decompose M
into the disjoint union of four subsets, using notation from Def. 5.3,

M =
(
M true tMand

)
t
(
M false tMor

)
tM right tM left.

Then, as is seen directly from the tables describing the Boolean values of •, the
ternary map (x, y, z) 7→ (xyz)ab := L(x, a, y, b, z) coincides with

(x, y, z) 7→ x ∧ y ∧ z on the first set M true tMand,
(x, y, z) 7→ x ∨ y ∨ z on the second set M false tMor,
(x, y, z) 7→ z on the third set M right ,
(x, y, z) 7→ x on the fourth set M left.

Thus the ternary product (xyz)ab will inherit properties that are in common for
these four elementary ones. Now, it is immediately checked that all four “elemen-
tary” ternary products are associative and para-associative, whence (1). Concerning
(2), it is clear that in all four cases middle multiplication operators are idempotent.
Eg., for the right product (xyz) = z, we get (x(xyz)z) = (xzz) = z = (xyz) and
(x(zyx)z) = (xxz) = z = (xyz). �

Remark 5.4. There is no “hexad” of ternary products: the preceding result does
not carry over to the other “parastrophe” ternary products.

6. The arithmetic case

6.1. Comparison with the Boolean case, and general results. Now consider
the possibly most interesting distributive lattice, the lattice X = N0 of natural
numbers with ∧ = lcm and ∨ = gcd. Via the p-adic valuation n 7→ vp(n), for each
prime number p, transforming the lattice operations to min and max,

(6.1)
vp(lcm(x, y)) = max(vp(x), vp(y)),
vp(gcd(x, y)) = min(vp(x), vp(y)).

it is closely related to the totally ordered case (Theorem 4.1). This imbedding can
also be formulated as an imbedding into a power set P(P) (Remark 6.1), realizing the
arithmetic case as a sublattice of a Boolean lattice. However, the arithmetic lattice
seems to be “quite far away” from the Boolean case, and has a rather particular
flavor.

Remark 6.1. The imbedding of the lattice (N0,∧,∨) into a power set lattice can be
described directly as follows: let

(6.2) P := {pk | p prime, or p = 1, and k ∈ N} ⊂ N,
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the set of prime powers. Assembling the evaluation maps into a single object, let

(6.3) λ : N0 → P(P), 0 7→ P, n 7→ λ(n) := {m ∈ P | m
∣∣n},

sending n to the set of prime power divisors of n. Note that, with our choice of
notation, this version of λ is antitone (this is inevitable if we want to denote both
intersection of ideals in Z and of subsets of P by the same symbol ∧):

λ(n ∧m) = λ(lcm(n,m)) = λ(n) ∪ λ(m) = λ(n) ∨ λ(m),

λ(n ∨m) = λ(gcd(n,m)) = λ(n) ∩ λ(m) = λ(n) ∧ λ(m).

Using this imbedding, we can complete N0 to a Boolean algebra, adding the missing
complement map, simply by taking the sublattice X (N0) ⊂ P(P) generated by
λ(N0) and all complement sets n := ¬(λ(n)) for n ∈ N0. It is quite easy to see
that X (N0) = Pfin(P) t Pcof(P) is precisely the finite-cofinite algebra of P, i.e., the
union of the collection of all finite subsets of P and all cofinite subsets of P. Being
a Boolean algebra, it is stable under U and L.

Definition 6.1. For a fixed triple (a, y, b) ∈ N3, we call

n = ny,b := lcm(y, b) “line period”,
m := my,a := lcm(y, a) “column period”,
N := Na,y,b := lcm(a, y, b) “square period” (bottom),
K := Ka,y,b := gcd(a, y, b) “base frequency” (top).

We shall mostly be interested in the “principal products” •a,y,b. When N = 0, then
its description follows directly from Theorem 2.2:

Theorem 6.2. Let (a, y, b) ∈ N3
0 such that N = 0. Then,

(1) if y = 0, we have x •a,0,b z = L5(x, a, y, b, z) = (b ∧ z) ∨ (a ∧ x),
(2) if a = 0, we have x •0,y,b z = L2(x, a, y, b, z) = z ∧ (b ∨ (x ∧ y)),
(3) if b = 0, we have x •a,y,0 z = L3(x, a, y, b, z) = x ∧ (a ∨ (z ∧ y)).

In particular, we have

(1) x •1,0,1 z = x ∨ z,
(2) x •0,1,0 z = x ∧ z,
(3) x •1,0,0 z = x = x •1,1,0 z = z •0,1,1 x = z •0,0,1 x .

Definition 6.3. Let (a, y, b) ∈ N3 (so N 6= 0 and K 6= 0), let [1, KN ] be the set
of divisors of KN . For x ∈ [1, KN ], we call x′ := KN

x
its conjugate divisor, and

define the conjugate product

N2
0 → N0, (x, z) 7→ x •b′,y′,a′ z.

Theorem 6.4. Let (a, y, b) ∈ N3
0 such that N 6= 0. Then:

(1) For all (x, z) ∈ N2
0, L(x, a, y, b, z) belongs to the set of divisors of N , and is

a multiple of K. In particular, x•a,y,b z takes only a finite number of values.
(2) The product •a,y,b is (n,m)-periodic in the following sense:

x ≡ x′mod(n) ⇒ x •a,y,b z = x′ •a,y,b z,
z ≡ z′mod(m) ⇒ x •a,y,b z = x •a,y,b z′.

It follows that the product •a,y,b passes to the quotient defining a product on
Z/NZ, or even on KZ/NZ.

https://en.wikipedia.org/wiki/Cofiniteness#Boolean_algebras
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(3) The “conjugation map”

γ : [1, KN ]→ [1, KN ], x 7→ x′ =
KN

x

is an isomorphism from the semigroup [1, KN ] with product •a,y,b onto the
semigrop [1, KN ] with conjugate product •b′,y′,b′. By restriction, the same
holds for the subsemigroup [K,N ] = {d | K|d, d|N}.

Proof. (1) and (2) are a reformulation of parts of Theorems 5.2, 5.5, and 5.6.
(3) Clearly, γ is a lattice involution (antiautomorphism of order 2) of the lattice

[1, KN ] (cf. Example 3.1). The claim now follows from Lemma 2.4. �

Remark 6.2. The isomorphism from item (3) does not directly extend to an isomor-
phism (N0, •a,y,b) → (N0, •a′,y′,b′). Rather than “isomorphic”, these products are
“isotopic”, in the sense that when imbedding N0 into a Boolean algebra (Remark
6.1), then both products are the “same”, but evaluated on “opposite” copies of N0.

6.2. Examples of tables.

Remark 6.3. The reader may enjoy to do some numerical tests herself. Here is the
program which we have used for computing L and U in the following tables, along
with Li, Ui, for i = 1, . . . , 4, by using SageMath, along with a random example:

def Bounds(x,a,y,b,z):

L=[lcm(b,gcd(z,lcm(a,y))), lcm(z,gcd(b,lcm(x,y))),

lcm(x,gcd(a,lcm(z,y))), lcm(a,gcd(x,lcm(b,y)))] ;

U=[gcd(a,lcm(z,gcd(y,b))), gcd(x,lcm(b,gcd(z,y))),

gcd(z,lcm(a,gcd(x,y))), gcd(b,lcm(x,gcd(a,y)))] ;

print(L) ; print(gcd(L)) ;

print(U) ; print(lcm(U))

Bounds(425, 204, 1000, 200, 402) Bounds(425, 200, 1000, 204, 402)

[600, 40200, 5100, 5100] 300 [204, 13668, 3400, 3400] 68

[12, 25, 6, 100] 300 [4, 17, 2, 68] 68

Now let us write up some “multiplication tables” for fixed (a, y, b). By Theorem
2.2, the left upper corner of all of the following multiplication tables (first column:
values x, first line: values z) is given by

0 •a,y,b 0 = a ∧ y ∧ b = N (the square period),

0 •a,y,b 1 = b,

1 •a,y,b 0 = a,

1 •a,y,b 1 = a ∨ y ∨ b = K (the base frequency).

Also by Theorem 2.2, when a = b, then a always is an absorbing element (taking
the role of the zero element in usual quotient rings): ∀x ∈ N,

a •a,y,a x = L(a, a, y, a, x) = a = x •a,y,a a.

In particular, when a = y = b, then x •a,a,a z = a.

http://www.sagemath.org
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Example 6.1. The multiplication table for x •1y1 z = x ∨ y ∨ z is y-periodic; if y is
a prime number, it takes two values; e.g., for y = 2:

x •1,2,1 z 0 1 2 3 4 5
0 2 1 2 1 2 1
1 1 1 1 1 1 1
2 2 1 2 1 2 1

When y = 8, the extracted table for the divisors of N = 8 is a “minimum-law”:

x •1,8,1 z 1 2 4 8
1 1 1 1 1
2 1 2 2 2
4 1 2 4 4
8 1 2 4 8

Example 6.2 (Prime power cases). These are the cases where p is a prime number
and (a, y, b) = (pk, p`, pm) with k, `,m ∈ N0. For instance:

x •8,4,2 z 0 1 2 3 4 5 6 7 8
0 8 2 2 2 4 2 2 2 8
1 8 2 2 2 4 2 2 2 8
2 8 2 2 2 4 2 2 2 8

One observes an effective line period 1, instead of the predicted n = 4. Indeed, it
follows from Theorem 4.1 that x ·8,4,2 z = 2max(1,min(vp(z),3)), which does not depend
on x. In the prime power case, x ·a,y,b z is solely determined by the p-adic valuation
vp(x), vp(z) of x and z and the L- and U -functions for a totally ordered set (Theorem
4.1). The cases k ≥ ` ≥ m and k ≤ ` ≤ m behave like the preceding example. The
other cases are more complicated. For instance, here is the table for the divisors of
16 with (a, y, b) = (8, 1, 16):

x •8,1,16 z 1 2 4 8 16
1 1 2 4 8 8
2 2 2 4 8 8
4 4 4 4 8 8
8 8 8 8 8 8
16 16 16 16 16 16

When (a, y, b) = (8, 1, 8), the extracted table is similar: just skip the last line and
the last column of the preceding table. Note that we get the table of a “maximum-
law”, which is “dual” to the corresponding table of the conjugate product (1, 8, 1).

Example 6.3. When (a, y, b) = (p, 1, q) with p, q two prime numbers, then the struc-
ture of the products x •p,1,q z = (p ∨ x) ∧ (q ∨ z) follows this pattern:

x •5,1,3 z 0 1 2 3 4 5
0 15 3 3 3 3 15
1 5 1 1 1 1 5
2 5 1 1 1 1 5
3 15 3 3 3 3 15

The extracted table for the divisors of 15 is
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x •5,1,3 z 1 3 5 15
1 1 1 5 5
3 3 3 15 15
5 1 1 5 5
15 3 3 15 15

which agrees with the “dual” table of divisors of 15 for (5, 15, 3).

Example 6.4. Let y = 2. First the table for the commutative product •3,2,3, having
line and column period 3 and square period 6. The element 3 is absorbing (constant
line and column 3).

x •3,2,3 z 0 1 2 3 4 5 6
0 6 3 6 3 6 3 6
1 3 1 1 3 1 1 3
2 6 1 2 3 2 1 6
3 3 3 3 3 3 3 3
4 6 1 2 3 2 1 6
5 3 1 1 3 1 1 3
6 6 3 6 3 6 3 6

The table for the non-commutative product ·3,2,4 having line period 4 and column
period 6 and square period 12 has been given in the introduction. As it turns out,
there is an even shorter period 3 concerning columns.

Next, the table for the non-commutative product ·3,2,5 having line period 10 and
column period 6 and square period 30:

x ·3,2,5 z 0 1 2 3 4 5 6
0 30 5 10 15 10 5 30
1 3 1 1 3 1 1 3
2 6 1 2 3 2 1 6
3 3 1 1 3 1 1 3
4 6 1 2 3 2 1 6
5 15 5 5 15 5 5 15
6 6 1 2 3 2 1 6
7 3 1 1 3 1 1 3
8 6 1 2 3 2 1 6
9 3 1 1 3 1 1 3
10 30 5 10 15 10 5 30

The same table gives rise to the multiplication table for the set of divisors of 30:

x ·3,2,5 z 1 2 3 5 6 10 15 30
1 1 1 3 1 3 1 3 3
2 1 2 3 1 6 2 3 6
3 1 1 3 1 3 1 3 3
5 5 5 15 5 15 5 15 15
6 1 2 3 1 6 2 3 6
10 5 10 15 5 30 10 15 30
15 5 5 15 5 15 5 15 15
30 5 10 15 5 30 10 15 30
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Example 6.5. Here an example where a, y, b are composed numbers having common
factors:

x ·2,6,3 z 0 1 2 3 4 5
0 6 3 6 3 6 3
1 2 1 2 1 2 1
2 2 1 2 1 2 1
3 6 3 6 3 6 3
4 2 1 2 1 2 1
5 2 1 2 1 2 1

and the extracted table for the divisors of 6 is:
x ·2,6,3 z 1 2 3 6
1 1 2 1 2
2 1 2 1 2
3 3 6 3 6
6 3 6 3 6

When a, y, b have all three non-trivial factors in common, the structure of the prod-
ucts becomes quite complicated, and certainly deserves to be studied further.

Example 6.6. Recall from Theorem 5.5 that the non-principal parastrophes may
have a “bottom”, or not. When the bottom is empty, then the tables are non-
periodic. This is the case, for instance, for the product (a, z) 7→ L(8, a, 4, 2, z):

a\z 0 1 2 3 4 5 6 7 8
0 0 2 2 6 4 10 6 14 8
1 4 2 2 2 4 2 2 2 4
2 4 2 2 2 4 2 2 2 4
3 12 2 2 6 4 2 6 2 4
4 4 2 2 2 4 2 2 2 4
5 20 2 2 2 4 10 2 2 4
6 12 2 2 4 6 2 6 2 4
7 28 2 2 2 4 2 2 14 4

There is no easily visible pattern how to continue this table. The parastrophic
product (b, z) 7→ L(8, 2, 4, b, z) is periodic and seems to follow a pattern similar to
a “principal” product:

b\z 0 1 2 3 4 5 6 7 8
0 8 8 8 8 8 8 8 8 8
1 4 1 2 1 4 1 2 1 4
2 4 2 2 2 4 2 2 2 4
3 4 1 2 1 4 1 2 1 4
4 4 4 4 4 4 4 4 4 4
5 4 1 2 1 4 1 2 1 4
6 4 2 2 2 4 2 2 2 4
7 4 1 2 1 4 1 2 1 4
8 8 8 8 8 8 8 8 8 8

These constructions give a considerable number of finite semigroups, and hence
seem to be a quite effective machinery to “produce” semigroups.
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7. Afterthoughts

In several respects, the arithmetic case is an “antipode” of the geometric ap-
proach developed in [BeKi10a, BeKi10b, BeKi12]. Namely, from a geometric point
of view, the arithmetic case is a “zero dimensional projective geometry”: if K is a
field, then GrasK(K) would be the zero-dimensional projective space KP0, which is
uninteresting. If K is a ring, notably, for K = Z, things change considerably:

(1) transversality is a major tool used in [BeKi10a]; but the arithmetic case does
not admit any transversal pairs (two non-trivial submodules of Z always have
non-trivial intersection)!

(2) anti-automorphisms are crucial ingredients to define “classical geometries”
(see [BeKi10b]), but in the arithmetic case there are no antiautomorphisms,

(3) of course, one can define abstractly a “dual geometry” (just by taking the
dual lattice and exchanging a and b); but at a first glance there is no “natural
model” how to “realize this dual geometry in nature”,

(4) group actions with “big” (“open”) orbits are heavily used in [BeKi10a]; but
in the arithmetic case, the geometry is highly non-homogeneous: the linear
group GL(1,Z) = {±1} has trivial orbits in N, and hence group-theoretic
arguments are of no use.

Thus, from a geometric viewpoint, the arithmetic case seems to be difficult to
understand. As we have seen, this is partially compensated by the simple formula
L = Γ = U ; but a deeper understanding of the link between the geometric and the
arithmetic aspects would be desirable.
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