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Abstract

We propose a framework in which reproducing kernels can be

defined for Hilbert spaces of sections of complex vector bundles. As

an example we describe families of Bergman spaces of sections which

occur naturally in the study of weighted Bergman and Hardy spaces.

Introduction

A reproducing kernel space H is a Hilbert space of functions such that evaluation
evz at any point z is a continous linear functional on H. Then evz is given by the
scalar product with an element Kz of H. The function K(z, w) := Kw(z) is called
the reproducing kernel of H. One of the prime examples of such Hilbert spaces is the
Bergman space of square integrable holomorphic functions on a bounded domain
in Cn, where the continuity of point evaluations is a consequence of the Cauchy
integral formula.

The theory of reproducing kernels for Hilbert spaces of scalar valued functions
can be traced back as far as 1909 and was developed in a systematic way by N.
Aronszajn in the forties (cf. [Ar50] which also contains a historical account of the
early developments). An extension to vector valued functions has been worked out
by R. Kunze in [Ku66]. A systematic account of the vector valued theory which
also includes representation theory of semigroups on reproducing kernel spaces can
be found in K.-H. Neeb’s book [Ne98] which we use as our standard reference.

In the present note we generalize the concept of Hilbert spaces of vector valued
functions on a manifold and their reproducing kernels to the case of Hilbert spaces



of sections of vector bundles and their reproducing kernels. Such a set-up appears
already in the literature (cf. e.g. [Ko68]), but it seems that no systematic account
of the relevant definitions and general results in this case has been given so far. We
hope that this note helps to fill this gap. The results presented here are not original;
most of them carry over directly from the case of vector-valued functions, but some
become simpler and more transparent than in the case of functions. This concerns
in particular the notion of invariant kernels (Chapter 2) and a related theorem, due
to S. Kobayashi, on the irreducibility of certain unitary representations (Theorem
2.5).

Our approach is motivated by problems in the harmonic analysis of certain
reproducing kernel spaces. As a simple example, consider the weighted Bergman
spaces Hm(D), m ∈ N, of holomorphic functions f on the unit disc D such that

∫

D

|f(z)|2(1− |z|2)m−1 dz < ∞.

This family of spaces plays an important role in the harmonic analysis of the group
G(D) = SU(1, 1); similar definitions can be made for more general bounded sym-
metric domains, cf. e.g. [FK94, Ch.XIII]. Now, for m = 1 this is just the classical
Bergman space which, as is well-known, has a natural invariant interpretation as
a space of square-integrable holomorphic top-degree forms. Therefore one may ask
whether for m > 1 these spaces have similar natural interpretations. The answer
is “Yes”: the weighted Bergman spaces defined above are indeed as natural as the
Bergman space itself – in Chapter 3 we realize them as spaces of holomorphic forms
with values in certain line bundles. Once this realization is obtained, our formulas
do no longer depend on the picture of D as a disc or an upper half-plane; in this
sense, our description is “invariant.” One should note that function spaces like the
weighted Bergman spaces may have several “invariant interpretations,” and it is a
matter of the mathematical problem in question to choose the most suitable one.
For example, the weighted Bergman spaces may also be considered as being related
to the space with parameter m = 1 by a gauge transformation; see Chapter 4 for
definition.

More difficult than the invariant description of Bergman spaces is the invariant
description of Hardy spaces which form another important class of reproducing ker-
nel spaces. The classical Hardy space H2(D) is the space of holomorphic functions
f on the disc having L2-boundary values on the circle in the sense that

||f ||2 := sup
0<r<1

∫

S1

|f(ru)|2 du < ∞.

The group G(D) has a unitary representation on this space; however, this is not
obvious from the definition since the measure du on S1 is not invariant under G(D).
In the joint project [BCFH97] we will propose – using the general framework out-
lined here – an invariant definition of Hardy spaces as spaces of sections of vector



bundles for which the unitary action of G(D) is indeed natural. This is a step lead-
ing to a better understanding not only of classical Hardy spaces, but also of a class
of “non-classical” Hardy spaces defined in [HOØ91]. Several authors have already
studied the relation of these non-classical Hardy spaces with the classical ones, and
it is our impression that an invariant formulation will turn out to be very useful in
studying this problem.

1 Reproducing Kernels

Let M be a topological space and p:V → M a complex vector bundle. We assume
that the fibers Vz over z ∈ M are finite dimensional and denote the complex
antilinear dual bundle by q:V∗ → M . This means that the fiber V∗

z of V∗ consists
of the complex antilinear functionals on Vz. The corresponding evaluation map
will be denoted by 〈·, ·〉z:V∗

z × Vz → C. We will use the canonical identification
Vz ↔ (V∗

z)
∗, v )→ v̂, given by v̂(ξ) = ξ(v), and its global analog V ∼= V∗∗ without

further mentioning.
We write C(M,V) for the continuous sections of V. If M is a manifold and

V a smooth vector bundle, we write C∞(M,V) for the smooth sections. Moreover,
if M is a complex manifold and V is a holomorphic vector bundle, then we denote
the holomorphic sections of V by O(M,V). The point evaluations f )→ f(z) will
be denoted evz:C(M,V) → Vz.

Definition 1.1. A complex vector subspace H ⊆ C(M,V) is called a Hilbert
space of sections if it carries a Hilbert space structure for which the point evaluations
evz:H → Vz, f )→ f(z) are continuous.

If we reverse the complex structure on the fibers of V we write V instead of V.
The fibers of V will then be denoted by Vz. Consider the exterior tensor product
bundle V×V → M ×M with fibers

(V×V)(z,w) = Vz ⊗Vw = Hom(V∗
w,Vz).

Recall that the dual operator A∗:V∗
z → Vw for a C-linear operator A:V∗

w →
Vz is determined by the formula

(1.1) 〈ξ, Aη〉q(ξ) = 〈η, A∗ξ〉q(η)

Now suppose that H ⊆ C(M,V) is a Hilbert space of sections. Then the dual
map ev∗z:V

∗
z → H is defined by

(1.2) (ev∗z(ξ) | f)H = 〈ξ, f(z)〉z



for ξ ∈ V∗
z . Consider the functions

(1.3) Kξ := ev∗z(ξ):M → V

defined for ξ ∈ V∗
z , and note that Kξ ∈ C(M,V) since we assumed that H consisted

of continuous sections. We will identify H with its antilinear dual H∗ via f )→
(f | ·)H. Then we can define

(1.4) K(z, w) = evz ◦ ev
∗
w ∈ Hom(V∗

w,Vz)

for all z, w ∈ M . Then for ξ ∈ V∗
z and η ∈ V∗

w we calculate

〈ξ, K(z, w)η〉z = 〈ξ, evz ◦ ev
∗
wη〉z

= (ev∗zξ | ev∗wη)H = (ev∗wη | ev∗zξ)H

= 〈η, evw ◦ ev∗zξ〉w = 〈η, K(w, z)ξ〉w

= 〈ξ, K(w, z)∗η〉z,

which implies

(1.5) K(z, w) = K(w, z)∗.

Moreover,

〈ξ, K(z, w)η〉z = 〈ξ, evz ◦ ev
∗
wη〉z = 〈ξ, ev∗wη(z)〉z = 〈ξ, Kη(z)〉z

implies

(1.6) Kη(z) = K
(

z, q(η)
)

η∀η ∈ V∗

Note that (1.5) and (1.6) imply that K is a continuous section of the bundle V×V
over M ×M . Finally we observe

(1.7)
n
∑

j,k=1

〈ξk, K
(

q(ξk), q(ξj)
)

ξk〉q(ξj) = ‖
n
∑

j=1

ev∗q(ξj)ξj‖
2
H

for ξ1, . . . , ξn ∈ V∗.

Definition 1.2. A section K ∈ C(M × M,V×V) is called a positive definite
kernel if for every finite sequence ξ1, . . . , ξn ∈ V∗ the expression

n
∑

j,k=1

〈ξk, K
(

q(ξk), q(ξj)
)

ξj〉q(ξk)

is real and non-negative.



Lemma 1.3. Let K ∈ C(M×M,V×V) be a positive definite kernel for V. Then
(i) 〈ξ, K

(

q(ξ), q(ξ)
)

ξ〉q(ξ) ≥ 0 for all ξ ∈ V∗.
(ii) K(w, z) = K(z, w)∗ ∈ Hom(V∗

z,Vw) for all z, w ∈ M .

Proof. The first part is an immediate consequence of the definitions. For the
second we note that

〈ξ, K
(

q(ξ), q(ξ)
)

ξ〉q(ξ) + 〈ξ, K
(

q(ξ), q(η)
)

η〉q(ξ)+

+ 〈η, K
(

q(η), q(ξ)
)

ξ〉q(η) + 〈η, K
(

q(η), q(η)
)

η〉q(η)

is non-negative for ξ, η ∈ V∗. Using (i), this implies

〈ξ, K
(

q(ξ), q(η)
)

η〉q(ξ) + 〈η, K
(

q(η), q(ξ)
)

ξ〉q(η) ∈ R.

Therefore

Im〈ξ, K
(

q(ξ), q(η)
)

η〉q(ξ) = − Im〈η, K
(

q(η), q(ξ)
)

ξ〉q(η) = Im〈ξ, K
(

q(ξ), q(η)
)∗
η〉q(ξ).

Replacing ξ by iξ now implies the claim.

Theorem 1.4. Let M be a topological space and p:V → M a complex vector
bundle. Suppose that K ∈ C(M × M,V×V). Then the following statements are
equivalent:
(1) K is a positive definite kernel for V.
(2) There exists a Hilbert space H ⊆ C(M,V) such that evz|H:H → Vz is contin-

uous and
K(z, w) = evz ◦ ev

∗
w ∈ Hom(V∗

w,Vz)

for all z, w ∈ M .

Proof. The implication “(2) ⇒ (1)” follows from (1.7). For the converse we
define Kη ∈ C(M,V) for η ∈ V∗ via the formula (1.6) and set

H0
K := span{Kη ∈ C(M,V)|η ∈ V∗}.

For f =
∑

k Kηk
and g =

∑

j Kξj , let

(f | g)K :=
∑

j,k

〈ηk, (K
(

q(ηk), q(ξj)
)

ξj〉q(ηk)

=
∑

k

〈ηk, g ◦ q(ηk)〉q(ηk)

=
∑

j

〈ξj , f ◦ q(ξj)〉q(ξj).



These equations show that (· | ·) is well defined on H0
K . Then (1) implies that the

form (· | ·)K is positive semidefinite. In particular one has

(1.8) (Kη | Kξ)K = 〈ξ, K
(

q(ξ), q(η)
)

η〉q(ξ) = 〈η, K
(

q(η), q(ξ)
)

ξ〉q(η)

for all ξ, η ∈ V∗ and

(1.9) (Kξ | f)K = 〈ξ, f ◦ q(ξ)〉q(ξ)

for all f ∈ H0
K and ξ ∈ V∗. Using Cauchy-Schwarz and letting ξ ∈ V∗ vary, one

now finds that (f | f)K = 0 implies f = 0 in H0
K whence H0

K is a pre-Hilbert space.
Its completion HK is embedded into C(M,V) via

〈ξ, f
(

q(ξ)
)

〉q(ξ) = (Kξ | f)K

for all ξ ∈ V∗ and f ∈ HK . Now fix η, ξ ∈ V with q(η) = w and q(ξ) = z and
consider the dual map ev∗w:V

∗
w → HK . Then the calculation

〈ξ, evz ◦ ev
∗
wη〉z = 〈ξ, ev∗wη(z)〉z = (Kξ | ev∗wη)K = 〈η, Kξ(w)〉w

= 〈η, K(w, z)ξ〉w = 〈ξ, K(z, w)η〉z

yields (1.4).

The equation (1.9) is called the reproducing property of the kernel K. The
Hilbert space HK is called the reproducing kernel Hilbert space associated to the
kernel K, and K is called the reproducing kernel of HK . Theorem 1.4 shows that
any positive definite kernel can be viewed as the reproducing kernel of a Hilbert
space of sections. Therefore will call such a kernel simply a reproducing kernel. The
argument given in [Ne98, Lemma I.5] shows that for any reproducing kernel Hilbert
space H ⊆ C(M,V) with reproducing kernel K(z, w) = evz ◦ ev∗w we have H = HK .

Remark 1.5. (cf. [Ne98, Prop. I.7]).
(i) Suppose we choose a family of norms z )→ ‖ · ‖z on the fibers of V such that

v )→ ‖v‖p(v) is continuous. Then the mapping HK → C(M,V) is continuous
with respect to the topology of uniform convergence on all subsets of M on
which the map z )→ ‖K(z, z)‖

Vz⊗Vz
is bounded.

(ii) Suppose that M is a complex manifold. We denote the manifold M , when
equipped with the opposite complex structure, by M . If a reproducing kernel
K:M × M → V×V is holomorphic in the first variable, then the space HK

consists of holomorphic sections of V and K is holomorphic when viewed as a
map K:M ×M → V×V.



Proposition 1.6. Let M be a topological space, p:V → M a vector bundle, and
K ∈ C(M × M,V×V) a reproducing kernel. Suppose that N ⊆ M is a dense
subspace and KN := K|N×N . Then KN ∈ C(N ×N,V|N×V|N ) is a reproducing
kernel, and the restriction to N yields a Hilbert space isomorphism HK → HKN

.

Proof. Consider the subspace

H̃K := span{Kξ | ξ ∈ q−1(N)}

of HK . Formula (1.8) implies that the map ξ )→ Kξ,V → HK is continuous.
Therefore H̃K is dense in HK . Again from (1.8) we see that the restriction to N
gives a surjective isometry H̃K → H0

KN
. This implies the claim.

Remark 1.7. Let M be a topological space, p:V → M a vector bundle, and
H a complex Hilbert space. Consider the infinite dimensional bundle Hom(V∗,H)
which can be given a natural topology. Suppose that φ is a continuous section of
this bundle. Then, using the methods described in [Ne98, Thm. I.11] it is easy to
show that
(i) The formula

K(z, w) = φ(z)∗φ(w)

defines a positive definite kernel K ∈ C(M ×M,V×V).
(ii) The map

Φ:H → C(M,V), Φ(f)(z) = φ(z)∗f

vanishes on the orthogonal complement of span{φ
(

q(ξ)
)

ξ | ξ ∈ V∗} in H.
(iii) Φ induces a Hilbert space isomorphism

span{φ
(

q(ξ)
)

ξ | ξ ∈ V∗} → HK ,

where span denotes the closure of the linear span.

Remark 1.8. Let M be a topological space, p:V → M a vector bundle, and H a
complex Hilbert space.
(i) Suppose that K1, K2 ∈ C(M × M,V×V) are two reproducing kernels. Ap-

ply Remark 1.7 to the Hilbert space H = HK1+K2
and to the section φ of

Hom(V∗,H) defined by

φ
(

q(ξ)
)

ξ = K1,ξ ⊕K2,ξ ∈ H.

Then
HK1+K2

= HK1
+ HK2

⊆ C(M,V).



(ii) Suppose that we have two bundles pj :Vj → M , j = 1, 2 together with two
reproducing kernels Kj ∈ C(M ×M,Vj×Vj). Set V := V1 ⊗V2 and define
a new kernel K1 ⊗K2 ∈ C(M ×M,V×V) via

(K1 ⊗K2)(z, w) := K1(z, w)⊗K2(z, w).

Apply Remark 1.7 to the Hilbert space H = HK1⊗K2
and the section φ of

Hom(V∗,H) defined by

φ
(

q(ξ1 ⊗ ξ2)
)

(ξ1 ⊗ ξ2) = K1,ξ1 ⊗K2,ξ2 ∈ H.

Then one obtains a surjective map

HK1⊗K2
→ HK1

⊗ HK2
⊆ C(M,V).

2 Semigroup Representations

Now suppose that S is a semigroup that acts from the right on V∗ by vector bundle
morphisms. This means that S also acts on M from the right by continuous maps
and we have
(i) p(ξ.s) = p(ξ).s for all ξ ∈ V∗ and s ∈ S.
(ii) sz:V∗

z → V∗
z.s, ξ )→ ξ.s is linear.

Then the dual maps s∗z:Vz.s → Vz yield a left S-action on C(M,V) defined by

(2.1) (s.f)(z) := (sz)
∗ ◦ f(z.s)

for z ∈ M , f ∈ C(M,V), and s ∈ S.
In the following we assume in addition that (S, ∗) is an involutive semigroup,

i.e., that S → S, s )→ s∗ is an involutive antiautomorphism of S. Recall the concept
of a Hermitian representation of S on a pre-Hilbert space H0 from [Ne98, Def.
II.3.3]: The vector space B0(H0) of linear operators A:H0 → H0 for which a formal
adjoint exists is an involutive semigroup, and a Hermitian representation of S on
H0 is a semigroup homomorphism π:S → B0(H0) preserving the involutions, i.e.
π(s∗) = π(s)∗. In the special case where S = G is a group and the involution is the
group inversion, a Hermitian representation is the same as a unitary representation.

Theorem 2.1. Let M be a topological space and p:V → M a complex vector
bundle. Suppose that HK ⊆ C(M,V) is a reproducing kernel space. Further let
(S, ∗) be an involutive semigroup acting from the right on V∗ by vector bundle
morphisms. Then the following are equivalent.
(1) (sz)∗ ◦K(z.s, w) = K(z, w.s∗) ◦ (s∗)w for all z, w ∈ M and s ∈ S.
(2) H0

K is invariant under the left action f )→ s.f of S on C(M,V), and this action
defines a Hermitian representation of S on H0

K .



Proof. Suppose that (1) holds. Then we have

s.Kξ(z) = (sz)
∗ ◦Kξ(z.s)

= (sz)
∗ ◦K(z.s, q(ξ))ξ

= K(z, q(ξ).s∗) ◦ (s∗)q(ξ)(ξ)

= K
(

z, q(ξ.s∗)
)

◦ (ξ.s∗)

= Kξ.s∗(z)

so that s.Kξ = Kξ.s∗ which implies the S-invariance of H0
K . Similarly we calculate

(s.Kξ | Kη)K = (Kξ.s∗ | Kη)K

= 〈η, K(q(η), q(ξ.s∗))(ξ.s∗)〉q(η)

= 〈η, (sq(η))
∗ ◦K(q(η).s, q(ξ))(ξ)〉q(η)

= 〈sq(η)η, K(q(η).s, q(ξ))(ξ)〉q(η).s

= 〈η.s,K(q(η.s), q(ξ))(ξ)〉q(η.s)

= (Kξ | Kη.s)K

= (Kξ | s∗.Kη)K

which shows that the representation is Hermitian. Rearranging these calculations
and assuming (2) we find that (s.Kξ | Kη)K = (Kξ | s∗.Kη)K implies first s.Kξ =
Kξ.s∗ and then

〈η, (sq(η))
∗ ◦K(q(η).s, q(ξ))(ξ)〉q(η) = 〈η, K(q(η), q(ξ.s∗)) ◦ sq(ξ)(ξ)〉q(η).

But this proves (1).

If under the hypotheses of Theorem 2.1 the positive definite kernel K satisfies
the equivalent conditions (1) and (2) we call it an S-invariant kernel and denote
the representation of S on H0

K by πK .

Corollary 2.2. If in the situation of Theorem 2.1 the semigroup is a group and
the involution is the group inversion, then πK is a unitary representation of S.

Note that in the situation of Corollary 2.2 property 2.1(1) takes the form

(2.2) K(z.g, w.g) = ((gz)
∗)−1 ◦K(z, w) ◦ (gw)

−1

for g ∈ G. This means that K is a G-invariant section in the usual sense.



Theorem 2.3. Let M be a topological space and p:V → M a complex vector
bundle. Further let (S, ∗) be an involutive semigroup acting from the right on V∗ by
vector bundle morphisms. Suppose that K ∈ C(M × M,V×V) is an S-invariant
positive definite kernel. Then

‖πK(s)‖2 = sup

{

〈ξ.s∗s,K(z.s∗s, z)ξ〉z.s∗s
〈ξ, K(z, z)ξ〉z

|z ∈ M, ξ ∈ Vz, Kξ 4= 0

}

.

In particular, the representation extends to a representation of S on HK by bounded
operators if and only if for each s ∈ S this supremum is finite.

Proof. Note first that the S-invariance of K implies

‖πK(s)Kξ‖
2
K = ‖Kξ.s∗‖

2
K

= 〈ξ.s∗, K(z.s∗, z.s∗)(ξ.s∗)〉z.s∗

= 〈ξ.s∗, (sz.s∗)
∗K(z.s∗s, z)ξ〉z.s∗

= 〈ξ.s∗s,K(z.s∗, z.s∗)ξ〉z.s∗s

for ξ ∈ V∗
z . Since the set {Kξ|ξ ∈ V∗} is S-invariant and total in HK , [Ne98,

Lemma. II.3.8] now implies the claim.

Remark 2.4. (cf. [Ne98]) Let M be a topological space and p:V → M a complex
vector bundle. The set P(V) of positive definite kernels K ∈ C(M ×M,V×V) is
a convex cone in C(M ×M,V×V). Using the methods of [Ne98, Section II.4] one
can show that in the situation of Corollary 2.2 the representation πK is irreducible
if and only K is an extremal ray in the cone P(V)S of S-invariant kernels. In fact,
with a little care one can write down such a statement also for the more general
situation of Theorem 2.3.

We present a version of S. Kobayashi’s Theorem on the irreducibility of unitary
representations on holomorphic vector bundles (cf. [Ko68] and [Ne94, Thm. 6.9]):

Theorem 2.5. Let M be a connected complex manifold and p:V → M a holo-
morphic vector bundle. Further let G be a group acting on V∗ by holomorphic
bundle automorphisms such that
(a) G acts transitively on M .
(b) There exists a point z ∈ M such that the stabilizer Gz of z in G acts irreducibly

in Vz.
Then we have the following conclusions:
(i) Up to scalar multiples there is at most one G-invariant reproducing kernel with

values in V.
(ii) There exists at most one non-zero Hilbert space of sections in O(M,V) on

which G acts unitarily.
(iii) If such a space exists, it is irreducible.



Proof. Let K1, K2 ∈ O(M×M,V×V) be non-zero G-invariant positive definite
kernels. Then (a) implies that Ki(z, z) 4= 0, and the G-invariance gives

(hz)
∗ ◦Ki(z, z) = Ki(z, z) ◦ (h

−1)z:V
∗
z → Vz,

i.e., both K1(z, z) and K2(z, z) intertwine the irreducible dual Gz-actions on Vz

and V∗
z . Now Schur’s Lemma shows that there exists a 0 4= λ ∈ C such that

λK1(z, z) = K2(z, z). Again the G-invariance together with z.G = M gives

λK1(w,w) = K2(w,w) ∀w ∈ M.

Finally, the holomorphy of λK1 and K2 on M × M shows that λK1 = K2. But
then the spaces HK1

and HK2
agree. This proves (i) and (ii).

To show the last part, suppose that H is a Hilbert space of sections on which
G acts unitarily. If H′ ⊆ H is a closed G-invariant subspace, then (ii) implies that
H′ is either zero or equal to H.

3 Bergman Spaces

In this section M is a complex manifold of dimension n and H → M a holomorphic
Hermitian vector bundle. As in Remark 1.5, we denote the manifold M , when
equipped with the opposite complex structure, by M . Moreover, when we view M
as a real manifold with almost complex structure, we write MR instead of M . Then
H → M is the holomorphic vector bundle H → M equipped with the opposite
complex structure.

We denote the holomorphic tangent bundle by TM and its complex dual by
T ∗M . A holomorphic p-form with values in H is by definition (cf. [We73]) a
holomorphic section of the bundle

(3.1)
p
∧

T ∗M ⊗H = Hom(
p
∧

TM,H)

over M . We write Ωp(M,H) for the space of holomorphic p-forms and denote the
bundle

∧n
T ∗M ⊗H → M by p : V → M .

Given v, v′ ∈ Hz and α,α′ ∈
∧n

T ∗Mz, we define a scalar valued (n, n)-form
on TMR by

(3.2) 〈α⊗ v,α′ ⊗ v′〉 = (v | v′)Hz
(α ∧ α′).

In this way we obtain a sesquilinear map

(3.3) 〈·, ·〉:Ωn(M,H)× Ωn(M,H) → E (n,n)(MR),



where E (n,n)(MR) denotes the differential forms of type (n, n) on the almost complex
manifold MR. With these definitions

B2(M,H) := {ω ∈ Ωn(M,H)|

∫

MR

〈ω,ω〉 < ∞},

is called the Bergman space of square integrable sections (cf. [Ko68, p. 639]). In case
H is just the trivial line bundle with the canonical pairing, this space is known as the
Bergman space of M and denoted by B2(M). As for the classical Bergman space,
it can be shown that B2(M,H) is a Hilbert subspace of Ωn(M,H) with respect to
the inner product

(3.4) (ω | ω′)B :=

∫

MR

〈ω,ω′〉

(cf. [Ch90, p.334]). Moreover, the point evaluations evz: B2(M,H) → Vz are
continuous, so that Theorem 1.4 yields a reproducing kernel

K ∈ Ω2n(M ×M,H×H)

given by
K(z, w) = evz ◦ ev

∗
w ∈ Hom(V∗

w,Vz).

To see the reproducing property fix ξ ∈ V∗
z . Then

(3.5) 〈ξ, f(z)〉z =
(

K(·, z)ξ | f(·)
)

B
=

∫

MR

〈K(w, z)ξ, f(w)〉

for z ∈ M and f ∈ B2(M,H).

Example 3.1. (“Weighted Bergman spaces”) The reproducing kernel K = KB

of the Bergman space B2(M) is called the Bergman kernel. Let us assume that the
Bergman space is non-trivial and that K(z, z) defines a nowhere vanishing (n, n)-
form on TMR. Then the canonical line bundle on M and its tensor-powers carry
canonical structures of Hermitian line bundles, and hence Bergman spaces with
values in these bundles are canonically defined. In fact, if α, β ∈ Ωn(M), then there
exists a function f such that (α∧β)(z) = f(z)K(z, z), and clearly (α, β) )→ f defines
a Hermitian structure on the canonical bundle. This Hermitian structure induces a
Hermitian structure on the tensor powers of the canonical bundle ΛnT ∗M , where
n = dimC M . If M = D is the unit disc (or, more generally, a bounded symmetric
domain), then the Bergman spaces B2(M, (ΛnT ∗M)k) for k ∈ N form an important
series of weighted Bergman spaces (cf. [FK94, p.262]) which are known to be non-
trivial.



Now suppose that φ:H → H is a holomorphic bundle map for which the linear
maps φz:Hz → Hφ(z), v )→ φ(v) are all invertible. Then φ acts on the holomorphic
sections via

(3.6) (φ∗σ)(z) = (φz)
−1 ◦ σ ◦ φ(z)

for σ ∈ O(M,H). Then we also have an action on Ωn(M,H) via

(3.7) φ∗(α⊗ σ) := φ∗α⊗ φ∗σ,

where φ∗α is the usual pullback of forms. One easily checks that we have

(3.8) (φ1 ◦ φ2)
∗ = φ∗

2 ◦ φ
∗
1.

If the maps φz, in addition, are all isometries for the Hermitian structure, then
the function

(3.9) M → C, z )→ (σ1 | σ2)(z) := (σ1(z) | σ2(z))Hz

with σ1, σ2 ∈ O(M,H) satisfies

(3.10) (φ∗σ1 | φ∗σ2) = (σ1 | σ2) ◦ φ.

But then we obtain

(3.11) φ∗〈ω,ω′〉 = 〈φ∗ω,φ∗ω′〉,

for ω,ω′ ∈ Ωn(M,H) and hence

(3.12)

∫

MR

〈φ∗ω,φ∗ω′〉 =

∫

MR

φ∗〈ω,ω′〉 =

∫

φ(MR)
〈ω,ω′〉.

As a special case we obtain the following theorem:

Theorem 3.2. Let M be a complex manifold and p:H → M a holomorphic
Hermitian vector bundle. Suppose that an involutive semigroup (S, ∗) acts on H
by bundle maps with contractive fiber maps. Denote the resulting bundle maps
by τs:H → H. Then f )→ s.ω := τ∗s∗ω for ω ∈ B2(M,H) defines a contractive
representation of S on B2(M,H).

Proof. We actually have a semigroup action, since

s1.(s2.ω) = τ∗s∗
1

(τ∗s∗
2

ω) = (τs∗
2
◦ τs∗

1
)∗ω = τ∗(s1s2)∗ω.

Finally we calculate

‖s.ω‖2B =

∫

MR

〈s.ω, s.ω〉 ≤

∫

MR

〈τ∗s∗ω, τ
∗
s∗ω〉 =

∫

τs∗ (MR)
〈ω,ω〉 ≤

∫

MR

〈ω,ω〉 = ‖ω‖2B



which proves the claim.

Corollary 3.3. Let M be a complex manifold and p:H → M a holomorphic
Hermitian vector bundle. Suppose that a group G acts on H by automorphisms of
the Hermitian vector bundle structure. Denote the resulting bundle automorphism
by τg:H → H. Then f )→ g.f := τ∗g−1f for f ∈ B2(M,H) defines a unitary

representation of G on B2(M,H).

Example 3.4. (“Holomorphic discrete series”) If H is the trivial line bundle,
then the group G of all holomorphic diffeomorphisms of M acts canonically on
H, and Corollary 3.3 shows that this leads to a unitary representation of G in
B2(M). According to Corollary 2.2, the Bergman kernel K is therefore G-invariant;
in particular, K(z, z) defines a G-invariant (n, n)-form onM . If this form is nowhere
vanishing, then the Hermitian structure on the canonical bundle and its tensor-
powers defined in the Example 3.1 is again G-invariant. Applying again Corollary
3.3, we see that G acts also unitarily on the Bergman spaces with values in the
tensor powers of the canonical bundle. If M = D is a bounded symmetric domain,
then the unitary representations of G = G(D) on the weighted Bergman spaces
contribute to the holomorphic discrete series of G(D). It is known that G(D) acts
transitively onD, and Theorem 2.5 shows that the representations thus obtained are
irreducible. The complexification GC of G contains a subsemigroup with non-empty
interior and G as group of units which map D into itself. This semigroup carries
a natural involution and hence Theorem 3.2 shows it acts on all of the weighted
Bergman spaces by contractions.

4 Gauge transformations

The definition of the Bergman space and its inner product depends via (3.2) ex-
plicitly on the choice of the Hermitian structure on H. In this section we calculate
how a change of metric effects the reproducing kernel.

Given a complex vector bundle p:H → M let GL(H) ⊆ End(H) be the bundle
overM whose fibers are given by GL(Hz). We call the continuous sections of GL(H)
gauge transformations of H. A gauge transformation can be interpreted as a bundle
automorphism of H covering the identity of M .

To each gauge transformation we associate a linear bijection A%:C(M,H) →
C(M,H) via

(4.1) (A%f)(z) = A(z)f(z) ∀f ∈ C(M,H), z ∈ M.



The continuous sections of GL(H) act on the Hermitian structures as follows:
Let A ∈ C(M,GL(H)) be a gauge transformation and z )→ (· | ·)Hz

a Hermitian
structure on H, we define a Hermitian structure z )→ (· | ·)HA

z
on H via

(4.2) (v | v′)HA
z
:= (A(z)v | A(z)v′)Hz

for v, v′ ∈ Hz = HA
z .

In the following we fix a Hermitian vector bundle p:H → M , i.e., we fix a
Hermitan structure on H, and denote the Hermitian vector bundle obtained from
H via (4.2) by HA.

We take up the situation of Section 3. In particular, M is assumed to be a
complex manifold of dimension n and V is the bundle of holomorphic H-valued
n-forms. Fix a holomorphic gauge transformation A ∈ O(M,GL(H)). The gauge
transformation A of H induces a gauge transformation of V via id⊗A(z) which we
also denote by A. Thus we also have an associated map A%:Ωn(M,H) → Ωn(M,H)
given by

(A%ω)(z) = A(z)ω(z) ∀ω ∈ Ωn(M,H), z ∈ M.

We set

(4.3) 〈α⊗ v,α′ ⊗ v′〉A = (v | v′)HA
z
(α ∧ α′)

and

(4.4) 〈·, ·〉A:Ω
n(M,HA)× Ωn(M,HA) → E (n,n)(MR),

cf. (3.2) and (3.3). Then we obtain

(4.5) 〈ω,ω′〉A = 〈A%ω, A%ω′〉.

This proves the following theorem:

Theorem 4.1. Let M be a complex manifold and p:H → M a holomorphic
Hermitian vector bundle. Suppose that A ∈ O

(

M,GL(H)
)

is a holomorphic gauge
transformation. Then the map A%:Ωn(M,H) → Ωn(M,H) induces a Hilbert space
isomorphism

A%:B2(M,HA) → B2(M,H),

and the reproducing kernel KA of B2(M,HA) is given in terms of the reproducing
kernel K of B2(M,H) by the formula

K(z, w) = A(z) ◦KA(z, w) ◦A(w)∗.



Proof. Only the last statement remains to be shown. Let f ∈ BA := B(M,HA).
Then, using (3.5) we calculate

(K(·, z)ξ | A%f)B = 〈ξ, A%f(z)〉Hz

= 〈ξ, A(z)f(z)〉Hz

= 〈A∗(z)ξ, f(z)〉Hz

= (KA(·, z)A∗(z)ξ | f)BA

= (A%(KA(·, z)A∗(z)ξ) | A%f)B

so that K(·, z)ξ = A%(KA(·, z)A∗(z)ξ) which implies the claim.
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[Ch90] Chabat, B., Introduction à l’analyse complexe 2. Fonction de plusieurs
variable, Editions MIR, Moscow, 1990.
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