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Abstract. We define a general notion of centrally Γ-graded sets and groups and
of their graded products, and prove some basic results about the corresponding
categories: most importantly, they form braided monoidal categories. Here, Γ is an
arbitrary (generalized) ring. The case Γ = Z/2Z is studied in detail: it is related
to Clifford algebras and their discrete Clifford groups (also called Salingaros Vee
groups).

Dedicated to the memory of my collegue Lionel Bérard-Bergery (1945 – 2019)

Introduction

Let (Γ,+) be an abelian group (our main emphasis will be on the case Γ = Z/2Z).
Generally, Γ-graded structures play an important rôle in mathematics. In this work
we study a class of Γ-gradings, which, when combined with what we call a central
Γ-action, has very interesting and pleasant properties.

0.1. Additively and multiplicatively graded sets. A first point in the present
work is to distinguish between additively, and multiplicatively graded structures:

Definition 0.1. Let X and M be sets.

(1) An additive Γ-grading on M is a disjoint union structure, written

M = tγ∈ΓMγ, or M =
∐
γ∈Γ

Mγ,

i.e., M is the coproduct of a family of sets (Mγ)γ∈Γ. We allow some of the
Mγ to be empty. Thus, an additive grading is equivalent to a degree-map,

d : M → Γ, such that Mγ = d−1(γ).

(2) A multiplicative Γ-grading on X is a direct product structure of the form

X = ×γ∈ΓXγ, or X =
∏
γ∈Γ

Xγ.

If M is additively graded, then the space X = KM of functions from M to a
set K is multiplicatively graded (a function f : M → K corresponds to the family
(f |Mγ )γ∈Γ); in particular, taking K = {0, 1}, we see that the power set P(M) of M
is multiplicatively graded: multiplicative gradings often arise as “exponentials” of
additive ones. This furnishes important links between both types of gradings.
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0.2. Graded groups, and Clifford groups. In this work, we focus on additively
graded sets, and in particular on (additively) graded groups or monoids:

Definition 0.2. A Γ-graded monoid is a monoid G which is additively Γ-graded,
such that the grading map d : G → (Γ,+) is a morphism of monoids. It is called
centrally graded given a morphism Z : (Γ,+)→ G, x 7→ Z(x) =: Zx such that:

(1) Z takes values in the center of G: for all x ∈ Γ and g ∈ G : Zxg = gZx,
(2) d ◦ Z = 0, i.e., ∀x ∈ Γ : d(Zx) = 0.

When Γ = Z/2Z = {0, 1}, then the element Z = Z(1) is called the grading
element, and the power Zx is the same as Z(x). A prototype of graded group G
then is what in certain texts (e.g., [L]) is called the (discrete) Clifford group, and
elsewhere Salingaros Vee-groups, (cf. [S84, S82, A]): the canonical basis elements
e1, . . . , en of the Clifford algebra Clp,q(K) (see Appendix A for notation) generate
a group G = Qp,q of invertible elements in the Clifford algebra. This group is Γ-
graded in the sense defined above: the grading morphism d is the unique morphism
d : Qp,q → Z/2Z such that d(ei) = 1 (odd) for all i, and the grading element
is Z = −1 (since 〈ei, ej〉 = 0 for i 6= j, we have eiej = −ejei, so the group G
contains the element −1, which clearly is central in G). The underlying philosophy
is to replace the central element −1 from the Clifford case by an “abstract central
element”. Thus the approach presented here will give an abstract, group-theoretic
presentation of the discrete Clifford group. Such a group-theoretic approach has
already been advocated by the above quoted authors, but here we will go much
further by putting it into a general categorical approach, as follows.

0.3. The braided monoidal category of graded sets. A key feature in the
theory of Clifford algebras is the relation (see, e.g., [BtD], Prop. I.6.6)

(0.1) Cl(U ⊕W ) = Cl(U) ⊗̂Cl(W )

expressing the Clifford algebra of a quadratic space U ⊕W by the graded tensor
product of the corresponding Clifford algebras. When U,W carry the zero quadratic
form, we get the corresponding rules for Grassmann algebras. Our approach is
designed to furnish an analog of this for general (additvely) centrally Γ-graded sets:

Definition 0.3. A Γ-graded set, with grading map d : M → Γ, is called centrally
Γ-graded if it is equipped with a (left) Γ-action

z : Γ×M →M, (x,m) 7→ z(x,m) = x.m

preserving the grading, i.e., such that ∀x ∈ Γ, ∀m ∈M : d(x.m) = d(m).

A centrally graded monoid G is a centrally graded set: just let z(x,m) = Zxm.
First of all, we define the graded product of sets:

Theorem 0.4. Assume di : Mi → Γ, i = 1, 2, are two centrally Γ-graded sets.
Let M be the quotient of M1 ×M2 for the equivalence relation defined by ∀x ∈ Γ :
(x.m1,m2) ∼ (m1, x.m2). Then M , together with grading map and Γ-action

d([m1,m2]) = d(m1) + d(m2), x.[m1,m2] = [x.m1,m2] = [m1, x.m2],
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is again a centrally Γ-graded set, which we denote by M = M1 ×z M2. The usual
set-theoretic identification (M1 ×M2) ×M3 = M1 × (M2 ×M3) induces a natural
isomorphism of centrally Γ-graded sets

(M1 ×z M2)×z M3 = M1 ×z (M2 ×z M3).

The set E = Γ with d(m) = 0, x.m = x+m, is a “unit” : E×̂zM = M = M ×z E.
Summing up, centrally Γ-graded sets together with ×z form a monoidal category.

Now, the crucial point about graded tensor products is that they are associative,
but not commutative: this is encoded by the braiding map of graded tensor products,
defined for homogeneous elements v, w of degree |v|, |w| by

(0.2) β : V ⊗̂W → W ⊗̂V, v ⊗ w 7→ (−1)|v|·|w|w ⊗ v.
Likewise, in our setting, braidings can be chosen as additional structure: first of
all, there is the “usual”, or “standard” braiding, (x1, x2) 7→ (x2, x1), which leads us
back to usual set-theory. But now assume that Γ is also a generalized ring, meaning
that it carries a bi-additive “product” map Γ2 → Γ, (a, b) 7→ ab.

Definition 0.5. Let Mi, i = 1, 2, be two centrally Γ-graded sets. Then the map

β = βM1,M2 : M1 ×z M2 →M2 ×z M1, [x1, x2] 7→ z
(
d(x2) · d(x1), [x2, x1]

)
is well-defined, called the braiding given by the generalized ring Γ.

Theorem 0.6. For any generalized ring, the braiding maps are isomorphisms of
centrally graded sets and define a structure of (strict) braided monoidal category
of centrally Γ-graded sets. If the generalized ring product is skew, meaning that
ab+ ba = 0 for all a, b ∈ Γ, then this structure is symmetric, i.e., we always have

β−1
M1,M2

= βM2,M1 .

In the symmetric case, there is a simple formula, in terms of permutation inver-
sions, for the action of the symmetric group on iterated products (Theorem 2.1).
Next, braiding maps are used to define graded products of graded groups:

Theorem 0.7. We fix a generalized ring structure on Γ.

(1) For every centrally Γ-graded group G there is a braided dual group (b-dual)
given by G∨ = G, with same grading and central action as G, and product

x • y = Zd(y)d(x) xy.

(2) There is a group structure, denoted by G1×̂ZG2, on the product G1×z G2 of
two centrally Γ-graded groups Gi, i = 1, 2, given by the group law

[g1, g2] · [h1, h2] = Zd(h1)d(g2)[g1h1, g2h2].

(3) Iteration of the preceding construction is associative: the natural map
(G1×̂ZG2)×̂ZG3

∼= G1×̂Z(G2×̂ZG3) is a group isomorphism.
(4) When Γ is skew, then the braiding map βG1,G2 is an isomorphism from

G1×̂ZG2 onto G2×̂ZG1.

Dually to the result mentioned above, there is also a simple formula for the
product of n elements in G1×̂ZG2 (Remark 2.4) and in G∨ (Remark 2.2).
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0.4. The discrete Clifford category. Turning to concrete examples, we have
already mentioned that (discrete) Clifford groups provide non-trivial examples il-
lustrating the preceding facts. More abstractly, given a generalized ring Γ (which for
simplicity we assume to be skew), we define a sequence of groups: let Q0 := (Γ,+),

Q1,0 := Γ2 = Γ× Γ, Q0,1 := (Q1,0)∨, . . . Qp,q := ×̂pzQ1,0×̂z(×̂
q

zQ0,1),

where Γ2 is an abelian group, but with non-trivial grading and action (see Example
2.1). When Γ = Z/2Z, then this sequence is exactly the sequence of discrete Clifford
groups. In this case, the first few groups are

Q0 = (Γ,+) = C2 = Z/2Z,
Q1,0 = V = C2 × C2 (the Klein four-group),
Q0,1 = C = C4 (the cyclic group of order 4),
Q2,0 = Q1,0 ×̂ZQ1,0 = D = D4 (the dihedral group of symmetries of the square),
Q0,2 = Q0,1 ×̂ZQ0,1 = Q (the quaternion group of order 8).,
Q1,1

∼= D4 (but with a different grading than above).

We investigate this discrete Clifford category in some detail in Section 3. Most facts
are, essentially, known from the theory of Clifford algebras: Salingaros denotes
these groups by Gp,q and calls them Vee-groups (see [S84, S82], see also references
given in [A, AM]). In the present work, we push the group theoretic approch given
by these authors much further, by putting it in the large framework of graded
monoidal categories, allowing much more general rings than Z/2Z. For instance,
when Γ = R2 with its canonical skew-symmetric product x · y = (x1y2 − x2y1, 0),
we get a sequence of groups of Heisenberg-type, called the Heisenberg category.

0.5. Group algebra, and Clifford algebra. The group algebra K[G] of the
groups G = Qp,q is a super-algebra which decomposes as a direct sum of two
ideals K[G]+ (which in turn is a group algebra of an abelian group), and K[G]−,
which is precisely the Clifford algebra (Theorem 4.2 and 4.1). More generally, when
G = G1×̂ZG2, then K[G]+ is the ordinary (ungraded) tensor product K[G1]⊗K[G2]
of group algebas, and K[G]− is the graded tensor product (Theorem 4.1).

0.6. Concluding remarks. It seems as if the category of centrally Z/2Z-graded
sets supports a good deal of what can be done on ordinary, ungraded sets. One
may ask if this carries as far as differential calculus and analysis – indeed, the joint
paper with J. Haut, [BeH] proposes a setting of “categorical differential calculus”
which seems to be suitable for an adaptation to a “graded”, or “super”, framework.
The important challenge is to understand if, and how, such a calculus were related
to other known categorical approaches ([Mol, Sa, Sch]). We hope to investigate this
question in future work.

Another aspect, already present in, e.g., [A, AM, L, S84], becomes clearified in
the present setting, namely, the relation with the theory of central extensions of
groups: indeed, all our groups can be viewed as central extensions, and as such,
can be described by certain cocycles (Section 3.3). It becomes apparent that these
cocycles are all related to algebra and combinatorics of totally ordered (finite) index
sets, in particular, via inversions (Fehlstand, in German).

∗ ∗ ∗

https://de.wikipedia.org/wiki/Fehlstand
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Je souhaite dédier ce travail à la mémoire de mon collègue Lionel Bérard-Bergery
(1945 – 2019). Les discussions que nous avions, autour de sujets de géométrie,
où les graduations étaient toujours présentes, m’ont été une source inépuisable
d’inspiration dans ce domaine. Bien que Lionel n’ait pas eu le temps de formaliser
et de finaliser ces idées, j’espère qu’elles verront le jour, tôt ou tard, et que ce travail
y contribuera.

1. Γ-graded sets and monoids

In this section, (Γ,+) is an abelian group.

1.1. Additively and multiplicatively graded sets, and grading automor-
phism. The definition of (additively) Γ-graded sets and monoids has been given
above (Def. 0.1 and 0.2). As explained in the introduction, we’ll focus on additively
graded structures, and simply call them “graded”. Let’s turn them into a cate-
gory. We have the choice between a “strong” or “weak” definition of morphisms
(preserving, or permuting, the grading):

Definition 1.1. Let X,X ′ be sets and (Γ,+) an abelian group. A morphism of
additively Γ-graded sets (X, d), (X ′, d′), of degree d(f) ∈ Γ, is a map f : X → X ′

such that

∀x ∈ X : d(f(x)) = d(f) + d(x).

When d(f) = 0, we say that f is a grading-preserving morphism.
A morphism of centrally Γ-graded sets is a grading-preserving morphism com-

muting with the Γ-action (f(γ.x) = γ.f(x), for all x ∈M and γ ∈ Γ).
A morphism of centrally Γ-graded monoids or groups is a morphism of groups or

monoids satisfying the preceding condition.

Definition 1.2. On every centrally Γ-graded set (M,d, z), we define the grading
automorphism by

α : M →M, x 7→ α(x) = d(x).x = z(d(x), x).

Clearly, α is a grading-preserving morphism. Its inverse is α−1(x) = z(−d(x), x).

Definition 1.3. We say that (M,−d) is the negative grading of (M,d).

Lemma 1.4. If (G, d, Z) is a centrally Γ-graded group, then α : G→ G, g 7→ Zd(g)g
is an automorphism of graded groups (again called grading automorphism).

Proof. α(gh) = Zd(gh)gh = Zd(g)Zdhgh = Zd(g)gZd(h)h = α(g)α(h), α(e) = e. �

When Z : Γ → G is injective, then the grading can be recovered from α via
Gγ = {x ∈ G | ∀u ∈ Γ : ux = γx} (a kind of “pre-eigenspace”). As already noticed,
examples of centrally Γ-graded sets arise from centrally graded groups:

Example 1.1. Let M := P(n) the power set of n = {1, . . . , n}. It is an abelian group
for the symmetric difference A∆B of sets, and from elementary set theory we have
a group morphism

d : P(n)→ Γ := Z/2Z, A 7→ |A| mod 2.
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So M0 = P(n)0 is the subset of sets having even cardinality, and M1 = P(n)1

the one of subsets having odd cardinality. A central action of Z/2Z on P(n) is
obtained by choosing some set B ⊂ n of even cardinality and letting z(0, A) = A,
z(1, A, ) = A∆B,. We have α(A) = A if A is even, and α(A) = A∆B if A is odd.

Example 1.2. All dihedral groups Dn are Z/2Z-graded, via the quotient morphism
Dn → Dn/Cn = C2 (where Cn is the cyclic group of order n). But only for n even
they are centrally Z/2Z-graded: only in this case the center is non-trivial, Z(D2n) =
{±1} ∼= C2, so that Z : Z/2Z → D2n can be taken to be Z(0) = 1, Z(1) = −1.
Note that the groups D4n admit several normal subgroups of index 2, containing
the element −1, so there are several different central gradings on D4n.

Example 1.3. The quaternion group Q is centrally Z/2Z-graded: similarly to the
case of D4, its center ±1 is isomorphic to C2, and it has several normal subgroups of
index 2 containing the element −1. In contrast to the D4-case, the different normal
subgroups in question are conjugate to each other under outer automorphisms.

Remark 1.1 (Central extensions). The quotient (orbit set) of the Γ-action, M0 :=
M/Γ, is again Γ-graded: the map d passes to the quotient d : M0 → Γ. If the
action of Γ is free, it will sometimes be useful to choose a set-theoretic section of
the projection M → M0, and thus to identify M with M0 × Γ. In particular, the
setting of centrally graded groups self-dual in the sense that, reversing arrows, d
and Z change their roles, and we have exact sequences of groups

G0 → G → Γ,
Γ → G → G0 := G/ZΓ,

the second of them realizing G as central extension of G0 by Γ. Choosing a set-map
G0 → G, section to the projection G→ G0, the set G can be identified with G0×Γ,
with group law expressed via a map τ : G0×G0 → Γ (with G0 written additively),

(h, u) · (h′, u′) = (hh′, u+ u′ + τ(h, h′)).

Associativity is equivalent to saying that τ satisfies the cocycle relation

τ(h, h′) + τ(hh′, h′′) = τ(h, h′h′′) + τ(h′, h′′).

(cf. Section 3.3). Note that d induces a morphism d : G0 → Γ, but the induced
[Z] : Γ→ G0 would be trivial.

1.2. Monoidal structure on the category of centrally Γ-graded sets. We
define the product M = M1 ×z M2 of two centrally Γ-graded sets as explained
in Theorem 0.4. By routine check, M is again centrally Γ-graded. (Note that the
equivalence relation is the orbit relation of the action of the “antidiagonal subgroup”
{(γ,−γ) | γ ∈ Γ} on M1×M2, and the grading passes to the quotient.) To complete
the proof of Theorem 0.4, we check associativity

(M1 ×z M2)×z M3 = M1 ×z (M2 ×z M3).

Indeed, this follows from associativiy (which we consider to be “strict”) of the usual
Cartesian product ×, which passes to the quotient. Namely, on both sides, the
grading is induced by d1⊕d2⊕d3 (by associativity and commutativity of the group
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(Γ,+)), and on both sides, the quotient is taken with respect to the “generalized
antidiagonal”

N := {(γ1, γ2, γ3) ∈ Γ3 | γ1 + γ2 + γ3 = 0}.
Thus both sides are identified with the quotient for the equivalence relation

zγ[x1, x2, x3] = [zγ1x1, x2, x3] = [x1, z
γ
2x2, x3] = [x1, x2, z

γ
3x3].

Finally, the set E = Γ with trivial grading d = 0 and action on itself by zγ(x) = γ+x
is neutral for the graded product (direct check). And, given morphisms fi : Mi →
M ′

i , i = 1, 2, of degree ui = d(fi), the following is a well-defined morphism from
M1 ×z M2 to M ′

1 ×z M ′
2 of degree u1 + u2:

(f1 ×z f2)[x1, x2] = [f1(x1), f2(x2)].

Summing up, we get a bifunctor, turning centrally Γ-graded sets with their graded
product into a (strict) monoidal category (see [CWM], Chapter VII, p. 161).

2. Braidings, and graded product of groups

Next, we discuss “commutativity”: what is the relation between M1 ×z M2 and
M2 ×z M1? A braiding on a monoidal category is the choice of a “choherent”
family of isomorphisms switching the order of product (see [CWM], Chapter XI).
In general, a braiding is an additional structure. The standard braiding from set
theory, A×B ∼= B×A, induces of course a braiding on centrally Γ-graded sets: we
call this again the standard braiding.

2.1. Braiding of centrally graded sets. In order to define other braidings, from
now on, we assume that Γ is a generalized ring, with bi-additive product map
Γ2 → Γ, (a, b) 7→ ab, and define the braiding map βM1,M2 : M1 ×Z M2 →M2 ×Z M1

as in Definition 0.5. Let us prove Theorem 0.6. Clearly, βM1,M2 preserves gradings
and commutes with the Γ-action (since (Γ,+) is commutative), hence is a morphism
of centrally Γ-graded sets. It is an isomorphism, since it admits an inverse

β−1 : [y1, y2] 7→ Z−d(y1)d(y2)[y2, y1].

Note that this inverse corresponds to the original braiding map when replacing d
by −d and the “product” ab of Γ by its “opposite product” ba. Thus, if ab = −ba,
we have the symmetry condition β−1

M1,M2
= βM2,M1 , as claimed.

Saying that our strict monoidal category is braided amounts to the following
two “hexagonal diagram identities” (see [CWM], Chapter XI, p. 253): first, the
following two morphisms from M1 ×Z M2 ×Z M3 to M2 ×Z M3 ×Z M1 coincide
(for better readability, we shall write, β1,2 instead of β(M1,M2), and β1,23 instead of
β(M1,M2×zM3) , etc.):

(id2 ×Z β(1,3)) ◦ (β(1,2) ×Z id3) = β(1,23).

We prove this by direct computation (writing d instead of di)

(id2 ×Z β(1,3)) ◦ (β(1,2) ×Z id3)[x1, x2, x3] =

(id2 ×Z β(1,3))(Z
d(x2)d(x1)[x2, x1, x3]) = zd(x2)d(x1)+d(x3)d(x1)[x2, x3, x1],

β(1,23)[x1, x2, x3] = z(d(x2)+d(x3))d(x1)[x2, x3, x1].

https://ncatlab.org/nlab/show/monoidal+category
https://ncatlab.org/nlab/show/braided+monoidal+category
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By distributivity of the product in Γ, both sides agree. The second “hexagonal”
condition amounts to the first condition, when replacing the braiding maps by their
inverses. But, as noticed above, the inverses of the braiding are of the same form
(replacing d by −d and the product in Γ by its opposite), so the computation is
exactly the same.

Remark 2.1. As explained in [CWM], Section XI.5 (Braided Coherence), the pre-
ceding arguments amount to proving that the morphisms si := β(Mi,Mi+1) satisfy
the defining relations of the generators of the braid group

sisi+1si = si+1sisi+1, and sisj = sjsi whenever |i− j| 6= 1.

Explicitly, let’s show that s2s1s2 = s1s2s1, by a computation essentially equivalent
to the one given above. We write (23) for s2 and (12) for s1:

(23)(12)(23)[x1, x2, x3] = (23)(12)Zd3d2 [x1, x3, x2]

= (23)Zd3d2+d3d1 [x3, x1, x2]

= Zd3d2+d3d1+d2d1 [x3, x2, x1]

(12)(23)(12)[x1, x2, x3] = (12)(23)Zd2d1 [x2, x1, x3]

= (12)Zd2d1+d3d1 [x2, x3, x1]

= Zd2d1+d3d1+d3d2 [x3, x2, x1]

When the braiding is symmetric, the action on the braid group passes to an action
of the symmetric group Sn (coherence theorem in symmetric monoidal categories,
see [CWM], p. 253, Thm.1). We give an explicit formula describing this action in
terms of permutation inversions:

Theorem 2.1. Assume the product in Γ is skew. Then there are well-defined iso-
morphisms, for every σ ∈ Sn,

β(M1,...,Mn)
σ : M1 ×Z . . .×Z Mn →Mσ(1) ×Z . . .×Z Mσ(n),

coinciding for adjacent transpositions si = (i, i+1) with the braiding isomorphisms,
and in general given by

β(M1,...,Mn)
σ [x1, . . . , xn] = Zu[xσ(1), . . . , xσ(n)],

with u given in terms of permutation inversions for σ:

u =
∑
(i,j):

i<j,σ(i)>σ(j)

d(xj)d(xi).

Proof. Existence of the action follows from the coherence theorem in symmetric
monoidal categories (loc cit.) All that remains to be proved is the explicit formula
for u in terms of inversions. Indeed, for n = 2 and n = 3, the explicit formulae given
above prove the claim. For general n, the claim is given by induction. To this end,
one may decompose any permutation into a product of adjacent transpositions, each
of which adding an inversion term (which may cancel out with another term ob-
tained precedingly, and so really counts the inversions: this is where skewness of the
product in Γ becomes crucial), and performing a computation which is essentially
the same as the one given above for the permutation (13) = (12)(23)(12). �

https://de.wikipedia.org/wiki/Fehlstand
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2.2. Braided dual of a centrally graded group. We continue to assume that Γ
is a generalized ring. The braiding maps show up in constructions on graded groups
(or monoids) from Theorem 0.7. We prove Item (1) of this theorem: the product
of G∨ is associative:

g1 ·∨ (g2 ·∨ g3) = Zd(g1) d(g2g3)(g1 · (g2 ·∨ g3))

= Zd(g1)d(g2)+d(g1)d(g3)+d(g2)d(g3)g1g2g3

= Zd(g1g2) d(g3)(g1 ·∨ g2) · g3 = (g1 ·∨ g2) ·∨ g3.

The neutral element is e, and the inverse of g is Z(d(g)2)g−1, since d(g−1) = −d(g),

g ·∨ Z(d(g)2)g−1 = Zd(g)·d(g−1)Z(d(g))2gg−1 = Z−(d(g))2+(d(g))2e = e = Z(d(g)2)g−1 ·∨ g.
Since Γ is commutative and Z(Γ) central, the maps d and Z define on this group
the structure of a Γ-graded group. Since the product in (G∨)∨ is (g1, g2) 7→
Zd(g2)d(g1)+d(g1)d(g2)g1g2, it follows that (G∨)∨ = G if Γ is skew.

Remark 2.2. By induction, the product of n elements in G∨ is given by

g1 ·∨ . . . ·∨ gn = Zug1 · · · gn, where u =
∑

(i,j):i<j

d(gi)d(gj).

Note that there are also other “duals”: the opposite group Gopp of a group G, and
the braided duals belonging to the products −ab and to ba, and any combination
of these operations. We are mainly interested in the case Γ = Z/2Z, where most
of them coincide, and will not investigate systematically the family of “duals” thus
obtained.

Example 2.1 (Central extensions of Γ). Let G = Γ2 with group law here written

(x0, x1) · (y0, y1) = (x0 + y0, x1 + y1),

and d(x0, x1) = x1 and Z(x) = (x, 0). This clearly defines a (commutative) centrally
Γ-graded group, denoted by Γ1,0. Its b-dual, which we denote by Γ0,1 = Γ∨1,0, is given
by the same d and Z, and product

(x0, x1) ·∨ (y0, y1) = Z(x1y1) · (x0 + y0, x1 + y1) = (x0 + y0 + x1y1, x1 + y1).

Indeed, Γ1,0 is the central extension of Γ by Γ via the trivial cocycle 0, whereas Γ0,1

is the extension via the (in general) non-trivial cocycle (x, y) 7→ xy.
For later use, let us have a closer look at the case Γ = Z/2Z = {0, 1} with its

usual (field) product. Let

1 := e0 := (0, 0), Z := (1, 0), e1 := (0, 1), Ze1 := (1, 1).

In the following, we’ll write the group law multiplicatively (although at this stage
it will still be commutative). So let t ∈ {1, Z}. When t = 1, the following gives the
group law of Γ1,0, and when t = Z, it gives the group law of Γ0,1:

· 1 Z e1 Ze1

1 1 Z e1 Ze1

Z Z 1 Ze1 e1

e1 e1 Ze1 t tZ
Ze1 Ze1 e1 tZ t
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The elements 1 and Z are even, and e1 and Ze1 are odd. For t = 1, we see that
Γ1,0
∼= C2 × C2 as group (usual direct product). For t = Z, we have Γ0,1

∼= C4,
because e1 becomes here an element of order four.

2.3. Graded product of centrally graded groups. We define the graded product
of two centrally Γ-graded groups Gi, i = 1, 2, as in Item 5)2) of Theorem 0.7. Let
us show that the new product is associative:

(f1, f2) ·
(
(g1, g2) · (h1, h2)

)
= (f1, f2) · (Zd(g2) d(h1)

1 g1h1, g1h2)

= (Z
d(f2)d(g1h1)
1 Z

d(g2)d(h1)
1 f1g1h1, f2g2h2)

= (Z
d(f2)d(g1)+d(f2)d(h1)+d(g2)d(h1)
1 f1g1h1, f2g2h2)

= (Z
d(f2)d(g1)+d(f2g2)d(h1)
1 f1g1h1, f2g2h2)

= (Z
d(f2)d(g1)
1 f1g1, f2g2) · (h1, h2)

=
(
(f1, f2) · (g1, g2)

)
· (h1, h2).

The inverse element of (g1, g2) is, as is directly checked, (Z
d(g2)d(g1)
1 g−1

1 , g−1
2 ), and

so (G1 × G2, ·) is a group. Moreover, d(g1, g2) := d(g1) + d(g2) clearly defines a
morphism from this group to (Γ,+). The elements (Zk

1 , Z
−k
2 ) belong to the center of

this group, and their degree is zero, hence the quotient G/N is again a graded group.
The equivalence relation generated by N comes from (g1, g2) ∼ (Zk

1 g1, Z
−k
2 g2), that

is, (g1, Z
k
2 g2) ∼ (Zk

1 g1, g2) for all k, and hence the quotient group G1×G2/N fulfills
the conditions from the theorem. Moreover, if the product in Γ is skew, the braiding
map is a group isomorphism from G1×̂ZG2 onto G2×̂ZG1:

β([g1, g2] · [h1, h2]) = β([Z
d(g2)d(h1)
1 g1h1, g2h2])

= Zd(g2)d(h1)−d(g2h2)d(g1h1)[g2h2, g1h1]

= Zd(g2)d(h1)−(d(g2)+d(h2))(d(g1)+d(h1))[g2h2, g1h1]

= Z−d(h2)d(g1)−d(h2)d(h1)−d(g2)d(g1)[g2h2, g1h1]

= Zd(g1)d(h2)[Z
d(g1)d(g2)+d(h1)d(h2)
2 g2h2, g1h1]

= [Z
d(g1)d(g2)
2 g2, g1] · [Zd(h1)d(h2)

2 h2, h1]

= β[g1, g2] · β[h1, h2]

Remark 2.3 (Product of n elements). With different notation, the formula from the
proof for the product of three elements reads, with dij := d(gij),

(g11, g12) · (g21, g22) · (g31, g32) = Zd12d21+d12d31+d22d31
1 (g11g21g31, g12g22g32).

By induction, the product of n elements in G is given by

[g11, g12] · · · [gn1, gn2] = Z

∑
(i,j)∈n2:
i<j

di2dj1[
g11 · · · gn1, g12 · · · gn2

]
.

Note that the proof of associativity and the proof of the braiding property are
essentially equivalent.
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To finish the proof of Theorem 0.7, we prove Item (3): the set-theoretic equality
(G1×̂G2)×̂G3 = G1×̂(G2×̂G3) is an isomorphism of groups: on the one hand,(

(g1, g2), g3

)
·
(
(h1, h2), h3

)
=
(
Zd(g3) d(h1,h2)(g1, g2) · (h1, h2), g3h3

)
=
(
Z
d(g3)(d(h1)+d(h2))
1 Z

d(g2)d(h1)
1 g1h1, g2h2, g3h3

)
=
(
Z
d(g3)d(h1)+d(g3)d(h2)+d(g2)d(h1)
1 g1h1, g2h2, g3h3

)
.

On the other hand, using distributivity in the ring Γ, we get the same result:(
g1, (g2, g3)

)
·
(
h1, (h2, h3)

)
=
(
Z
d(g2,g3) d(h1)
1 g1h1, (g2, g3) · (h2, h3)

)
=
(
Z

(d(g2)+d(g3)) d(h1)
1 Z

d(g3)d(h2)
1 g1h1, g2h2, g3h3

)
=
(
Z
d(g2)d(h1)+d(g3)d(h1)+d(g3)d(h2)
1 g1h1, g2h2, g3h2

)
Remark 2.4. The preceding computation shows that the group product inG1×̂ZG2×̂ZG3

is given by, with dij := d(i,j) := d(gij),

[g11, g12, g13] · [g21, g22, g23] = Zd12d21+d13d21+d13d22 [g11g21, g12g22, g13g23].

By induction, we get the product of two elements in G = G1×̂ZG2×̂Z . . . ×̂ZGp,

[g11, . . . , g1p] · [g21, . . . , g2p] = Z
∑
i>j d1id2j [g11g21, . . . , g1pg2p].

Note the “duality” with the formula from Remark 2.3! Applying it twice, we get

[g11, g12, g13] · [g21, g22, g23] · [g31, g32, g33] = Zu[g11g21g31 , g12g22g32 , g13g23g33],

with the degree term given by

u = d12d21 + d13d21 + d13d22 + (d12 + d22)d31 + (d13 + d23)d31 + (d13 + d23)d32

= (d12d21 + d13d21 + d13d22) + (d12d31 + d13d31 + d13d32) + (d22d31 + d23d31 + d23d32).

The 9 terms are structured by the graph of the usual total order on {1, 2, 3} (the
three pairs (1 < 2), (1 < 3), (2 < 3)). By induction (the details of which we omit),
we get for the product of n elements gi = (gi1, . . . , gip), for i = 1, . . . , n:

g1 · · · gn = Zu(g11 · · · gn1, . . . , g1p · · · gnp)
with degree term given by a kind of “matrix product”

u =
∑

(i,j,k,`)∈p2×n2:
i>j,k<`

dkid`j.

Remark 2.5. The group inverse in G1×̂ZG2×̂ZG3 is given by

[g1, g2, g3]−1 = Zd2d1+d3d1+d3d2 [g−1
1 , g−1

2 , g−1
3 ].

By induction, [g1, . . . , gn]−1 = Z
∑
i<j djdi [g−1

1 , . . . , g−1
n ].

Remark 2.6 (Choices and conventions). The graded product of graded groups could
have been defined by other choices and conventions. To explain this, note that we
could have defined the group law on G1 ×z G2 in a different way: every matrix
X ∈M(2, 2;Z) gives rise to a bi-additive product on Γ⊕ Γ, via

〈a, b〉 = (a1, a2)X(b1, b2)t = a1X11b1 + a1X12b2 + a2X21b1 + a2X22b2
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(where products in Γ are given by the fixed bi-additive product, and coefficients from
Z associate with everything). Thus we can define a braided dual group structure
on G1 × G2, as above, with respect to the bi-additive product on Γ ⊕ Γ, and then
mod out the normal subgroup N as before. The result is a new group structure
on G1 ×z G2, depending on the matrix X. When Γ = F2 = Z/2Z, then all 16
matrices from M(2, 2;F2) give rise to a group structure. For instance, the matrix
X = E11 gives rise to the group G∨1 ×z G2, and X = I = E11 +E22 gives rise to the
group G∨1 ×Z G∨2 . However, for these choices, Item (3) of Theorem 0.7 would fail
to hold: for this we need that X is strict (upper or lower) triangular. For X = 0,
this gives the ungraded product; our choice is X = E12, but X = E21 would give
an isomorphic theory.

Remark 2.7 (Internal graded product). With notation as in Theorem 0.7, G has
two normal subgroups

{[g1, 1] | g1 ∈ G1} ∼= G1,

{[1, g2] | g2 ∈ G2} ∼= G2,

such that G1 ∩ G2 = ZΓ = im(Z). Commutators of elements of G1 with elements
of G2 belong to ZΓ. Indeed, both groups normalize each other:

[1, g2] · [g1, 1] · [1, g2]−1 = Zd(g2)d(g1)[g1, g2] · [1, g−1
2 ]

= [Z
d(g2)d(g1)
1 g1, 1] = Zd(g2)d(g1)[g1, 1].

These facts imply that G is a certain amalgamated semi-direct product of G1 with
G2. Conversely, such data can be used to recover the graded product (so we may
speak of an “internal graded product” of subgroups of a given group, corresponding
to the “external graded product”, given by the theorem). Thus we may write g1g2

instead of [g1, g2], and compute products by using the “commutation relation”

(2.1) g2g1 = Zd(g2)d(g1)g1g2.

Example 2.2 (D4 and Q revisited). To prepare the grounds for the following section,
let us compute explicitly the graded product of two groups of type Γ1,0 or Γ0,1, as
defined in Example 2.1. Let Gi = {1, Zi, ei, Ziei}, given by the table from Example
2.1, with ti ∈ {1, Zi}, where Zi corresponds to Z. The cardinality of G = G1×̂ZG2

is 4×4
2

= 8, and its elements are

1 = [(1, 1)], Z = [(1, Z2)] = [(Z1, 1)], e1 = [(e1, 1)], e2 = [(1, e2)],

Ze1, Ze2, e12 := e1e2 = [(e1, e2)], Ze12.

These elements are multiplied by using the rules: e1e2 = Ze2e1, e2
i = ti, Z

2
i = 1, Z

is central. The elements 1, Z, e12, Ze12 are even, and e1, e2, Ze1, Ze2 are odd. For
instance e2

12 = e1e2e1e2 = Ze2
1e

2
2 = Zt1t2. The group table of G is as follows:

https://en.wikipedia.org/wiki/Free_product#Generalization:_Free_product_with_amalgamation
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· 1 Z e12 Ze12 e1 Ze1 e2 Ze2

1 1 Z e12 Ze12 e1 Ze1 e2 Ze2

Z Z 1 Ze12 e12 Ze1 e1 Ze2 e2

e12 e12 Ze12 Zt1t2 t1t2 Zt1e2 t1e2 t2e1 Zt2e1

Ze12 Ze12 e12 t1t2 Zt1t2 t1e2 Zt1e2 Zt2e1 t2e1

e1 e1 Ze1 t1e1 Zt1e1 t1 Zt1 e12 Ze12

Ze1 Ze1 e1 Zt1e1 t1e1 Zt1 t1 Ze12 e12

e2 e2 Ze2 Zt2e1 t2e1 Ze12 e12 t2 Zt2
Ze2 Ze2 e2 t2e1 Zt2e1 e12 Ze12 Zt2 t2

Since G is non-commutative and of cardinality 8, it is either isomorphic to the
dihedral group D4 or to the quaternion group Q. When t1 = Z = t2, then G
contains 6 elements of order 4, and hence is isomorphic to Q. Its even subgroup is
G0
∼= C4. In the other cases, it contains exactly 2 elements of order 4, and hence is

isomorphic to D4. The even subgroup then is isomorphic to C4 if t1 = 1 = t2, and
to C2 × C2 if t1 = Z, t2 = 1, or if t1 = 1, t2 = Z.

Example 2.3. Let m ≥ 2, and Γ = Z/mZ. We have three groups, of cardinal m3,

C2
m×̂ZC2

m, Cm2×̂ZC2
m, Cm2×̂ZCm2 .

It follows from Remark 2.7 that these groups satsify [G,G] ⊂ 〈Z〉, hence are 2-step
nilpotent. E.g., for m = 3, this gives the two non-abelian groups of order 27 (see
[D] p. 565 and p. 566 for detailed information on these groups).

3. The discrete Clifford category

3.1. The Γ-category. Assume the product in Γ is skew, and recall from Example
2.1 the graded groups

Q(1) := Γ1,0 = Γ2, Q(Z) := Γ0,1 = Γ∨1,0.

The symmetric monoidal category of Γ-graded groups generated by Q(1) and Q(Z)
will be called the Γ-category. Explicitly, these groups are of the form:

Definition 3.1. For t = (t1, . . . , tn) ∈ {1, Z}n,
if ti = 1, let Q(ti) be a copy of Q(1) = Γ2,
if ti = Z, let Q(ti) be a copy of Q(Z) = Q(1)∨, and define

Q(t) := Q(t1)×̂Z . . . ×̂ZQ(tn).

We let also, Q0 := Γ with trivial grading (as we have seen, this is the neutral element
for the graded product), and for p+ q = n,

Qp,q := Q(1, . . . , 1︸ ︷︷ ︸
p×

, Z, . . . , Z︸ ︷︷ ︸
q×

), Qn := Qn,0 = Q(1, . . . , 1), Q∨n = Q0,n.

By Item (3) of Theorem 0.7, we can recast this definition:

Definition 3.2. Let K be a set. For (t, s) ∈ Kn ×Km, we denote by

t⊕ s := (t1, . . . , tn, s1, . . . , sm) ∈ Kn+m

their “juxtaposition”. Note that this operation is associative, but not commutative
(in fact, it is the composition law of the free monoid over K ).

https://en.wikipedia.org/wiki/List_of_small_groups#List_of_small_non-abelian_groups
https://en.wikipedia.org/wiki/Free_monoid
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Lemma 3.3. For t ∈ {1, Z}n, s ∈ {1, Z}m, we have

Q(t⊕ s) = Q(t)×̂ZQ(s).

In particular, Qp,q = Qp×̂ZQ0,q.

Remark 3.1. Fom Item (4) of Theorem 0.7, we get an isomorphism φ(t,s) : Q(t⊕s)→
Q(s⊕ t). For instance, re-arranging the order of factors, we get an isomorphism

Qp,p
∼= Q1,1×̂Z . . . ×̂ZQ1,1.

Example 3.1. Let Γ = Rk with k ≥ 2 and skew-symmetric product (x1, x2) =
(0, . . . , 0, x1x2 − x2x1). Then Q1,0 is the abelian group R2k, whereas Q0,1, and all
higher Qp,q are are 2-step nilpotent Lie groups, isomorphic to a Heisenberg group.
We propose to call the Γ-category, in this case, the Heisenberg category. A system-
atic study of this category is certainly an interesting topic for subsequent work.

3.2. The discrete Clifford category. From now on, we assume that Γ = Z/2Z
with its usual ring (field) structure. In this case, the Γ-category will be called the
(discrete) Clifford category, since the groups Qp,q then are (discrete) Clifford groups,
as we shall see. The specific feature of this case is that Γ is both skew and admits
a unit element 1 (which is not the case in the Heisenberg category). To give an
explicit description of all groups by generators and relations, we follow the notation
from Example 2.2: for m ∈ N, let Zm be a copy of the element Z (copy called
“of m-th generation”). For each tm ∈ {1, Zm}, we define a graded group of four
elements,

Q(tm) = {e0, em, Zm, Zmem},
just as in Example 2.2: 1 = e0 is neutral, Z2

m = e0, and e2
m = tme0. The elements

ei, Ziei are odd, and e0, Zi are even. Thus, as we have seen in Exemple 2.1,

(3.1)
Q1 = Q(1) = C2

2 ,
Q0,1 = Q(Z) = C4.

From Example 2.2, we now get

(3.2)
Q2 = Q(1, 1) = D4,
Q0,2 = Q(Z,Z) = Q,
Q1,1 = Q(1, Z) = D4.

As already said, Q(t) will be seen to be isomorphic to the discrete Clifford group of
the Clifford algebra Cl(t) (Appendix A). In the following, let us prove some basic
structure results on these groups, without using the theory of Clifford algebras.
Recall from Example 1.1 the abelian group (P(n),∆), isomorphic to (Z/2Z))n.

Theorem 3.4. Fix t ∈ {1, Z}n. Then:

(1) The group G := Q(t) is of cardinality 2n+1.
(2) The quotient group G0 = G/{1, Z} is abelian, isomorphic to P(n) = (Z/2Z)n,

i.e., the following is an exact sequence of groups (central extension)

{1, Z} → Q(t) → (P(n),∆).

Elements of Q(t) are of order either 1, 2 or 4.

https://en.wikipedia.org/wiki/Heisenberg_group
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(3) The group G is generated by the elements ei ∈ Q(ti) (which are identified
with the corresonding element in G). For A ⊂ n with k = |A|, whose
elements are ordered, a1 < . . . < ak, we let

eA := ea1 · · · eak .
Then G is a disjoint union, as follows:

G = {eA | A ∈ P(n)} t {ZeA | A ∈ P(n)}.
We often identify the first set with P(n) (i.e., we fix this set theoretic splitting
of the exact sequence from Item (2)). There is a function τ : P(n)×P(n)→
Z/2Z such that, for all A,B ∈ P(n),

eAeB = Zτ(A,B)eA∆B.

(4) The group G is 2-step nilpotent: the commutator subgroup [G,G] belongs to
the center of G, whence [G, [G,G]] = {1}.

(5) Defining relations between the generators e1, . . . , en, Z are:
(a) e0 is neutral,
(b) (for all i = 1, . . . , n) e2

i = tie0,
(c) (for k < `) eke` = Ze`ek, and
(d) Z is central, even, and of order 2.

Proof. (1), (2), (3) are essentially contained in Theorem 0.7 and Remark 2.4. More
formally, these items are proved by induction: for n = 1 and n = 2, this has been
noticed above. Assume the claim already proved at level n ∈ N, and write

(3.3) Q(t1, . . . , tn+1) = Q(t)×̂Q(tn+1),

and use “internal notation” (2.1) together with induction hypothesis to write ele-
ments of this group as claimed. Concerning the product of two elements, eAeB =
ea1 · · · eakeb1 · · · eb` , re-order elements in ascending order of indices; when two in-
dices coincide, the square yields either 1 or Z; only terms with indices from the
symmetric difference survive, together with a term Zu with u = 0 or u = 1. It
follows that (eA)4 = 1 and (ZeA)4 = 1, for all A ∈ P(n).

(4) The morphism from item (2) sends the commutator group [G,G] to [P(n),P(n)] =
0 since P(n) is abelian. Therefore [G,G] ⊂ {1, Z}, and hence [G,G] belongs to the
center of G. (See Lemma 3.5 for an explicit formula describing commutators.)

(5) Relations (a) – (d) are contained in the preceding items. Conversely, given a
group having generators satisfying these relations, it is seen by induction that it is
isomorphic to Q(t): for n = 1 and t1 = 1, we have the defining relations of C2×C2,
and for n = 1 and t1 = Z, we have the defining relations of C4; likewise, for n = 2,
we have the defining relations of D4, resp., of Q. For the induction step, assume
the claim holds at order n, and let Gn+1 be a group having generators and relations
of the given form at order n + 1. Then H := {1, en+1, Z, Zen+1} is a subgroup,
isomorphic to C4 if tn+1 = Z and to C2

2 if tn+1 = 1, and the given relations show
that G is a homomorphic image of Gn×̂ZH. For reasons of cardinality, G is actually
equal to this group, i.e., given by (3.3). �

Remark 3.2. Following the pattern of “classification of real Clifford algebras”, we
can now “classify” the groups Qp,q. In our opinion, this gives a transparent and
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conceptual version of that part of Clifford theory. Since, in the main text, we are
rather interested in classification-free theory, we relegate the presentation of this
issue to Appendix B.

Remark 3.3. The function τ is the cocycle of a central extension. See Section 3.3
for more on this; cf. also [L] p.12–14.

Next, we compute an explicit formula for the inner automorphism given by eA:

Lemma 3.5. For all A,B ∈ P(n),

eA · eB · (eA)−1 = Z |A|·|B|−|A∩B| eB.

Proof. When |A| = 1 = |B|, then the claim is in keeping with the defining relations
of Q(t), namely eiej(ei)

−1 = uej, with u = 1 if i = j, and u = Z else. Now let
|A| = 1, say, A = {i}, and B arbitrary. When i /∈ B, then we have to exchange
the position of ei and each ej, j ∈ B, which gives a factor Z |B|, and when i ∈ B,
we get a factor Z |B|−1 (since we exchange for all i ∈ B with i 6= j), which again is
in keeping with the claim. For general A and B, conjugation by eA = ea1 · · · eak is
composition of conjugation by the eai . We count the total number of exchanges of
elements ei and ej arising in the whole procedure: whenever (i, j) ∈ A × B with
i 6= j, we get an additional factor Z, so in the end we get a factor Zp with

p = |{(i, j) ∈ A×B | i 6= j}| = |A×B \ diag| = |A| · |B| − |A ∩B|,

as claimed. �

Example 3.2. For the pseudoscalar (case A = n, A∩B = B), en = e1 · · · en, we get:

eneB(en)
−1 = Z(n−1)|B|eB,

which is equal to eB if n is odd, and equal to Z |B|eB if n is even.

Theorem 3.6 (Center, inner automorphisms). Let t ∈ {1, Z}n and G := Q(t).
Assume n is even. Then:

(1) the center of G is the subgroup {1, Z},
(2) there are 2n+1 conjugacy classes: two of them are singletons, {1} and {Z},

and the other are of cardinal two, {eA, ZeA}, for A 6= ∅,
(3) the inner automorphism group of Q(t) is isomorphic to P(n) ∼= (Z/2Z)n,
(4) the grading automorphism α(eA) = Z |A|eA is an inner automorphism.

Assume n is odd. Then:

(1) the center of G is the subgroup {1, Z, en, Zen} (when t = (1, . . . , 1), it is
isomorphic to C4 if n ≡ 1 mod 4, and to C2

2 if n ≡ 3 mod 4),
(2) there are 2n + 2 conjugacy classes, four of them singletons (elements of the

center), the other 2n − 2 classes of the form {eA, ZeA}, A 6= ∅, A 6= n,
(3) the inner automorphism group is isomorphic to P(n− 1) ∼= (Z/2Z)n−1,
(4) the grading automorphism α is an outer automorphism.

In both cases, α, together with the inner automorphisms, generates a subgroup of
automorphisms isomorphic to P(n) ∼= (C2)n.
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Proof. From Lemma 3.5, eA commutes with all ei iff |A| − |A∩{i} is even, for all i,
that is, for all i, the set A\{i} has an even number of elements. The only possibility
to realize this case is A = n = {1, . . . , n}, where n is odd. Since Z is always central,

and e2
n = Z

n(n−1)
2 , this proves the statements about the center.

Concerning conjugation classes, Lemma 3.5 shows that that each class has at
most 2 elements, say eB and ZeB. It has 1 element iff the element is central, and 2
elements else. Thus the claims follow from those about the center. Likewise, those
on the inner automorphism group G/Z(G) follow from those on the center.

The grading automorphism from Lemma 1.4 satisfies the condition α(ek) =
Zd(ek)ek = Zek, whence α(eA) = Z |A|eA. As seen in Example 3.2, when n is even, it
is inner. When n is odd, then there is no set A ∈ P(n) such that eAek(eA)−1 = Zek
for all k = 1, . . . , n (since A = n does not satisfy the condition, and when A 6= n,
the value of eAek(eA)−1 depends whether k ∈ A or k /∈ A). Thus the grading
automorphism then is outer. �

In general, the group of all automorphisms of Q(t) is not a suitable object, for
our purposes. We are interested in the case that all ti are equal, because then
permutations of the ei induce automorphisms. But in this case, the group of all
automorphisms may be too big, as is illustrated by the following examples:

Example 3.3. Let n = 1, G = Q(t1) = {e0, e1, Z, Ze1}, e2
1 = t1.

(1) When t1 = Z, so G ∼= C4, then Aut(G) ∼= C2 (the unique non-trivial
automorphism exchanges the two elements of order 4, namely e1 and Ze1).

(2) When t1 = 1, so G ∼= C2
2 , then Aut(G) ∼= S3 is the permutation group of

the three elements of order 2, namely of e1, Z, Ze1.

Example 3.4. Let n = 2, G = Q(t1, t2) = {e0, e1, e2, e12, Z, Ze1, Ze2, Ze12}, e2
i = ti.

(1) When t1 = 1 = t2, then Aut(G) ∼= D4
∼= G. Conjugation by elements

e1, e2, e12 defines three non-trivial inner automorphisms of order 2, and ex-
change of e1 and e2 yields an outer automorphism of order 2. Conjugation
by e12 commutes with all automorphisms.

(2) When t1 = Z = t2, then G = Q and Aut(G) ∼= S4. Namely, the inner auto-
morphisms form a Klein 4-group as above, and permutations of i, j, k (that
is, of e1, e2, e12), form a complementary S3-subgroup. However, exchange
of e1 and e12 does not preserve the grading (since e1 is odd and e12 even).
The subgroup of grading-preserving automorphisms is again a D4-subgroup
of S4, having same types of elements as in (1).

Theorem 3.7 (Hyperoctahedral automorphism group). The symmetric group Sn

acts by automorphisms on Qn: for every σ ∈ Sn, there is a unique automorphism

Φσ : Qn → Qn such that ∀k = 1, . . . , n : Φσ(ek) = eσ(k).

This group of automorphisms normalizes the group (C2)n described in Theorem
3.6 , and together they form a group Bn of grading-preserving automorphisms of
cardinality n!2n. The grading automorphism α belongs to the center of this group.
The same statements hold for the group Q0,n.
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Proof. By induction: for n = 1 the statement is uninteresting; for n = 2, the
braiding automorphism the unique automorphism

τ : Q2 = Q1×̂ZQ1 → Q2, [g1, g2] 7→ Zd(g1)d(g2)[g2, g1]

such that τ(e1) = e2, τ(e2) = e1, τ(Z) = Z, τ(e12) = Ze12 (cf. also Example
3.4). Assuming that Sn acts by automorphisms on Qn, we write

Qn+1 = Qn×̂Q1 = Qn−1×̂Q2.

Then Sn = Sn× idQ1 acts on Qn+1, and another copy of S2 = idQn−1 acts on Qn+1

(transposition (nn+ 1)). Together, these two actions generate the action of Sn+1.
Similarly for Q0,n = Q0,1×̂ . . . ×̂Q0,1.

It is clear that the action of Sn normalizes the inner automorphisms as well as the
grading automorphism α, hence the group (Z/2Z)n is a normal subgroup, intersect-
ing trivially the Sn-subgroup. Thus Bn is a semidirect product, of cardinality n!2n.
Clearly, α commutes with the Sn-action, hence belongs to the center of Bn. �

Remark 3.4. Recall that, by definition, the hyperoctahedral group is the group
of signed permutation matrices (of size n × n). It is Coxeter group of type Bn,
generated by the usual permutation matrices (subgroup Sn) and the diagonal ±1-
matrices (subgroup Cn

2 ). It is isomorphic to the automorphism group defined in the
preceding theorem. Its center is equal to {id, α}.

Definition 3.8. We call the group Bn of automorphisms defined in the preceding
theorem the hyperoctahedral automorphism group of Qn, resp. of Q0,n.

Remark 3.5. The whole group of grading preserving automorphisms is in general
bigger than the hyperoctahedral automorphism group.

Remark 3.6. For Qp,q, the symmetry group Sn must be replaced by Sp × Sq,
permuting the ei’s with ti = 1, resp. those with ti = Z.

Remark 3.7 (Inversions). In the Clifford category, all algebraic operations can be
described by explicit formulae. From an algebraic point of view, this amounts to
describe structures (central extensions) by cocycles, and from a combinatorial point
of view, the main tool is given by inversions. For instance, to compute a formula
for the automorphism Φσ from Theorem 3.7, we start by writing A = {a1, . . . , ak}
with a1 < . . . < ak, and

Φσ(eA) = Φσ(ea1 · · · eak) = eσ(a1) · · · eσ(ak).

We have to re-order these terms so that the indices are in increasing order. The
number of terms Z appearing is u := |(i, j) ∈ A×A | i < j, σ(i) > σ(j)|, so we end
up with the formula of “inversion type”

Φσ(eA) = Z(u mod 2)eσ(A).

3.3. Cocycles. Recall that the central extension of a group H by an abelian group
A can be described by a cocyle C : H ×H → A. In our case, by Theorem 3.4 we
have the central extension A = {1, Z} → Q(t)→ H = P(n), with cocycle denoted
by τ , defined by the rule

eAeB = τ(A,B)eA∆B.

https://en.wikipedia.org/wiki/Hyperoctahedral_group
https://ncatlab.org/nlab/show/group+extension
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Expanding both sides of (eAeB)eC = eA(eBeC), we get the cocycle relations:

(3.4) τ(A,B)τ(A∆B,C) = τ(A,B∆C)τ(B,C).

Since our cocyle τ depends on t we call it a “relative cocycle”. We shall separate
it into two parts, the first of which contains the explicit dependence on t, and the
second being independent of t (“absolute”).

Definition 3.9. Let K be a commutative monoid, t ∈ Kn and A ∈ P(n). We let

t∅ := 1, tA :=
∏
a∈A

ta ∈ K.

The map A 7→ tA behaves like a “multiplicative measure”: when A ∩ B = ∅, then
tA∪B = tA · tB, and, for general A,B,

tAtB = tA∩BtA∪B = t2
A∩BtA\BtB\A = t2

A∩BtA∆B.

If k2 = 1 for all k ∈ K (which is the case for K = {1, Z}), then

tA∆B = tA · tB.

Lemma 3.10. Let t ∈ {1, Z}n. The map (A,B) 7→ tA∩B defines a cocyle on P(n).

Proof. tA∩Bt(A∆B)∩C = tA∩BtA∩CtB∩C = tA∩(B∆C)tB∩C . �

We call the cocycle from the preceding lemma “relative”. It will be combined
with an “absolute” cocyle γ:

Definition 3.11. Let L := {(a, b) ∈ n2 | a < b} be the usual total order relation on
n, and L−1 = {(a, b) ∈ n2 | a > b} its opposite order. For a subset R ⊂ (n× n), call

Inv(R) := R ∩ L−1 = {(a, b) ∈ R | a > b}
the set of inversions in R, and for (A,B) ∈ P(n)2, let

γ(A,B) := Z |Inv(A×B)| = Z |{(a,b)∈A×B| a>b}|.

Theorem 3.12 (The absolute cocycle). Let t ∈ {1, Z}n and A,B ∈ P(n). Then
the product eAeB in Q(t) is given by

eAeB = tA∩B · γ(A,B) · eA∆B.

The map γ : P(n)2 → {1, Z} is the cocylce defining Qn as central extension of P(n).

Proof. As in the proof of Theorem 3.4, we re-order the product eAeB = ea1 · · · eakeb1 · · · ebl .
After re-ordering, indices i ∈ A ∩B give rise to a square e2

i = ti, whence the factor
tA∩B. While re-ordering, a relation of type eiej = Zejei is applied when i > j, first
for j = b1, then for j = b2, and so on, so the number of times we apply it is∑

b∈B

|{a ∈ A | a > b}| = |{(a, b) ∈ A×B | a > b}| = |Inv(A,B)|.

When t = (1, . . . , 1) (case of Qn), the factor tA∩B is always 1, so γ(A,B) is the
cocyle of Qn (and in particular satisfies again the cocycle relation). �

Besides satisfying the cocycle relation (3.4), the cocyle γ has several other prop-
erties, which in turn can be used to develop Clifford theory based on the discrete
Clifford group (see [L] for a systematic exposition of this viewpoint).
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4. Group algebra, and Clifford algebras

In the following, we start to develop some “harmonic analysis” on graded groups
– far from complete, with the main aim to clarify the rôle of the Clifford algebra
in case of the discrete Clifford category. Remarkably, this shows some analogy
with the harmonic analysis of the Heisenberg group. This deserves to be developed
elsewhere, and in the following we assume that all groups are discrete, or even finite.

4.1. Group (super) algebra. From now on we fix a commutative unital base
ring K. We assume that the scalar 2 is invertible in K. For a set M , we denote
by K[M ] the free K-module with basis denoted (δm)m∈M , so elements of K[M ] are
finite linear combinations

∑
m∈M λmδm; if M = G is a semigroup, then K[G] carries

an associative product ∗ defined by δx ∗ δy = δxy (semigroup algebra; cf. [FH]);
if G is a monoid with unit e, the basis element δe becomes a neutral element of
K[G], and if G is a group, then inversion G → G induces an anti-automorphism
t : K[G]→ K[G], sometimes called the canonical anti-automorphism or antipode.

In the following, let G be a centrally Z/2Z-graded group, and assume the element
Z(1) is non-trivial (we denote it again by Z, so that the image of Z : Z/2Z → G
is the group {e, Z}). Let π : G→ G0 = G/{e, Z} be the canonical projection, and
A := K[G] be the group algebra. There are two maps of order two on G, which
induce two linear maps of order two on A:

Z : G→ G, g 7→ Zg = gZ, α : G→ G, g 7→ Zd(g)g,(4.1)

Z∗ : A→ A, f 7→ Z∗f, α∗ : A→ A, f 7→ α∗f.(4.2)

Since 2 is invertible in K, both linear maps can be diagonalized; since α◦Z = Z ◦α,
they can be jointly diagonalized. We denote the eigenspace decompositions by

for Z∗ : A = A+ ⊕ A−, A± = {f ∈ A | Z∗f = ±f},(4.3)

for α∗ : A = A0 ⊕ A1, Ak = {f ∈ A | α∗f = (−1)kf}.(4.4)

Since Z is central, the map Z∗ commutes with elements of the group algebra, and
hence the eigenspaces A± are ideals of the group algebra. Since α is a group au-
tomorphism, by functoriality of the group algebra construction, it follows that
the induced linear map is an algebra automorphism of order two, and hence the
eigenspaces would behave multiplicatively if we indexed them by the eigenvalues
±1. However, following the usual convention for super-algebras, we take 0 and 1 as
indices, so the eigenspaces obey the “super algebra rules”

Ai ∗ Aj ⊂ Ai+j mod 2.

Each of the two ideals A± is, in turn, again a superalgebra.

Theorem 4.1 (Eigenspaces of Z∗; superalgebras). With notation as above:

(1) The algebra K[G] is a direct sum of ideals, K[G] = K[G]+⊕K[G]−, and both
eigenspaces are isomorphic as K-modules. The projection π : G → G0 =
G/{e, Z} induces an algbra morphism π∗ : K[G] → K[G0] having kernel
K[G]− and image isomorphic to K[G]+, so K[G]+ ∼= K[G0] as algebra.

https://en.wikipedia.org/wiki/Heisenberg_group#Representation_theory
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(2) With respect to α∗, the group algebra and the ideals from the preceding item
are super-algebras. The disjoint union G = G0tG1 induces a decomposition
K[G] = K[G0]⊕K[G1] such that

K[G0] ⊂ A0, A1 ⊂ K[G1].

Proof. (1) Let P± be the two projectors onto the eigenspaces. To see that both
eigenspaces are isomorphic, choose a set H of representatives for the {e, Z}-cosets
in G (i.e., a section of π), so that G = HtZH as set, whence K[G] = K[H]⊕Z∗K[H]
as K-module. Then K[G]+ represents the diagonal, and K[G]− the antidiagonal in
this decomposition, and the restrictions and corestrictions

P+ : K[H]→ K[G]+, P− : K[H]→ K[G]−

are linear isomorphisms, so both K[G]± are isomorphic to K[H] as K-modules.
(When G is finite, both spaces have dimension |H| = |G|/2).

Since π(Z) = π(1), it follows that π∗(1 − Z) = 0. Thus the ideal generated by
1−Z, which is P−(K[G]) = K[G]−, belongs to the kernel of π∗. On the other hand,
the basis (h + Zh)h∈H , is sent to the basis π∗(h + Zh) = 2π∗(h) of K[H], so the
restriction of π∗ to K[G]+ defines a bijection K[G]+ → K[H], whence K[G]− is the
kernel of π∗, and π∗ induces an isomorphism of K[G]+ onto K[G0].

(2) We have already noticed that the decompositions define superalgebras. To
prove the remaining statements, we decompose further H = H0 tH1 into even and
odd elements, whence G = H0 t ZH0 t H1 t ZH1. Since α is the identity on G0,
we get K[G0] ⊂ A0. Also, P+K[H1] ⊂ A0, since, if g ∈ H1, then α∗(δg + Z∗δg) =
δZg + δg = δg + Z∗δg. It follows that A1 = P−K[H1] ⊂ K[G1]. �

4.2. Graded and ungraded tensor product. If A,B are sets, the free module
with basis A t B is K[A t B] = K[A] ⊕ K[B], and the one with basis A × B is
K[A × B] = K[A] ⊗ K[B]. The tensor product of two associative algebras is again
an associative algebra, for the “usual” product a ⊗ b · a′ ⊗ b′ = aa′ ⊗ bb′. If A,B
are Z/2Z-graded, then their graded tensor product is the tensor product, as module,
together with bilinear product

(4.5) a⊗ b · a′ ⊗ b′ = (−1)|b| |a
′|aa′ ⊗ bb′,

where a, b, a′, b′ are assumed to be homogeneous elements. If A and B are associative,
then this is again an associative algebra (cf. [BtD], p. 56).

Theorem 4.2. Let (Gi, di, Zi), i = 1, 2, two centrally Z/2Z-graded groups, and
G = G1×̂ZG2. Then the algebras K[G]± are given in terms of ungraded, resp.
graded tensor products of algebras by those of Gi, i = 1, 2, as

K[G]+ = K[G1]+ ⊗K[G2]+, K[G]− = K[G1]−⊗̂K[G2]−.

In particular, it follows that for G = Q(t), the ideal A− is a Clifford algebra: for
t ∈ {1, Z}n, define Cl(t) to be the Clifford algebra of Kn for the diagonal quadratic
form with coefficient 1 if ti = 1 and −1 if ti = Z. Then

K[Q(t)]+ ∼= K[P(n)], K[Q(t)]− ∼= Cl(t).

In particular, K[Qp,q]
− ∼= Clp,q(K).
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Proof. Choose H in G, and Hi in Gi, as in the preceding proofs. As above, elements
P±(δh) = 1

2
(δh ± Z∗δhi), h ∈ H, form a basis in K[G]±, and likewise such elements

with hi ∈ Hi form a basis in K[Gi]
±. We compute, in K[G],

δh1 ⊗ δh2 · δh′1 ⊗ δh′2 = δ[h1,h2] · δ[h′1,h
′
2]

= Zd(h2)d(h′1) ∗ δ[h1h′1,h2h
′
2] = Zd(h2)d(h′1) ∗ δh1h′1 ⊗ δh2h′2 ,

and project with P− onto K[G]−. Since Z projects to −1, this gives

P−(δh1) ⊗ P−(δh2) · P−(δh′1)⊗ P
−(δh′2) =

(−1)d(h2)d(h′1)P−(δh1)P
−(δh′1)⊗ P

−(δh2)P
−(δh′2),

so the algebra product is given by the graded tensor product. On K[G]+, since Z
projects to 1, there is no sign change, and we get the usual tensor product.

The statement on the Clifford agebras follows from the preceding statement by
induction, using Relation (0.1) for Clifford algebras. (Cf. the arguments given in
loc.cit., [BtD], where this is used to prove that the dimension of the Clifford algeba
Cl(Kn) is 2n. On the other hand, knowing the dimension of the Clifford algebra,
the proof could also be given by noticing that the generators of A− satisfy exactly
the same relations as the generators of the Clifford algebra Cl(t).) �

Example 4.1 (Group algebra of Q and of D4). The preceding arguments can be
used to show, in a transparent way, that the Clifford algebra Cl2,0 is isomorphic to
M2(K), and that Cl0,2 is the usual quaternion algebra. Namely, by the preceding
results, the group Qp,q is (isomorphic to) the group generated by the basis elements
ei in the Clifford algebra Clp,q(K) ∼= K[Qp,q]

−. For instance, the quaternion group
G = Q if often defined as group of matrices {±1,±i,±i,±k} ⊂ H∗ ⊂ Gl(2,C).
Now, modulo −1, these matrices furnish a basis of H, the elements multiply as they
should in the group, and the matrix Z = −1 acts as it should on K[G]− (by the
scalar −1): so we can conclude that K[G]− ∼= H as algebra, whence Cl0,2(R) ∼= H.
The same argument works for the group G = D4, which we realize as matrix group
{±1,±I,±J,±K} ⊂ Gl(2,Z). Modulo −1, the four matrices give a basis of M2(K),
and Z = −1 acts by −1, whence K[G]− ∼= M2(K).

Remark 4.1. The fact that Clifford algebras are parts of group algebras, or images
of them, is known (cf. [A, AM, S84]), and we hope the framework of graded groups
proposed here clarifies those approaches. For instance, the abstract ingredients
of the classification of Clifford algebras are quite neatly featured in the abstract
approach (see Appendix B.3, cf. also [S82] and [L], p.53, for this issue).

4.3. Harmonic analysis of the group algebra. The group G = Q(t) acts on
K[G] in the usual way (left-regular representation). This representation decomposes
into sub-representations (ideals) K[G] = K[G]+⊕K[G]−. We’ll decompose it further.
Since K is just a ring and not a field, we do not speak about decomposition into
“irreducible” modules, but rather determine a basis of the space of class functions
(which in case of K = C correspond to the irreducible characters). Recall that a
class function is just an element f ∈ K[G] commuting with every g ∈ G, that is, an
element of the center of K[G].
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Since K[G]+ ∼= K[P(n)], and the group is abelian and each element is of order at
most two, a complete decomposition of this algebra is easy:

Proposition 4.3. The group characters of P(n) are the maps, for A ∈ P(n),

χA : P(n)→ {±1}, B 7→ χA(B) := (−1)|A∩B|.

Thus K[P(n)] ∼= ⊕A∈P(n)KχA is a decomposition into one-dimensional ideals.

Proof. Since (A∆B) ∩ C = (A ∩ C)∆(B ∩ C), and |A∆B| ≡ |A|+ |B| mod (2),

χA(B∆C) = (−1)|A∩(B∆C)| = (−1)|A∩B|(−1)|A∩C| = χA(B)χA(C),

and χA(∅) = (−1)0 = 1, so χA is a morphism. Since the map

χ : P(n)× P(n)→ {±1}, (A,B) 7→ χA(B) = (−1)|A∩B|

is symmetric, it follows that

χ∅ = 1, χA∆B(C) = χA(C)χB(C),

so A 7→ χA is a group morphism from P(n) to its dual group. Its kernel is trivial:
χA(X) = 1 for all X means that |A ∩ X| is even, for all X, and taking for X the
singletons, if follows that A contains no element, so A = ∅. Thus the morphism A 7→
χA is injective. Since characters are always linearly independent, the cardinality of

Ĥ cannot exceed the one of H, and thus the morphism is a bijection of P(n) onto
its dual group. �

Remark 4.2. Parametrizing the characters as in the proposition, the character table
of G = P(n) is the square matrix

(χA(C))(A,C)∈P(n)2 = ((−1)|A∩C|)(A,C)∈P(n)2 .

A specific feature of these matrices is that they are symmetric: χB(C) = χC(B).
Explicitly, for n = 1, P(1) = {∅, 1}, resp. n = 2, P(2) = {∅, {1}, {2}, 2}, we get

(
1 1
1 −1

)
,


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Theorem 4.4. Let t ∈ {1, Z}n and G = Q(t), and A := K[G]G the algebra of
central K-valued functions on G (center of K[G]). Define for A ∈ P(n),

E+
A := (e0 + Z)

∑
B∈P(n)

(−1)|A∩B|eB.

Then K[G]+ ⊂ K[G]G, and (EA)+ with A ∈ P(n) is a basis of K[G]+ such that
(orthogonal idempotents) Moreover,

(1) Assume n is even. Then a basis of K[G]G is given by the elements (E+
A )A∈P(n),

along with e−0 := (1 − Z)e0. The element e−0 is a basis of the center of the
Clifford algebra K[G]−.

(2) Assume n is odd. Then a basis of K[G]G is given by the elements (E+
A )A∈P(n),

along with e−0 := (1 − Z)e0 and e−n := (1 − Z)e−n (the pseudoscalar). The
elements (e−0 , e

−
n ) form a basis of the center of the Clifford algebra K[G]−.
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If K is a field, then each basis element corresponds to an irreducible representation
of G, and each irreducible G-representation arises in this way.

Proof. The dimension of K[G]G is equal to the number of conjugacy classes of G,
since the characteristic functions of conjugacy classes form a basis. By Theorem 3.6,
we know the number of conjugacy classes. We have already exhibited 2n linearly
independent central functions; thus one (resp. two) additional independent elements
suffice for defining a basis. Since K[G]G is Z-invariant, it decomposes into Z-
eigenspaces, so we can choose these additional elements in K[G]−, i.e., in the Clifford
algebra. These elements being central, and since K[G]+ ∗K[G]− = 0, it is necessary
and sufficient that these elements belong to the center of K[G]−. Now, it is obvious
that e−0 , resp. e−n (for n odd), satisfy these conditions, and for reasons of dimension,
there are no other independent elements satisfying them. This proves (1) and (2).
If K is a field, then by the general theory of representations of finite groups (see
[FH]) every irreducible G-representation arises in K[G]. The elements E+

A define
one-dimensional (hence irreducible) representations; the other elements generate
representations that may decompose into direct sums of several irreducibles (cf. the
following remark). �

Remark 4.3. To get more information, in case n is odd, a further distinction should
be made, according to the square of the pseudoscalar being 1 or Z. When all tj = 1,
this corresponds to the cases n ≡ 1, 5, resp. n ≡ 3, 7 modulo 8. This determines
whether the two submodules of dimension bigger than one are isomorphic to each
other, or not (cf. [BtD], p. 288, see also [FH], Exercise 3.9, p. 30).

Appendix A. Clifford algebras

A.1. General definitions. Let K be a commutative base ring in which 2 is in-
vertible. To every quadratic space (V, q) is associated, in a functorial way, a uni-
tal associative algebra Cl(V, q), its Clifford algebra, together with a linear map
j : V → Cl(V, q), such that

∀v ∈ V : (j(v))2 = q(v)1,

and which is universal for this property, see e.g., [BtD, L]. We shall be interested in
the case V = Kn, together with a quadratic form q = qt, where t = (t1, . . . , tn) ∈ Kn,

qt(x1, . . . , xn) =
n∑
i=1

tix
2
i ,

that is, the canonical basis e1, . . . , en is orthogonal, and q(ei) = ti. The correspond-
ing Clifford algebra is then denoted by

ClK(t) = ClK(t1, . . . , tn) = Cl(V, qt).

When t = 0 = (0, . . . , 0), this is the exterior algebra: Cl(V, q0) = ∧(Kn). When
t = (1, . . . , 1,−1, . . . ,−1), with p terms 1 and q terms −1, we write

Clp,q(K) := Cl(t) = Cl(1, . . . , 1,−1, . . . ,−1).

Among these algebras, Cl(1, . . . , 1) = Cln,0(K) plays a special role: it is anchored.
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Lemma A.1. For every t ∈ Kn, the linear map Kn → Kn, x 7→ (t1x1, . . . , tnxn)
induces an algebra morphism

ClK(t21, . . . , t
2
n)→ ClK(1, . . . , 1).

Proof. The linear map is a morphism of quadratic spaces from (K(t21, . . . , t
2
n)) to

(K, (1, . . . , 1)), and induces, by the universal property, an algebra morphism. �

We call anchor the morphism defined in the lemma, and say that the Clifford
algebra ClK(t21, . . . , t

2
n) is anchored. Of course, when ti ∈ {±1}, then the only

anchored Clifford algebra is ClK(1, . . . , 1). The terminology is motivated by [BeH]:
indeed, the anchored Clifford algebras should be the correct “super-analog” of the
anchored tangent algebras defined in loc.cit., and “differential calculus” then is the
theory describing the contraction for t→ 0 (which in the graded case still remains
to be worked out).

A.2. Clifford basis. The standard basis e1, . . . , en of Kn defines n independent
elements in the Clifford algebra ClK(t). For a subset A = {a1, . . . , ak} ⊂ n, with
a1 < . . . < an, we define the element

eA := ea1 · · · eak ∈ ClK(t).

Theorem A.2. The elements (eA)A∈P(n) form a K-basis of the Clifford algebra
ClK(t), called its Clifford basis. The Clifford product of two basis elements is given
by

eAeB = (−1)m(A,B)
∏

k∈A∩B

tk · eA∆B,

where e∅ = 1, A∆B is the symmetric difference of A,B ⊂ n, and

m(A,B) = |{(a, b) ∈ A×B | a > b}|.

Proof. The dimension of the Clifford algebra is 2n (cf. [BtD]), and the elements eA
generate it, hence form a basis. To compute the product eAeB, using the Clifford
rules

e2
k = tk = tke∅, ∀k 6= ` : eke` = −e`ek,

we see that eAeB is a multiple of eA∆B. Terms with indices k = ` ∈ A∩B give rise
to the scalar

∏
k∈A∩B tk. Terms with indices (k, `) ∈ A × B have to be exchanged

when k > ` (giving rise to a sign change), and are not altered when k < ` (the
arguments are the same as those of Theorem 3.12). �

Cf. page 12 - 14 of [L] for a similar presentation of the preceding result.

Appendix B. Classification of Clifford groups and algebras

B.1. Graded and ungraded product. Both the classification of real Clifford
algebras and the one of discrete Clifford groups proceeds by decomposing them into
ungraded tensor products of elementary algebras, resp. products of groups. On the
level of algebras, we have, e.g., ClR(1,−1,−1) ∼= M4(C) ∼= C⊗M2(R)⊗M2(R). On
the level of groups, recall the ungraded product of groups G1 ×Z G2 (quotient of
G1×G2 under (x1, Zx2) ∼ (Zx1, x2), written also G1×C2G2 when Γ = Z/2Z). We’ll
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see that all groups Q(t) can be decomposed as ungraded product ×C2 of groups of
type

C2, C2 × C2, C4, D = D4, Q,

corresponding to the decomposition of Clifford algebras into tensor products involv-
ing

R, R⊕ R, C, M2(R), H.
The key lemma for classifying discrete Clifford groups is:

Lemma B.1. For all n ≥ 3 and t ∈ {1, Z}n, there is a group isomorphism

Q(t) ∼= Q(t1, t2)×Z Q(Zt1t2t3, . . . , Zt1t2tn).

Proof. Elements ofQ(t) are either of the form eA or ZeA, with A ∈ P(n). When A ⊂
{1, 2}, we get the 8 elements of the first factorQ(t1, t2) = {e0, e1, e2, e12, Z, Ze1, Ze2, Ze12}.
Next, let H ⊂ Q(t) be the subgroup generated by the elements

b3 := e1e2e3, b4 := e1e2e4, . . . , bn := e1e2en

Elements of Q(t1, t2) and H commute: indeed, for all k = 3, . . . , n,

e1bk = e1e1e2ek = Z2e1e2eke1 = bke1, e2bk = e2e1e2ek = Z2e1e2eke2 = bke2,

hence Q(t1, t2) commutes with the generators of H, hence with H. Moreover, H
and Q(t1, t2) together generate the group Q(t), and therefore H contains at least
2n−1 elements. We compute, for 3 ≤ k < ` (using e2

i = tie0)

b2
k = e1e2eke1e2ek = Z3e2

1e
2
2e

2
k = Zt1t2t3e1e2ek = Zt1t2t3 bk,

bkb` = e1e2eke1e2e` = Ze1e2e`e1e2ek = Z b`bk.

These are the defining relations of the group Q(Zt1t2t3, . . . , Zt1t2tn), hence, by
Theorem 3.4, there is a surjective morphism from Q(Zt1t2t3, . . . , Zt1t2tn) to H,
which must be an isomorphism for reasons of cardinality. �

In particular, the lemma implies for (t1, t2) = (1, 1), or (1, Z), or (Z,Z):

Q(1, 1, t3, . . . , tn) ∼= Q2,0 ×Z Q(Zt3, . . . , Ztn) ∼= D4 ×Z Q(Zt3, . . . , Ztn),

Q(1, Z, t3, . . . , tn) ∼= Q1,1 ×Z Q(t3, . . . , tn) ∼= D4 ×Z Q(t3, . . . , tn),

Q(Z,Z, t3, . . . , tn) ∼= Q2,0 ×Z Q(Zt3, . . . , Ztn) ∼= Q×Z Q(Zt3, . . . Ztn).

From this, the first statements of the following corollary immediately follow:

Corollary B.2. For all p, q ∈ N,

Qp+2,q
∼= Q2,0 ×Z Qq,p

∼= D4 ×Z Qq,p,

Qp+1,q+1
∼= Q1,1 ×Z Qp,q

∼= D4 ×Z Qp,q,

Qp,q+2
∼= Q0,2 ×Z Qq,p

∼= Q×Z Qq,p.

Applying this several times, using notation G3
Z = G×Z G×Z G, etc.,

Qp+4,q
∼= Q2,0 ×Z Q0,2 ×Z Qp,q

∼= D4 ×Z Q×Z Qp,q
∼= Qp,q+4,

Qp+2,q+2
∼= D4 ×Z D4 ×Z Qp,q

∼= Q×Z Q×Z Qp,q,

Qp+8,q
∼= Qp,q+8

∼= Qp+4,q+4
∼= (D4)4

Z ×Z Qp,q
∼= Q4

Z ×Z Qp,q.
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Moreover, for any Z/2Z-graded group G,

G×Z Q1,0 = G×C2 (C2 × C2) ∼= G× C2.

Proof. The last statement is obvious from (C2 × C2)/C2 = C2. �

Remark B.1. In particular, the corollary gives the group isomorphisms

Q2,2
∼= D4 ×Z D4

∼= Q×Z Q,
Q1,2

∼= C4 ×Z D ∼= C4 ×Z Q.
On the level of real Clifford algebras, this corresponds to the algebra isomorphisms
H ⊗ H ∼= M(2,R) ⊗M(2,R) (in turn, this algebra is isomorphic to M(4,R)) and
H⊗ C ∼= M(2,C).

Notation. To abbreviate, in the following, we are going to write D := D4, C := C4,
V := C2

2 := C2 × C2 (the Klein four-group), and since all direct products are of
the form ×Z , we omit this sign, and just write it as juxtaposition, and we write
D2 = DD, etc. For instance, DQ = D×ZQ, D2 = D×ZD. The isomorphisms from
Remark B.1 thus read D2 ∼= Q2 and DC4

∼= QC4. Note also that ×C2 = ×ZC2
2 ,

so, e.g., DC2
2 = D×Z C2

2 = D×C2. Using these isomorphisms and notation, every
group Qp,q is isomorphic to one in “normal form”

C2, DkC2
2 , DkC4, DkQ, QC2

2 , DkQC2
2 .

Theorem B.3. The discrete Clifford groups Qn, resp. Q0,n, are given by

n 0 1 2 3 4 5 6 7 8
Qn C2 C2

2 D DC4 DQ DQC2
2 D2Q D3C4 D4

Q0,n C2 C4 Q QC2
2 DQ D2C4 D3 D3C2

2 D4

and we have the periodicity relations:

Qn+4
∼= DQQn, Qn+8

∼= D4Qn, Q0,n+4
∼= DQQ0,n, Q0,n+8

∼= D4Q0,n.

Proof. Repeated application of Corollary B.2. �

For sake of completeness, we give in Section B.3 the full “periodic table” of the
groups Qp,q, together with the corresponding classification of Clifford algebras. Due
to the relation Qp+1,q+1 = Qp,q ×C D4 = DQp,q, this table is best presented as a
triangle (like Pascal’s triangle). This triangle is not symmetric with respect to the
“main diagonal” Qn,n, but it is symmetric with respect to the “secondary diagonal”
Qn+1,n = C2 × (D4)nZ = DnC2

2 , by the following lemma:

Lemma B.4. We have an isomorphism of (ungraded) groups:

Q(t1, . . . , tn) ∼= Q(t1, Zt1t2, . . . , Zt1tn)

In particular, there is a group isomorphism Q1+p,q
∼= Q1+q,p.

Proof. The proof is similar to the one of Lemma B.1: define

b1 := e1, b2 := e1e2 = e12, . . . bn := e1n.

These elements satisfy the relations b2
1 = t1, and for ` > k ≥ 2,

b2
k = e1eke1ek = Zt1tk, b`bk = e1e`e1ek = Z3e1eke1e` = Zbkb`,

https://en.wikipedia.org/wiki/Classification_of_Clifford_algebras#Classification
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so the group generated by b1, . . . , bn, Z is a quotient of Q(t1, Zt1t2, . . . , Zt1tn). On
the other hand, since b1b2 = t1e2, etc., these elements generate Q(t), so for reasons
of cardinality, Q(t) ∼= Q(t1, Zt1t2, . . . , Zt1tn). (Another proof is by starting from
the isomorphism Q2

∼= Q1,1, and to note that it induces the claimed symmetry.) �

B.2. The even part. Recall that the even part G0 of a Z/2Z-graded group G =
G0 t G1 is a (normal) subgroup. If G is finite and the grading non-trivial, then
|G0| = 1

2
|G|. The element Z belongs to G0, but the grading of G0 is a priori trivial.

Theorem B.5. Let n ≥ 2 and t ∈ {1, Z}n. The even part of Q(t) is isomorphic to

Q(t)0
∼= Q(Zt1t2, . . . , Zt1tn).

It follows that

(Qn)0
∼= Q0,n−1

∼= (Q0,n)0, (Q1+p,q)0
∼= Qq,p, (Qp,1+q)0

∼= Qp,q.

Explicitly, the even part of Qn, resp. Q0,n, is given by
n 0 1 2 3 4 5 6 7 8
Qn C2 C2

2 D DC4 DQ DQC2
2 D2Q D3C4 D4

Q0,n C2 C4 Q QC2
2 DQ D2C4 D3 D3C2

2 D4

(Qn)0
∼= (Q0,n)0 C2 C2 C4 Q QC2

2 DQ D2C4 D3 D3C2
2

Proof. For k = 2, . . . , n, define as above the even element bk := e1ek. As noted
above, (bk)

2 = Zt1tk, and, for i 6= j,

bibj = e1eie1ej = Z2e2
1ejei = Z3e1eje1ei = Zbjbi,

so we get the desired relations for the generators b2, . . . , bn of Q(t)0. For reasons of
cardinality we conclude that Q(t)0

∼= Q(Zt1t2, . . . , Zt1tn). Using Theorem B.3, we
get the table for the even parts. �

Remark B.2. As said above, a priori, the even part is ungraded; but since it is again
a Clifford group, it “remembers” the grading of the preceding extensions, and so
does ((Qn)0)0, until we reach C0, which is ungraded: the table from the theorem
gives us a chain of even parts

C2 = (C4)0 = ((Q)0)0 = (((QC2
2)0)0)0 = . . . = ((((((D4)0) . . .)0.

B.3. The periodic tables of discrete Clifford groups and of Clifford alge-
bras. Finally, here are the tables classifying discrete Clifford groups and Clifford
algebras. We present them in a form akin to Pascal’s triangle: for the groups,

Q0

Q1,0 Q0,1

Q2,0 Q1,1 Q0,2

. . .

and for the algebras,

K
Cl1,0(K) Cl0,1(K)

Cl2,0(K) Cl1,1(K) Cl0,2(K)
. . .

For the following tables, cf. also [S82, S84, L].
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