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Abstract. — We generalize features of bounded symmetric domains
to the Makarevi¢ spaces introduced in [Be96b]: we associate a generalized
Bergman operator to such a space and describe the invariant pseudo-metric
and the invariant measure on the space by means of this family of operators
(Th.2.4.1). Moreover, the space itself can be characterized essentially as
the domain in a Jordan algebra where the generalized Bergman operator
is non-degenerate (Th.2.1.1). We give an application of these results to
the theory of compactly causal symmetric spaces: we describe explicitly
the complex domain = associated to such a space (Th.3.3.5). This result
will be important for the analysis of the Hardy space on Z.

0. Introduction

0.1 Makarevi¢ spaces. — In [Be96b] we have defined Makarevic
spaces: these are symmetric spaces X = G/H which have a special
realization, namely they can be realized as open symmetric orbits in
the conformal compactification of a (semi-simple) Jordan algebra. Such
spaces have been classified by B.O. Makarevi¢ ([Ma73]); examples are (cf.
[Be96b, section 2.2]): the groups Gi(n,F) (where F is the field of real or
complex numbers or the skew-field of quaternions), the groups U(p, q),
Sp(n,R), SO(2n) and SO*(2n), furthermore symmetric cones, their non-
convex analogues, and Hermitian and pseudo-Hermitian spaces of tube
type.

We develop in this work an algebraic theory for these spaces which
is modelled on the approach to Hermitian symmetric spaces by Jordan
theory. Our basic references are the lecture notes by Loos [Lo77] and the
book by Satake [Sa80]. However, our theory is self-contained because the
use of our LiouviLLE theorem ([Be96a]) simplifies our approach compared
to the axiomatic viewpoint of Loos and Satake. In particular, we will not
use the axiomatic theory of Jordan triple systems although there is a close
relation between Makarevi¢ spaces and Jordan triple systems which we
are going to explain in [Be96c]|.



0.2 The Bergman operator associated to a Makarevi¢ space.
Any bounded symmetric domain D can be equipped whith its Bergman
metric and becomes thus a Riemannian symmetric space. When the
domain is circled (i.e. stable by the rotations e*?), the Bergman metric
can be written in the form h,(u,v) = ho(Bp(z, z) "tu,v), where z is in D
and u, v are in the vector space V' in which D lies and which is canonically
identyfied with the tangent space of D at z. It is known that then the
Bergman operator Bp is given by a polynomial

Bp :V xV — End(V),

and there is a simple formula for this polynomial in terms of the Jordan
triple product associated to D, see [Lo77]. Furthermore, one can describe
D algebraically by means of this polynomial; namely D is the connected
component of 0 of the set

{z € V| det Bp(z,x) # 0};

it is also the zero-component of the set where Bp(x, x) is positive definite.
It is furthermore known that the points where Bp(z, x) is non-degenerate
but indefinite belong to pseudo-Hermitian symmetric spaces which are a
sort of “indefinite metric versions of D”.

We will generalize these facts for Makarevi¢ spaces. For these general
spaces we cannot carry over directly the definition of the Bergman metric
of a bounded symmetric domain since no analogue of the Bergman space
is in view. For this reason we go the other way round: there is a natural
polynomial generalizing the polynomial Bp mentioned above, and we will
see that due to its very pleasant transformation properties we can describe
our spaces as the set of points where this polynomial has non-degenerate
values. More precisely: the Makarevi¢c space X = G/H is realized in
the conformal compactification V¢ of some real or complex (semi-simple)
Jordan algebra V', and it is labelled by a certain endomorphism « of V'; we
write X = X(®) ¢f. [Be96b]. For example, bounded symmetric domains
are obtained when V is complex and « is a conjugation of V' with respect
to a Euclidean real form. In section 1.3 we define a polynomial

B, :V xV — End(V)
and show that the G-orbit of a point x € V is open in V¢ if and only if
B, (x,z) is non-degenerate (Th.2.1.1). This condition thus describes the
points of X(®) which do not ly “at infinity”, i.e. not in V¢ \ V:
(XNV)g={z € V]| det By(z,z) # 0},
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where the subscript 0 means “connected component of 0”. We also get a
formula for the invariant pseudo-metric h(®) of X ().

) (u,v) = h$™ (Ba (2, 2) " u, v); h$™ (u,v) = tr L{ua(v)),

where L(w) is the operator of left multiplication by w in the Jordan algebra
V (Th.2.4.1). From this one deduces that the density of the invariant
measure on X (%) with respect to the Lebesgue measure on V is given by
the function

| det Bo(, )| /2.

In the case when « is an involution of V', there exists also a Cayley-
transformed realization of X(®, and we can describe it in a similar way.
The Cayley-transformed spaces turn out to be tube domains (Cor.2.1.3).

The tools needed to obtain these results are developed in the first
chapter which we call “Algebraic differentiation”. They are resumed in the
formulas 1.3 (1) — (13) which are algebraic identities involving conformal
transformations, the generalized Bergman operator and the quadratic
representation. These formulas are a natural further development of the
approach to the conformal group by the generalized LiouviLLE-theorem
[Be96a]: there we showed that for any conformal map ¢, the differential
D¢ defines a polynomial x4 by the formula

Xo(x) = (Do~ (2)) 7.

From this we deduced that conformal maps are actually rational, and
we can differentiate conformal maps by algebraic methods. We already
used this fact in [Be96a, Th.2.2.1] where we introduced an analogue of
the Bergman operator in an even more general context. The formulas
given in section 1.3 come out of the fact that in the Jordan algebra
case the general Bergman operator from [Be96a] has additional symmetry
properties related to the symmetry of the conformal Lie algebra given by
the Jordan inverse j(x) = 7 1; the formula

(where P is the quadratic representation of the Jordan algebra) is therefore
of fundamental importance. In the case of a bounded symmetric domain
our formulas are known by the work of Loos [Lo77], and the general
formulas could have been derived in a similar way from the theory of
Jordan triple-systems. However, our proofs are much simpler because we
have, by the generalized LiouvILLE-theorem, the conformal group at our
disposition from the beginning on, whereas the axiomatic theory of Jordan
triple-systems reaches this stage only much later.
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We wish to emphasize that the methods we use are essentially algebraic
in nature. We have in mind their generalization to other base fields than
the fields of real or complex numbers and also to the case of arbitrary, non
semi-simple Jordan algebras.

0.3 Compactly causal symmetric spaces and complex domains
of semigroup actions. — Besides Hermitian and pseudo-Hermitian
symmetric spaces, another interesting class of Makarevic spaces is given by
the class of causal symmetric spaces we have described in [Be96b, Th.2.4.1].
These fall into two subclasses: the spaces which are compactly causal and
those which are non-compactly causal; the former can be written as X (—)
and the latter as X(®, where « is an involution of a Euclidean Jordan
algebra V. It may happen that X(® and X% are isomorphic to each
other (namely when « is the automorphism interchanging factors in a
direct product V' x V; see [Be96b, Ex.2.2.10]); such spaces are called of
Cayley type, and they have already been investigated by Jordan methods,
see [Cha95].

To a compactly causal symmetric space X = G/H, Hilgert, Olafsson
and Orsted associated a domain = = Gexp(iC) - xo in the complex-
ification X¢ of X on which a semigroup G exp(iC) acts holomorphi-
cally, see [HOO91]. For the special case of Cayley-type spaces M.Chadli
([Cha95]) described this domain by Jordan methods and Olafsson and
Orsted ([O096]) by methods based on representation theory, and in other
special cases K.Koufany and B.Orsted ([K095]) gave similar descriptions.
We generalize these results in the following way: let X (=) be a Makarevic
space which is compactly causal; it is realized in the conformal compact-
ification V¢ of the Euclidean Jordan algebra V. By definition, = is a
domain in X¢; it contains the space X in its boundary and there locally
looks like the tube domain T =V + €2 C V¢, where () is the symmetric
cone associated to V' (Lemma 3.3.1). In other terms, = can locally, near
the “boundary” X (=% be described as

=E=Xx"NThy.

Our main result (Th. 3.3.4) is, that this description is globally true. If we

combine this result with the algebraic description of Xé;a) by means of
the associated Bergmann operator B_,, we obtain (Th. 3.3.5)

E={z € Tq| det B_,(z,2) # 0}.

Another geometrically important realization of this domain is given by the
Cayley transform C' which is a birational map transforming the tube Tq
onto the disc D = C(Ty). In this realization, our result reads

C(E) ={z € D| det P(z + «(z)) # 0},
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where P is the quadratic representation of the Jordan algebra. These
results confirm and precise conjectures stated in [HO?91, Remark 5.1].
However, as pointed out in [Be96b, section 0.5], one should keep in
mind that these results hold only for spaces which can be realized as
Makarevic spaces; there are other compactly causal symmetric spaces
(the group SU(p, q), for example) which do not have such a realization.
Correspondingly, the spaces having a Makarevi¢ space-realization seem to
be much better accessible to harmonic analysis. The results and methods
developed here will allow an explicit harmonic analysis of the Hardy spaces
associated to these spaces (introduced in [HO®91]).

AckNOWLEDGEMENTS. The author would like to thank the Mittag-
Leffler institute for hospitality during the program “Harmonic Analysis
on Lie groups” when this work was carried out, and to Jacques Faraut,
Gestur Olafsson and Bent Qrsted for helpful discussions.

1. Algebraic Differentiation

1.0 Jordan algebras. — We will use notations related to Jordan
algebras as in [Be96a] and in [Be96b]: the structure group of a Jordan
algebra V' (with unit element e) is denoted by Str(V); it can be defined
as the group of elements g € GI(V') such that jgj again belongs to GI(V)
where j(z) = z~! is a birational map, the Jordan inverse. The orbit
Q := Str(V)p - e is open in V and carries the structure of a symmetric
space; it is a symmetric cone if V' is Euclidean (in this case we use most
notations as in [FK94].)

The conformal or Kantor-Koecher-Tits group Co(V) of the Jordan
algebra V' is the group of birational maps generated by the translations T,
by vectors v € V, elements of Str(V) and the Jordan inverse j. The
Lie algebra of Co(V') is denoted by co(V); it is a graded Lie algebra
of (quadratic) polynomial vector fiels on V, sometimes also called the
Kantor-Koecher-Tits algebra of V. The conformal compactification of V
is an open dense imbedding V < V¢ where V¢ is the quotient space
Co(V')/ P with respect to the (parabolic) subgroup P generated by Str (V)
and j7yj and the imbedding is given by v — 7, P. The characterization of
Co(V) as the group of Str(V)-conformal local diffeomorphisms ([Be96a])
is the starting point of the present work.

1.1 The “automorphy factors” associated to the conformal
group. — Let V be a semi-simple Jordan algebra (having no ideal
isomorphic to R or C) and G := Str(V) C GI(V). A conformal map of V
is a locally defined diffeomorphism ¢ such that the differential D¢ (z) of
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¢ at x belongs to G for all x where ¢ is defined. By [Be96a, 2.1.3],
Xo: Vi End(V), zw (D¢~ (x))™?

extends from the domain of ¢~! to a (quadratic) polynomial on V;
following [Sa80] we will call it an automorphy factor. For example, if
¢ = T, (translation by v € V), then x,, (z) = idy; if ¢ = g € G, then
Xg(z) = g. A very important example is given by ¢ = j, where j(z) = z7!
is the Jordan inverse: then j is conformal, and

Xj(x) = =P(z) (i.e, Dj(z)~" = —P(x)),

where P(z)w = 2x(zw) — x?w denotes the quadratic representation of V,
see [FK94, Prop I1.3.3]. Since the conformal group C'o(V) is generated by
the previously mentioned transformations, the following lemma permits
us to calculate all automorphy factors:

1.1.1 Lemma. —  The automorphy factors satisfy the cocycle rela-
tions

Xoou () = Xo(x) - Xy (0~ (2)),
Xo-1(2) = (xo(o " (2) !

Proof. — Chain rule. []
Remark. The automorphy factors can be defined in the more general
context of any Lie algebra of finite type, see [Be96a, 2.1.3].

1.2 The “Bergman operator” associated to a Jordan algebra.
The automorphy factors associated to the abelian subgroup j7yj of Co(V)
define the Bergman operator B of the Jordan algebra V:

B(z,v) := (D(j7-0j72)(0)) ™" = (D(j7-05)(z)) ™"

= Xjroi (%) = X5 (%) - X7,5(4(2)) = P(2) P(§(x) = v);

in the last line we used the cocyle relations. The function B(z,v) is
polynomial (quadratic) in = because B(-,v) is an automorphy factor. We
will show now that B(x,v) is also polynomial (quadratic) in v. In fact,
this is a special case of the more general considerations in [Be96a, section
2.3]. Let us briefly recall the argument used there: from the relation
4, _oj(tv + j(z)) = —P(z)v we see that the infinitesimal generator of
the one-parameter group j7_4,j is the homogeneous quadratic vector field
&(x) := (Juv)(z) = —P(x)v; hence we will write j7_,j = exp(j.«v), and
then
B(@, 1) = Yexp(_jo)(®) = (D(exp(juv)) (@)™
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In order to give an explicit formula for this expression, we define (uov) -
v 1= 3o, uul(@) = ((v(ur) - u(vr) + (vu)a).

1.2.1 Proposition. —  The function B extends to a polynomaial in
both variables, given by

B(z,y) =1id — 2zoy + P(x)P(y).

Proof. — Recall that the natural action of a diffeomorphisms ¢ on the
space of vector fields on V' is given by the formula

(¢un)(x) = (D) (¢~ (2)) - (¢~ (2)),
and for ¢ = exp& with £ € co(V) we have

Xexp& (@)v = ((exp£).v) () = (e v)(2).

(cf. [Be96a, section 2.2]). Following the calculation given in [Be96a] we
obtain
B(z,y)v = ((exp(jxy))sv)(x) = ("1 - v)(x)
= 0 [, 2](@) + 5o [op, 0])(2)
=v =2(voy)(z) + [voy, j.yl(z)
= (id —2xoy + P(z)P(y)) - v.

The last equality is obtained by observing that [voy, j.y| = —j«[yov,y| =
J«(P(y)v).

We will hardly use the explicit formula just proved. More important
are the symmetry relations of the function B and its behaviour under the
conformal group:

1.2.2 Lemma. — (i) For all ¢ € Co(V) with ¢(0) € V and
joi(0) €V,
D(j¢~"'5)(0) = j(Dg(0)) ™.

(7i) If det B(x,y) # 0, then
iB(y,)"'j = B(z,y),
and B(z,y) € Str(V).

Proof. — (i) By [Be96, Th.2.1.4], we can decompose any ¢ € Co(V)
with ¢(0) € V uniquely as ¢ = vgn with v = 745, € V, g = D$(0) €
StT’(V) and n = jT_(j¢—1j)(0)j € 7V j. Then if j¢j(0) eV,

jo~li=4gn""449" 3 v,
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and by uniqueness of this decomposition, the middle factor, being an
element of Str(V), is equal to D(j¢~15)(0). This was to be shown.
(74) Using the definition of B and (7),

iB(y,z) ' = jD(iT—jTy)(0)j = (D(jT_yj72)(0)) " = B(z,y).

The last claim should be seen as a consequence of [Be96a, Th.2.3.1], but
it can also be deduced immediately from the formula just proved because
Str(V) ={g € GI(V)|jgj € GL(V)}. ]

Remark that part (¢) also implies that
jP(x)™'j = —jD(j72)(0)j = —(D(j7—2)(0)) " = P(x).

From this and part (i) we then get another formula for B(z,y):
B(z,y) = jB(y,x)"'j = j(Py)P(i(y) — ) ~"j = P(i(y) — =) P(y).

1.2.3 Proposition. — The Bergman operator has the following
behaviour under the action of the conformal group: for all ¢ € Co(V)
and z,w € V such that ¢(z) € V and joj(w) € V,

B(¢(2), j¢j(w)) = D(2) o B(z,w) o j(D(jgj)(w)) " J.

Proof. — If p € Co(V) and x € V such that ¢(x) € V, then we have
the decomposition 7, = 7y DY(z)n with n € N = jVj [Be96al, and
hence

T(@) = ¥ Ta n~t (Di(x)) "L

Using this expression, we obtain

B(6(2),j¢i(w)) " = D(i7;} (wiTe() (0)
= D(j D(j¢)(w) n'1_wjé™ ' j joren" (De(2)) ") (0)
= jD(jéj)(w)j D(jn'j jr—wjmsn"")(0) (De(2))"*
= jD(j¢5)(w)j D(jr—wjT:)(0) (De(2))~".

Taking inverses on both sides yields, by definition of B(z,w), the claim.

(In the last equality we used that jn'j, coming from the left, and n=1,
coming from the right, do not contribute to the differential at the origin.)

]
1.2.4 Corollary. — (i) For all ¢ € Co(V) such that ¢(0) € V,
73 (0) €V,
B(¢(0),j$j(0)) = D¢(0) o D(¢6~")(0).
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(i1) For all ¢ in the fized point group Co(V)7* of the involution
Jx(9) = jgJ,

B(¢(2), ¢(w)) = De(z) o B(z,w) 0 j(Dg(w)) 5.

(i17) If ¢ € Co(V)?* is such that (—id)$(—id) = ¢~ then

B(¢(0),$(0)) = (D¢)(0))*.

Proof. — The first two claims follow immediately from the proposition.
For the last one, observe that (D¢~1)(0) = D((—id)p(—id))(0) = D¢(0).
]

In the special case ¢ = 7, or ¢ = j7,.7, Prop. 1.2.3 yields identities
for the B-operators which correspond to the identities JP 33 and JP 34
in [Lo77]. We now prove an analogue of [Lo77, Th.8.11] which describes
the conformal group by generators and relations; it can be seen as an
“Integration” of the defining relation (J71'2) of a Jordan triple-system. We
first need a lemma:

1.2.5 Lemma. — Let x,y € V. Then

(jr,7)(x) € V < det B(y, —z) # 0.

Proof. — For any conformal map ¢ and z € V,

¢~ (z) € V & det(xy(z)) # 0

because ¢~ (z) = (x(z))"! - Ag(x) with a polynomial \,, see [Be96a,
Prop.2.1.3]. The lemma follows by taking ¢ = j7_,j and using the
definition of B. []

1.2.6 Proposition. — If det B(u,v) # 0, then

JT—(Gr—ud)(0)] © T—u © JToJ © T(ir_,j)(w) = B(u,v).

Proof. — We first notice that the left hand side is well defined: the
translations appearing in the formula exist by the Lemma just proved. Let
us denote the left hand side by ¢, ¢ € Co(V). Then ¢(0) = 0; in fact this
equation is equivalent to (j7_,7)(j7v7)(u) = w which is trivially verified.
As ¢(0) = 0, we can write ¢ = D¢(0) on with n = jT_;4-1;0)j. Let us
show that n = idy, that is, j¢~1j(0) = 0. As above, this equation is seen
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to be equivalent to v = (j7,J)(j7—«Jj)(v), which is again trivially verified.
Finally,

(Dg(0))™" = (D¢~ 1)(0) = (D(j—uj7u))(0) = B(u,v) ™",

implying that ¢ = B(u,v). []

Specializing the proposition to the case u = v =: x and composing by
j we obtain that, if det B(x,z) # 0, then

B(x7x)j:no T—wojoTw o nily

where n = j7_(j+__;)(z)J. This means that j and B(x,z)j are conjugate
in Co(V).

1.3 The modified Bergman operator. — In this section we assume
that a € GI(V) is given such that (ja)? = idy. In the notation of [Be96b,
Prop.2.2.1], a € Str(V)77* = {g € Str(V)|jgj = g~ *}. We will show that
all formulas given in the previous section hold with j replaced by ja. The
differential of ja is given by

D(ja)(z) = Dj(az)oa = —P(az) toa = —(aP(z)a) ta = —(P(z)a) "L |}

ie.: Xja(z)=—P(z)oa,

where we have used that P(gx) = jg~'jP(z)g for all g € Str(V). We will
write P, (x) := P(z) o a. Define the a-modified Bergman operator by

Ba($, y) = XjOm’yjoz(x) = (D(jon-—yja)(x))_l

= (D(jT—a(y)ij)(o))il = B(z, ay),

where now B = B,;4. Using the above formula for the differential of ja,
all proofs in the previous section go through for j replaced by ja. We
give the resulting formulas; here ¢ always denotes an element of Co(V),
arguments of ¢ are always supposed to be chosen such that their image
under ¢ belongs to V and Co(V)7<® denotes the fixed point group of the
involution j.a.(g) = jagja:
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(1) D(jasé™ ja)(0) = ja (De(0))~" ja,
(2)  jaBaly,z)'ja= Ba(z,y),
(3) jaPa(x)ja:Pa(x)_l
(4) Ba(z,y) = Po(z) Pa(ja(z) —y)
(5) = Pa(jo(y) — x) Pa(y)
(6) =id — 2zxoa(y) + P, (x)Pa(y)
(7)) Ba(9(2),jadja(w)) = D(2) o Ba(z,w) o ja (D(jagja)(w)) ™" ja,
(8)  Ba(0(0), jagja(0)) = Dé(0) (Do~1)(0),
(9) V¢ e Co(V)+*
Ba(o(2), p(w)) = DP(2) Ba(z, w) ja(De(w)) ™ ja,
(10) V¢ € Co(V)** s.t. (—id)p(—id) = ¢~ :
Ba(6(0), 6(0)) = (D(0))?

(11) det By (u,v) # 0 =
JOT_(jar_pja)()JQ © Ty © JATJ0 O Tjar_,ja)(w)V = Ba(u,v),

(12) det B (z,z) # 0 = for n := jar_(jar_,ja)()J

_1=nor_w0jaorxon_1.

jaBu(z,x)
Remark. We will see in [Be96¢c| that P, and B, are actually associated
to a certain Jordan triple product 7j,.

2. Description of the Makarevié spaces X (@)

2.1 Description by algebraic equations. — Let us recall from
[Be96b, Prop.2.2.1] the definition of the Makarevié space X(®): As usual,
V denotes a (semi-simple) Jordan algebra, Co(V') its conformal group
and V¢ its conformal compactification. Let a € Str(V) be such that
(ja)? = idy, ie. a € Str(V)/i = {g € Str(V)|jgj = g~ '} (here
J(g) = ¢! is an anti-automorphism of Str(V)); then the conjugation
(jJa)xd = jagja defines an involution of Co(V') the fixed point group of
which we denote by Co(V)U®)+, Then ([Be96b, Prop.2.2.1]) the orbit

X .= Co(V)J¥* .0 cve

is open and is a symmetric space having —idy as geodesic symmetry with
respect to the origin 0.
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We shall characterize the spaces X () essentially as the set of points
x for which the Bergmann operator B,(z,z) is non-degenerate. As
mentioned in the introduction, for Hermitian symmetric spaces such a
description is well-known. However, our proof is of quite different nature
than the known one for Hermitian symmetric spaces - we do not use the
exponential map, but the fact that, if det B,(z,x) # 0, then we have
an algebraic formula establishing conformal equivalence of the orbit of x
whith one of our model spaces, namely with X (@Ba(z,2)™)  Tn Jordan
theory a similar phenomenon is known as mutation. Our proof, using
essentially only “affine”, not “semi-simple” arguments, can be adapted to
the more general situation of arbitrary Jordan algebras.

2.1.1 Theorem. — (i) If x € V is such that det B, (z,z) # 0, then
the orbit .
CO(V)(()JQ)* cx CV°©

18 open, and as a homogeneous and symmetric space it is isomorphic to
X(aBa(x,w)fl) — CO(V)éjCUBa(.’L‘,l')il)* .0C Ve

(ii) The intersection X NV is a union of connected components of
the set {x € V| det B,(z,x) # 0}. In particular,

(X NV = {z € V| det By(z,z) # 0}o.

(ii7) If V is complex and o complex-linear, then X (@) s dense in V°,
and
XNV ={zecV|det By(z,z) #0}.

Proof. — (i) If det Bo(z,z) # 0, then n := jat_(jar__ ja)(@)jc is a
well-defined element of the conformal group (c¢f. Lemma 1.2.5). We have
nT_z(z) =n(0) =0, and by eqn. 1.3. (12):

nr_o (Co(V)§D* - 2) = Co(V)TT=10Tem" D= g = Co(v)JeBal@a) ™= g

The proof is finished by showing that this orbit is open. Now, due to 1.3.
(2), (jaBa(z,2)~1)?% = idy; that is a B, (z, )1 € Str(V)77. This means
that the assumptions of [Be96b, Prop.2.2.1] are verified, and the orbit
C’o(V)éjaB“(x’w) D 0 is nothing but the open set X (@B« (z.2)™) < ye,

(7i) The set {x € V| det B,(z,x) = 0} is a hypersurface in V, and
from the transformation law 1.3 (9) it is clear that no point of this set can
belong to an open Co(V)U%)«-orbit. Conversely, by (i), any point from
the complement of this set belongs to an open orbit. This implies the
claim.
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(7i7) is an immediate consequence of (ii) since the complement of an
algebraic hypersurface in a complex vector space is connected. []

The Cayley-transformed realization. — If o is an involution of V', then
there is a Cayley-transformed realization of X(® = G/H: recall the real
Cayley transform R(z) = (v — e)(x + €)1 from [Be96b, Lemma 2.1.1],
having the property that RjR~' = —idy. The group RGR™' acting on
R(X(®) is then given by

RGR™! = Co(V){7oT D = co(v) -,

2.1.2 Theorem. — Let a be an involutive automorphism of V.
(1) If x € V is such that det P(a(x) + ) # 0, then the orbit

CO(V)((fa)* -x CV©
1S open.
(ii) The intersection R~ (X)) NV = (CO(V)((fa)* -e) NV is a union

of connected components of the set {x € V| det P(a(x) + z) # 0}. In
particular,

(RUXONNV), = {z € V]| det P(a(z) 4+ x) # 0}..
(éii) If V is complex and o« complex linear, then
RYXW)NV = {z € V| det P(a(z) 4+ z) # 0},

and this set is dense in V.

Proof. — We have DR(x) = 2P(z +¢)~!. Using R(y) = jRj(—j(y)),
we get from 1.3 (7), if R(z) and R(y) are in V/,

Bo(R(z), R(y)) = DR(z) o Ba(z, —j(y)) o (ja)«(D(jaRja)(—j(y)) "
= DR(z) o Ba(w,—j(y)) o aP(y) DR(y)a
= DR(z) o P(z + a(y))P(—i(y)) o P(y) DR(y)«
= —DR(z) P(z + a(y)) DR(y)o,

where we used 1.3. (5) and the fact that P(x~!) = P(z)~! for invertible
.

(i) Let € V such that R(z) € V. Then det DR(z)~! # 0, and
the preceeding calculation shows that the condition det P(z + «a(x)) # 0
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is equivalent to det B, (R(x), R(z)) # 0. By the previous theorem, this
property characterizes the points such that the orbit

R(Co(V)§™™" -z) = Co(V)§*" - R()

is open in V€. All that remains to show is that the condition R(z) € V is
inessential; in other terms we have to show that the zeroes of the function
z +— det(DR(x)™') =  det P(e + z) belong generically to an open orbit.
But this is clear from the fact that this function vanishes at —e, and the
orbit Co(V)(=)+ . (—¢) = —Co(V)(=®)« . ¢ is open in V°.

Now (ii) and (iii) follow as in the proof of Theorem 2.1.1. 1

The statement of the previous theorem can be made more geometrical
using the concept of a tube domain: let V.=V & V™ be the eigenspace
decomposition of V' with respect to the involution o, and let Q" be the
connected component of e of the intersection of V* with the open (in
general non-convex) cone ) = Str(V)y-e C V. Then Qt = Str(VT)y - e
is the open cone associated to the Jordan algebra V*. The tube domain
associated to the involution « is defined as

Vo 4+ Qt={r+ylzeV ,yeQtl.

2.1.3 Corollary. — Under the assumptions of the previous theorem,
(Co(V)=¥.enV)e =V~ +QT,

where the subscript e denotes “connected component of e”.

Proof. — The condition det P(z + a(z)) # 0 is equivalent to
det P(z") # 0 (where x = 2t +2~, 27 € V* 2= € V), and this is
equivalent to the fact that 2™ is invertible. But Q7T is exactly the compo-
nent of e of the set of invertible elements in V. []

Ezamples. — 1. An important special case is given by a complex Jordan
algebra with a conjugation «; then V'~ =4V, and the tube domain has
the form (V" +iQ%1); such domains are studied in [FG95].

2. The classical matrix-spaces. Let V' = M (n,F), where F is the field
of real or complex numbers or the skew-field of quaternions. The Jordan
product is given by XY = 2(XY +Y X), the Jordan inverse j is the usual
matrix inverse, the quadratic representation given by P(X)Y = XY X,
and 1.3. (4) implies that

B(X,Y)Z =(I-XY)Z(I-YX),

14



where I = I, is the identity matrix. Then det B, (X, X) = det( —
Xa(X))", and Theorem 2.1.1 describes the space X(® by the condition

det(I — Xa(X)) #0.

We may choose a to be the involution “adjoint with respect to a matrix B
and an involution ¢ of F”, i.e. a(X) = (Be)X*(Be)™! (¢f. [Be96b, ch.I);
then the stated condition is equivalent to

det(B — X Be(X)") # 0;

this special case of Theorem 2.2.1 has been stated in [Be96b, Th.1.7.1];
as mentioned there, for B = I and £(X) = X we obtain the classical
SIEGEL-space (see [Sa80]). The tube realization is characterized by the
condition

det(X + a(X)) # 0;

this is equivalent to saying that X = (X + (X)) is invertible in the
ordinary sense.

3. Hyperboloids. Let V = R™ equipped with a non-degenerate
symmetric bilinear form (:|-), i.e. with an isomorphism V — V*
v — v* = (+|v) such that v*(w) = w*(v). We choose a base point e € V
such that (ele) = 1. Then the formula

xy = (zle)y + (yle)z — (x|y)e
defines a Jordan product on V (see [FK94, II.1]). Writing L(z) =
(zle)idy + x @ e* —e®@x* (where (v® p)(z) := p(z)v forv eV, pe V>
for the operator of left multiplication by x in V', we obtain

P(z) = 2L(z)* — L(2?) = (z|2)idy + 2 @ (4(z|e)e* — 22%) — 2(x|x)e ® e*.

Let a be the orthogonal reflection with respect to Re, i.e. a = 2e®e* —idy .
One immediately verifies that this is an involution of V', and

P,(z) =22 @ ¥ — (z|z)idy

since a short calculation shows that indeed P,(x) o a = P(z). From this
we obtain xo ax = (z|z)idy, and using these formulas we get

Bo(z,2) = idy — 220 ax + (Pa(z))? = (1 — (2]2))%dy,
B_o(z,2) =idy +2roax + (—Pa(z))? = (14 (2]2))%dy.
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Hence
(X V) ={x € V[(zlx) # 130, (XTINV)o ={z € V]| (z]x) # -1}l

Since P(z + a(z)) = P(2(e|r)e) = 4(e|z)%idy, the Cayley transformed
realization of X (®) is given by the half-plane

RN (X)) = {z € V| (e|z) # 0}.

Now let the signature of (-|-) be (p,q); then p > 1 since (ele) = 1.
The following is known (see [Ma73]): the conformal group of V is
isomorphic to SO(p + 1,¢ + 1), and X = SO(p,q + 1)/SO(p,q),
X2 =~ SO(p +1,q)/SO(p, q). The following special cases are most
interesting:

a) p=mn, ¢=0: then X = {z € V||jz|]| < 1} = SO(1,n)/SO(n) is
a real hyperbolic space H", and X(~®) =~ S ig a sphere, the conformal
compactification of Euclidean n-space.

b) p =1, ¢ = n—1: in this case V is a Euclidean Jordan algebra,
and the associated symmetric cone is the Lorentz cone. Then X (&) =
SO(1,n)/SO(1,n—1) and X% = SO(2,n—1)/SO(1,n—1) are causally
flat realizations of relativistic space-time models of constant curvature.
The global topology of these spaces cannot easily be read off the flat
description.

2.2 The Cartan involution. — Let V be a semi-simple Jordan
algebra, V¢ its complexification and 7 its conjugation with respect to the
real form V. Then there exists a conjugation 6 of V¢ commuting with
7 such that the real form (V¢)? is a Euclidean Jordan algebra ([FK94,
Th.VIIL.5.2]). The restriction of 6 to V is called a Cartan involution of
V;if V. =VT @V~ is the corresponding eigenspace decomposition, then
the Euclidean real form of V¢ is given by V* @iV .

2.2.1 Lemma. — The Makarevi¢ space
XEOW) = Co(v)§7)- o cve

18 compact and equal to V°.

Proof. — The Makarevi¢ space X (®) is a bounded symmetric domain
in V¢; in fact, we have seen above that it is the tube domain associated to
the Euclidean Jordan algebra V* @iV~ in its disc realization. By [Be96b,
Prop.2.3.2], the space X (=0) is its c-dual; it is a compact symmetric space
because the disc is of the non-compact type. As X (=% ¢ (V)¢ is an open
and compact inclusion in a connected space, we must have equality. Now
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CO(V)((fj %1v)+ can be considered as the identity component of the 7,-fixed

closed subgroup of the compact group OO(Vc)é_j 6 (cf. [Be96b, Lemma
2.3.1]), and hence is also compact. Therefore X (=01v) is compact, and by
topological reasons it is then equal to V°. []

Remark. We have so far not yet used the fact that V¢ is actually
compact; hence this fact may be proved by the previous lemma.

2.2.2 Corollary. —  In the situation of the preceeding lemma, the
operator B_gy (x, ) is non-degenerate for all x € V. In particular, if V
1s Fuclidean, then

B_iaqy (z,7) =id + 2zxo 2 + P(z)?> = P(z)P(z + 27 1)

18 non-degenerate for all x € V.

Proof. — By the lemma, every point of x € V belongs to an open

CO(V)(()fje‘V)*—orbit, and by Theorem 2.1.1, this means that B_g|, (z, )
is non-degenerate.

2.3 Description of subspaces, and Makarevi¢ spaces of the
second kind. — Let us consider a Makarevi¢ space X (%) together with
an involution 8 of the underlying Jordan algebra V such that « and
commute. We are going to describe the —f-fixed subspace X () NV~ of
X (@) N V. Important examples are given below.

2.3.1 Proposition. — (i) The orbit of x € V~° under the action of
the group
G := (Co(V)== 1 Co(V)U™)),

is open in (V°)~P if and only if det By (z,x) # 0. In particular,
(G-0NV)g = {z € V7P| det By(z, ) # 0}o.
(ii) We have the following equality of subsets of V¢:
(Vo) = Co(V)y 7" -0,

and the inclusion V=5 C (VC)E’B is open and dense.

Proof. — (i) We first remark that the compability relation aff = Sa
ensures that (V¢)~# is indeed stable by G, where f3 is considered here as a
conformal map defined on the whole of V¢. Now the proof can be carried

out as in Th.2.1.1 (4) since the transformation n7_, used there stabilizes
the set (V)P ifz € V5,
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(7i) Let us choose for a = —6 where 6 is a Cartan involution of V' wich
commutes whith 5. Then G is compact and

G-0= (V)"
by compactness. Furthermore
VP =(G-0)nV ={$(0)| ¢ € G,det x4-1(0) # 0}

is an open dense set in G - 0. []

It is clear that a similar proposition can be stated for the +(-fixed
subspaces, but they are less interesting as they are nothing but Makarevic
spaces in the Jordan sub-algebra V?. This is not the case for the —-fixed
subspace as shows the example mentioned above, and therefore we will
call the —f-fixed subspaces Makarevi¢ spaces of the second kind. They
have been classified in [Ma73, Th.1 and 2] without using Jordan theory
and the “flat” realization given here.

Ezamples. — 1. Unitary groups. Recall from [Be96b] that U :=
U(A, e, F) denotes the linear group preserving the e-sesquilinear form given
by the matrix A on F™, where ¢ as an anti-automorphism of the base
field T of real or complex numbers or quaternions. Let V = M (n,F) and
B(X) = AeXt(Ae)~! the map “adjoint”, supposed to be involutive. Then,
by definition, V'~ = Aherm(A,e,F). The space associated to o = idy is

(XU NV ™)y = {X € Aherm(A,e,F)| det(I — X?2) # 0},

cf. 2.1, example 2. This is of course nothing but the Cayley-transformed
realization of the group U(A,e,F) described in [Be96b, 1.5]. The c-dual
space Uc /U is given by

(X)) AV = {X € Aherm(A, e, F)| det(I + X?) # 0},.

Recall from [Be96b] that, if V'~ contains invertible elements, then it can
be equipped with a Jordan algebra structure such that the corresponding
unitary group becomes actually a Makarevi¢ space of the first kind. This
is the case for the groups Sp(n,R), U(p, q) and some others, but not for
the groups SO(2n + 1).

2. Grassmannians. Let V = Herm(I,,e,F) and assume that e(z) =7
is the canonical conjugation of the base field. Then V is a Euclidean
Jordan algebra. Let 5(X) =1, , X1, ,. Then

_ 0 X
M(p,q,F) =V, X|—><Yt 0)
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is a vector space isomorphism (and an isomorphism of Jordan triple sys-
tems with respect to the natural triple products). Under this isomorphism,
the space associated to a = idy is

XAV ={X € M(p,q,F)| [-XX* >> 0} 2 U(p,¢;F)/(U(p,F)xU(q,F) §

this is the non-compact dual of the space X(=#v) N (V) 5 which is
isomorphic to the Grassmannian G, ,,(FF). The special case p = 1 yields
the projective space PF" ™! and its non-compact dual, the hyperbolic space
H™(FF). However, the “conformal structure” on H™(R) considered here is
not the one considered in 2.1, example 3 since the conformal groups are not
the same; correspondingly, the global topological nature of the compact
dual is not the same in these examples.

3. Bounded symmetric domains. Let V be a complex Jordan algebra,
a be a conjugation with respect to a Euclidean real form and 3 a complex
linear involution commuting with «. Then

xX@ny~

is a bounded symmetric domain which is not of tube type in general. We
will discuss this example in Proposition 3.1.1.

2.4 The invariant (pseudo-)metric of X(*). — As usual, V
denotes a semi-simple Jordan algebra and « is an element of Str(V)77x.
By definition of semi-simplicity, the symmetric bilinear form (u,v) :=
tr(uov) = tr L(uw) is then non-degenerate, and we have for all g € Str(V)
and u,v € V,

(gu,v) = (u, (jgj)~"v).

In particular, « is self-adjoint. Hence the form
(U, V) = tr(uo ov) = tr L(ua(v)) = (u, aw)

is also non-degenerate and symmetric. Furthermore, for all g € Str(V)
and u,v € V,

(gu,v)q = (u, (jagja)_lv)a.

In particular, (-,-), is invariant by Str(V)U®)« which is the stabilizer of
the base point 0 in X(®. Hence we can transport this form by the group
Co(V)U®+ to any point of X(®) and obtain thus an invariant pseudo-
metric on X (®). The important point is that we can define this pseudo-
metric by a rational expression.

2.4.1 Theorem. — Let us define, for z € V such that det By(z, z) #
0,
h.(u,v) := (Ba(z, 2) " u, v) 4.
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Then z + h, defines a pseudo-metric which is Co(V)U* -invariant in
the following sense: if ¢ € Co(V)U) is such that ¢(z) € V,

(¢;1h)z(u7 U) = h¢(z) (D¢>(Z) U, D¢(z) ' U) = hz(uv U)'

The pseudo-metric h can be continued in a Co(V)Y¥)* -invariant way onto
the union of open Co(V)U¥)«-orbits in V°.

Proof. — We have already remarked that hgy is non-degenerate and
symmetric. Hence, if B,(z, z) is non-singular, h, is also non-degenerate.
Let us show that h, is symmetric:

h(u,v) = (u, (jaBa(z, 2)j)v)a = (Ba(z, 2) v, u)q = h(v,u)

where we have used 1.3 (2). In order to prove the invariance, let
¢ € Co(V)U+ such that ¢(z) € V. Then

_ -1
(¢* 1h)z(uv U) = <Ba (¢(’2)7 ¢(Z)) D¢(Z) © U, D¢(Z) ’ U)oz
= (jaD¢(z) jaBa(z,2) ' - u, DP(2) - v)q (by 1.3.(9))
= (Ba(z,2) " u, v) o = R (u,v).
Now, if z € V¢ belongs to an open Co(V)U®«-orbit U, then U NV # (
because V' is dense in V¢. For any z € UNV, det B, (x,x) # 0 (otherwise
the orbit of x were not open.) Because h, is, by the preceeding calculation,

invariant under the action of the stabilizer of x, we can transport h, to z,
thus extendig the pseudo-metric from U NV to the whole of U. []

The volume element of a pseudo-Riemannian manifold with metric

tensor g;x(z) is given by /|det(g;x(x))|. Here we have (gi(z)) =

(Bo(z,2)7Y). This proves

2.4.2 Corollary. — The Co(V)YU%«_invariant measure on X () NV
18 given by the density
| det B (2, z)| /2

with respect to the Lebesque measure of V.

In the tube-realization we have similarly:

2.4.3 Proposition. —  Let a be an involution of V. The invariant
pseudo-metric on the domain R(X(®)) = —CO(V)((fa)* - e is given by

9 (4. v) = (P(z + az)"u,0),
and the invariant measure by the density

|det P(z + a(x))|~1/?
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with respect to the Lebesque measure of V.

Proof. — All we have to do is to calculate the forward-transport R.h
of the pseudo-metric h from the previous theorem by the real Cayley-
transform R:

(Rh)z(u,v) = hp-1(q)(DR(x)u, DR(z)v)
= (jaDR(z) 'jo o Bo(R™ Y (x), R (2)) ™' o DR(z)u,v)q
= (P(z + a(z)) tu,v),

where in the last line we have used that jaDR(z) 'ja = aDR(x)a and
the calculation given in the proof of Prop. 2.1.2. []

3. Description of domains of holomorphic semi-group actions

3.1 Decompositions of bounded symmetric domains. — Let D
be a bounded symmetric domain of tube type: V is a Euclidean Jordan
algebra with associated symmetric cone €2; let V¢ be the complexification
of V and 7 be the corresponding complex conjugation. Then T = V +1£2
is a tube domain which is equivalent by the Cayley transform C' to the
disc .

D =X = Co(Ve)J™ - 0.

We will use the notation G := G(D) = Co(Ve)Y™*. Let a be an
involutive automorphism of V'; by the same letter we denote its complex
linear continuation as an automorphism of V. We write V(CjE for the +1-
eigenspaces of a and consider the bounded domains

+ . _ + +
DY .= DnVE C V.

3.1.1 Proposition. — (i) The space DT is a bounded symmetric
domain of tube type in the complex vector space Vg. It is homogeneous
under the action of the group

Gt = (Co(Ve)™ N Co(Ve)U™x),.
(ii) The space D~ is a bounded symmetric domain (in general not of

tube type) in the complex vector space Vi . It is homogeneous under the
action of the group

G~ = (Co(Ve) ™= N Co(Ve)U™+),.
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(i4i) The disc D decomposes as a fiber space over DV with fibers
isomorphic to D~ (and also the other way round). More precisely,

D=G -D"= |]J G -2

zeDt

where the union is a disjoint union of orbits, each of which is isomorphic
to D~ as a homogeneous and symmetric space.

Proof. — The disc D is a Riemannian symmetric space of non-
compact type; i.e. D = G/K, where K is the fixed point group of
a Cartan-involution. Let g =€ @® p be the corresponding decomposition
of the Lie algebra; here we have p = {v + j.tv|v € V¢}. As for any
Riemannian symmetric space of the non-compact type, the exponential
map Exp : p — D is a diffeomorphism. The involution o, commutes with
the given Cartan-involution; we write p = p* @ p~ for the decompostion
into +1-eigenspaces of p w.r. to the involution a.

(i) It is clear that DT = Exp(p™); because exp(p™) C G, this group
is transitive on DT. Clearly D% is bounded and symmetric, and it is of
tube type because VT is a Jordan algebra.

(ii) We apply the same arguments as above; but D~ will in general not
be of tube type because the Jordan triple system V'~ will in general not
be associated to a Jordan algebra.

(731) By a theorem of Mostow (see [Lo69, Prop.IV.2.5]), the map

p”xpt =D, (X,Y)— exp(X)exp(Y)-0

(where exp is the exponential map of ) is a diffeomorphism. Let us show
that this decomposition, D = exp(p~) exp(p™)-0, is nothing but the claim:
first, DT = exp(p™) - 0 (as this is a Riemannian symmetric space of the
non-compact type), and second, if 2 € DT, z = exp(Y) -0 with Y € pt,
then D~ — G~ - 2, x — exp(Y) - z is a diffeomorphism. []

Looking at the classification of bounded symmetric domains (see
[Lo77]), we easily verify that every bounded symmetric domain can be re-
alized as a “subdisc” D~ in a “big disc” of tube type, but this realization
is not unique. (For example, {X € Sym(2n,C)|I—XX* >> 0} can be re-
alized in a —1-eigenspace in M (2n,C) and in Sym(2n,C) x Sym(2n,C).)
One may remark that these realizations are special cases of Makarevic
spaces of the second kind as defined in section 2.3. In [Be96¢c] we will
present a deeper study of such realizations.

3.2 Compactly and non-compactly causal symmetric spaces.
Recall from [Be96b] that every Makarevi¢ space associated to a Euclidean
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Jordan algebra V has an invariant causal structure: for these Jordan
algebras the open cone Q = Str(V)y - e is convex, and the constant
cone field on V given by € is invariant under Co(V),. Hence any
Makarevic space associated to V inherits this invariant causal structure.
As we have seen in [Be96b, Prop.2.4.3], any Makarevi¢ space associated
to V is isomorphic either to X(® or to X(=®), where « is an involutive
automorphism of V. Recall that X(~v) is compact and X () is of
non-compact type.

Let X = X&) In the usual notation related to causal symmetric
spaces, one writes X = G/H with associated decomposition g = h @ q of
the Lie algebra g of G and is then interested in Ad(H )-invariant regular
cones C' C q. One usually chooses a Cartan-involution of G' compatible
with the involution seperating H and writes g = £ ® p for the associated
Cartan decomposition of g. Then one distinguishes the cases C N € # ()
and C'Np # 0, calling the former structure compactly causal and the latter
non-compactly causal.

In our realization of X = X(£®) we have G = Co(V){**, G{7)" ¢
H c G(=¥v)+ and the decomposition of g is given by (writing v (v € V)
for the constant vector field £(xz) = v on V)

h = ste(V), q=q%F = {v=+j.av|veV},

where (j.w)(z) = —P(z)w (w € V), ¢f. [Be96b, Prop.2.2.1]. Via the
evaluation map at the origin, £ — £(0), the space q is identified with V' by
v+j.av — v. Hence the Ad(H )-invariant cone in q**) which we consider
is defined by

C:=CFY = {v =+ j.av|ve Q.

Let us show that C(=® is compactly causal and C(®) is non-compactly
causal: the Cartan involution of G is given by (—7). (see section 2.2), and
one deduces that

t=tEY = Der(V)*a{v—jolve VT, p=pFY = LV )@{vt+j.v|ve VEL]

where V = V' @ V™ is the eigenspace decomposition of V with respect
to a. We now remark that Q N VT # () because this set contains the
unit element e, and Q@ NV~ = (: if this set contained an element
z, then —z = a(x) would also be contained in it because 2 is stable
by automorphisms; but since () is an open pointed cone, this leads

to a contradiction. From this observation we now easily deduce that
CEINE£P, CEYNp=0,CNp#Pand C@Ne=0.

3.3 The complex domain = associated to a compactly causal
symmetric space. — Let X = X(=% be a compactly causal symmetric
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space which can be realized as a Makarevic space associated to the
Euclidean Jordan algebra V, let G = CO(V)(()_N)* and C = C=%) C
q. Let I'(C) be the subset Gexp(iC) of G¢, where exp denotes the
exponential map of G¢; this is actually a semi-group, but we will not
use this fact in the sequal. We want to describe the subset

2:=20%.=T(C)-0= Gexp(iC) - 0

of the complexified space X¢ = X(((:_a). The closure of = in X¢ is given by
E=T(C)-0 = Gexp(iC) - 0; it contains X in its border because 0 € C.
Let us show that locally at a point x € X the domain = looks like the
tube domain T = V + #§):

3.3.1 Lemma. — Let& €iC, i.e. £ =i(v—j.av) withv € Q. Then
foranyx €V,
£(x) €.

Proof. — We have to show that for all x € V', the vector
§(x) = i(v — (jraw)(z)) = i(v + P(z)av)

belongs to Q2. First remark that v € Q, av € Q (because « is an
automorphism), second that P(V) - Q = Q (which follows by continutity
from the fact that P(z) - Q = Q for invertible x € V., ¢f. [FK94,
Prop.I11.2.2]), and finally the sum of points in € still lies in Q since Q
is a convex cone; more precisely: if a € Q and b € Q, then a +b € Q.

I

One may remark here that for X(® similar arguments fail because
is not stable by taking the difference of its elements. The lemma can be
interpreted in the following way: the vector fields & € iC' are sub-tangent
for the (closed) tube Tgq at points z € V. This means by definition
that, for x on the boundary 0Tq, the vector £(z) is never pointed into
an outward direction of T,. A formal definition is: there is a sequence
(r,) C Tq and a sequence (r,) C R such that r, — co (n — o) and
&(x) = limy, 00 (2, — ). The importance of sub-tangent vector fields
lies in the fact that their integral curves stay in 7o for non-negative time-
parameter (Theorem of Bony-Brezis, see [HHL89, Thm.I.5.17]).

3.3.2 Lemma. — Let {(x) = i(v+ P(z)w) with v,w € Q. Then §(2)
18 sub-tangent for T'q at any point z of Tq. More precisely: for any point
z on the boundary 0Tq of Tq, the vector £(z) is pointed into the interiour
Of TQ.

Proof. — Let z =x + iy with x € V and y € Q. Then
£(z) =i(v+ Pz +iy)w) = i(v+ P(x)w — P(y)w) — 2P(x,y)w.
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We have to show that the imaginary part of this expression is sub-tangent
for Q at y. As in the proof of the previous lemma, one remarks that
v+ P(x)w € Q; this is a sub-tangent vector for { at y. For the remaining
term, observe that —P(y)w = (—yo w)(y), and since —yo w belongs to
ste(V') which is the Lie algebra of G(€2) (the group of linear automorphisms
of Q), the vector (—yo w)(y) is sub-tangent for  at y. Since 2 is convex,
the sum of sub-tangent vectors is still sub-tangent, and if one of them is
pointed into the interiour, then the same is also true for the sum; this
implies the claim. []

3.3.3 Corollary. —  Let &£(z) = i(v + P(x)w) with v,w € Q and let
exp(it€) be the one-parameter subgroup of Co(Vr) generated by i€. Then
for allt > 0,

exp(it€) - Ta C To,

Proof. — Let z € Tq. By the previous lemma and the theorem of
Bony-Brezis (cited above), exp(itf) - z € Tq for small t > 0, and even
exp(it€) - z € T because £(z) is everywhere pointed into the interiour
of To. In order to prove the Corollary we only have to show that this
statment is true for all ¢ > 0. This can be proved using the bounded
realization D = C(Tg) of Tg: then D is compact and we may find ¢y > 0
such that exp(C, (ito€))-D C D, and hence the whole semi-group generated
by C.(ito€) is a semi-group of contractions of D. []

Clearly the Corolloray implies that
Gexp(iC’) C {g c G(c|g . TQ C TQ},

and hence
== Gexp(iC’) -0 C (X(c N TQ)

We will show now that we have actually equality. In other terms, we will
prove a transitivity result.

3.3.4 Theorem. — The domain = associated to the non-compactly
causal symmetric space X (% is given by

==X NTo,
where Tq =V + 182 is the tube domain associated to the Fuclidean Jordan
algebra V' in which X (=) is realized as a Makarevic-space. By the Cayley-
transform C(x) = (ix — e)(iz + €)™, we have equivalently

C(EC) = (Co(Ve)§™ " ie) N D,
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where D = C(Tq) = CO(V@)(()jT)* -0 is the disc realization of Tq.

Proof. — a) Let us show that the two realizations are equivalent by
the Cayley transform: C(Tq) = D, C(X(((;a)) = CO(VC)(()fa)* -ie, hence
C(XeNTo) = (Co(Ve) " - ie) N D.

b) Let us prove first the claim in the special case a = idy, i.e. the case
where X is compact and X = V¢ then C(X) is the Shilov-boundary of
D. In this case Co(Vc)éfid)* = Str(Vc)o is a group acting by linear maps,
and we have to show that

C(E) = (Str(Ve)o - ie) N D.

Now, Str(Vg) - ie = Uc/Kc is the complexification of the compact
symmetric space C(X) = U -ie = U/K where U = Str(V(C)(()]T)* (compact
real form of Str(Vg)). We have the well-known polar decomposition
of Uc/Kc (coming from the Cartan decomposition Uc = U exp(iu)):
Uc/Ke = Uexp(iq)Kc (no uniqueness), where u=%€@ q is the Lie
algebra-decomposition associated to U/K. Consider now z € Str(Vg)-ieN
D and decompose it as z = uexp X -ie with u € U and X € p :=iq. Then
p = L(V), i.e. there is v € V such that exp X = (). Recall now the
description of D as the unit ball for the spectral norm |w| := ||waow@||*/?,
see [FK94, p. 198]. As the spectral norm is invariant by U, the condition
z € D is equivalent to

1> |6L(”)

-ie| = le”|.
This is equivalent to the condition that v has only negative eigenvalues,
which by [FK94, Th.II1.2.1] is equivalent to the condition that v € —£,
ie. z =ue L . je with u € U and v € Q. Since Ue=? is the Cayley-
transformed realization of the semi-group G exp(iC), this proves the claim
in the special case a = idy, .

¢) We now prove the claim for a general involution o of V. As remarked
just before stating the Theorem, only the inclusion “D” remains to be
shown. This problem will be reduced to the special case a = idy by
means of the fibration of D by its “subdiscs” Dt and D~ stated in Prop.
3.1.1. Recall that 7 is the conjugation of V¢ with respect to the Euclidean
real form V, and by the Cayley-tranform C = iRi we have C7C~1 = jr
and C(—ja)C~! = —q, see [Be96b, Lemma 2.1.1]. Observe that the
Cayley-transformed group

CGC™! = C(Co(Ve) T-NCo(Ve)™)oC = (Co(Ve) = NCo(Ve) U)ol
acts transitively on the subdisc D™, see Prop. 3.1.1 (ii).
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Now let z € D N Co(Vg)(=®)= - de. By Prop.3.1.1 (iii) we can find
¢ € CGC™! such that 2’ := ¢~1(2) € D*. But then, by part b), we can
findu € U = (CGC™1)§* andv € QF = QNV T such that 2/ = ue ) .je,
whence z = ¢ue L") . je. Transforming back by the Cayley-transform, we
obtain C~1(z) € Gexp(iC) - 0 which had to be shown. We even obtain
the more specific result that we can write C71(2) = gexp(i(v — j.v)) - 0
with v € V7T, i.e.

E=Gexpi(CNE)-0.

I

Remark: Our proof is inspired by the treatment of the special case of
Cayley-type spaces (see example below) in [Cha95]; see also [O096]. By
combining the preceeding result with Theorems 2.1.1 and 2.1.3 we get the
following;:

3.3.5 Theorem. — In the situation of the preceeding theorem,
E={z € Tg|det B_,(z,z) # 0},

C(E) ={z € D|det P(z + a(z)) # 0}.

If V(C_—f—Qg denotes the tube domain associated to the involution ac defined
i section 2.1, then we have also

C(E) = Dn (Vg + Q).

Proof. — Since « is a C-linear involution of V¢, the descriptions 2.1.1
(iii), resp 2.1.2 (iii) and 2.1.3 hold for X' and for X\ = ix®,
respectively for the Cayley-transformed realizations. []

As mentioned in the introduction, these results confirm conjectures
stated in [HO@91, remark 5.1]. Moreover, they imply that X (%) is dense
in V¢ and hence it makes sense to call V¢ the causal compactification
of X, a notion introduced in [O096]. The following result has also been
obtained by F. Betten [Bet96] using only Lie-theoretic methods (double-
coset decompositions by Matsuki).

3.3.6 Theorem. — Let a be an involution of the Euclidean Jordan
algebra V.. Then the Makarevié space X =% is dense in V¢, and

XC9NV ={z e V|det B_y(z,z) # 0}.
If ¥ = C(V°) denotes the Shilov-boundary of the disc D = C(Tq), then
C(XE9) = {2z € ¥| det P(z 4 a(z)) # 0}
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={z € V| det(P(2)P(z + a(2))) # 0, 2Z = e}.

Proof. — The closure of the domain = = X¢ N T in X¢ is given
by E = Xc N Tq. From the preceeding theorem it is clear that the set
{x € V| det B_,(z,x) # 0} is contained in Z. Let = be an element of
this set. We have to show that there is ¢ € G such that z = ¢g- 0. By
[HO®91, Lemma 1.3], the closure = is given by = = Gexp(iC) - 0, hence
we can write = gexp(iY) -0 with Y € C. But if Y # 0, then exp(iY) -0
does not belong to the real Jordan-algebra V', leading to a contradiction,
hence Y = 0 and = = g - 0 which had to be shown. The other equalities
are obtained by Cayley-transform and the description of ¥ as the set of
points z € V¢ such that 2Z = e. []

Ezamples. — 1. The Cayley-type spaces: here « is the involution
of a direct product V = V; x Vi of Euclidean Jordan algebras given by
a(z,y) = (y,z). The condition det P(z + «(z)) # 0 is equivalent to
z = (x,y) with z + y invertible in V3, hence

C(Z) ={(z,y) € D x D| det P(z +y) # 0},

C(X)={(z,y) e ¥ x 3| det P(x +y) #0.}

The realization used in [Cha95] is related to this one by a “rotation of
angle 57, J(z,y) = (—y,x) (see [Be96b, Ex.2.2.10]).

2. The group case X = Sp(n,R): here V = Sym(2n,R) and
a(X)=FXF~! where F = (PI (I)), see [Be96b, section 1.5 B|. Hence
C(E) ={Z € Sym((2n,C)| det(Z — FZF) #0, ZZ* << I},

C(X)={Z € Sym(2n,C)| det(Z — FZF) #0, ZZ* =1}.

3. The group case X = U(p,q): here V. = Herm(p + ¢,C) and
a(X) =1, ,X1I, ,, see [Be96b, section 1.5 B|. Hence

C(E) = {Z € M(n,C)| det(Z + I, ,Z1,,) #0, ZZ* << I},

C(X)={Z e M(n,C)| det(Z + 1, ,21,,) #0, ZZ* =1}.

4. The space X (=) = SO*(2n)/SO(n,C): here V = Herm(n,C) and
a(X) = X, see [Be96b, Prop.1.5.2]. Hence

C(E)={Z e M(n,C)|det(Z+ Z") #0, ZZ* << I},
C(X)={Z e M(n,C)|det(Z+ Z") #0, ZZ* =T}.
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5. The space X(=®) = Sp(2n,R)/Sp(n,C): here V. = Herm(2n,C)
and a(X) = FX'F~1 with F as in example 2, see [Be96b, Prop.1.5.2].
Hence

C(E)={Z € M(2n,C| det(Z — FZ'F) #0, ZZ* << I},

C(X)={Z € M(2n,C|det(Z — FZ'F) #0, ZZ* = I}.

6. Hyperboloids. Here V' and « are as in 2.1, example 3 b). Then
E={zeV+iQ|(z]z) # —1},

where ) is the Lorentz-cone in V.
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