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Abstract. In the paper “Is there a Jordan geometry underlying quantum physics?”

[Be08], generalized projective geometries have been proposed as a framework for a geomet-

ric formulation of Quantum Theory. In the present note, we refine this proposition by

discussing further structural features of Quantum Theory: the link with associative invo-

lutive algebras A and with Jordan-Lie and Lie-Jordan algebas. The associated geometries

are (Hermitian) projective lines over A; their axiomatic definition and theory will be given

in subsequent work with M. Kinyon [BeKi08].
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Introduction

0.1 The geometry of quantum theory

The quest for the “Geometry of Quantum Theory” goes back almost to the days when
John von Neumann laid the axiomatic foundations of the theory: it seems that von Neu-
mann himself was not entirely satisfied by the non-geometric and linear character of the
axiomatic foundations of Quantum Theory – together with G. Birkhoff he tried to base
the theory on more fundamental and geometric concepts called the “logic” of quantum
theory; the beautiful book “The geometry of quantum theory” [Va85] gives a full account
on these and subsequent developments. As a sort of conclusion, the author says (loc. cit.,
p. 6): “...quantum mechanical systems are those whose logic form some sort of projective
geometry”.
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Coming from rather different starting points, various other authors have arrived at
similar conclusions: they propose to model the geometry of quantum theory on infinite
dimensional manifolds, among which infinite dimensional projective spaces PH (the space
of pure states, where H is an infinite dimensional Hilbert space) play a central rôle, see,
e.g., [Ki79], [AS98], [BH01], [CGM03]. In [CGM03], this approach, named “delinearization
program”, is motivated as follows: “The delinearization program, by itself, is not related
in our opinion to attemps to construct a non-linear extension of QM with operators that
act non-linearly on the Hilbert space H. The true aim of the delinearization program
is to free the mathematical foundations of QM from any reference to linear structure
and to linear operators. It appears very gratifying to be aware of how naturally geometric
concepts describe the more relevant aspects of ordinary QM, suggesting that the geometric
approach could be very useful also in solving open problems in Quantum Theories.”

In the paper [Be08], the present author proposed an approach following the same
general principles, but with the significant difference that we try to geometrize rather
the space of observables as primary object, and not so much the space of (pure) states.
Remarkably, the resulting geometries still share many features with the projective spaces
PH ; we therefore call them generalized projective geometries. These form an interesting
and quite large category that seems to be suitable for a geometrical formulation of some
aspects of quantum theory. However, this framework still is too general – as already
pointed out in [Be08], it seems that Nature has chosen among these geometries a fairly
special one, namely a geometry that resembles in many respects a projective line. Of
course, by this we do not mean a usual projective line KP1 over a commutative field K,
but rather a kind of projective line over an infinite dimensional ∗-algebra A, called the
Hermitian projective line. In this note, we will present their definition, as well as their
mathematical genes which come from the theory of associative and Jordan algebras.

0.2 Jordan and Lie structures

Our definition of generalized projective geometries has its origin in Jordan theory: the
associative product xy in an associative algebra can be decomposed into a symmetric and
a skew-symmetric part:

xy =
xy + yx

2
+

xy − yx

2
=: x • y +

[x, y]

2
. (0.1)

The skew-symmetric part [x, y] gives rise to a Lie algebra, and the symmetric part x • y
to a Jordan algebra. Axiomatically, since the foundational work of Pascual Jordan [J32],
these algebras are defined by the following two properties (cf. [McC04])

(J1) x • y = y • x (commutativity),
(J2) x • (x2 • y) = x2 • (x • y) (the Jordan identity).

Not every Jordan algebra is a subalgebra of an associative algebra with respect to the sym-
metrized product; if this is the case, the Jordan algebra is called special. For instance, the
Jordan algebra of observables in Quantum Mechanics, the algebra Herm(H) of Hermitian
operators, clearly is special. In contrast to the case of Lie algebras, it is not easy to get a
feeling for the nature of Jordan algebras in an axiomatic approach based on the defining
identities (J1) and (J2). Indeed, in the author’s opinion, it is much more appropriate to
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start to study some more general objects whose structure is, in a certain sense, much sim-
pler, namely Jordan triple systems and (linear) Jordan pairs. They are easily interpreted
in terms of 3-graded Lie algebras, see [Be08] or [Be07] for an elementary exposition.

Geometrically, Jordan pairs correspond to generalized projective geometries in a simi-
lar way as Lie algebras correspond to Lie groups, and Jordan triple systems correspond to
such geometries together with a suitable involution, called (generalized) polar geometries.
Jordan algebras are fairly complicated objects since the corresponding geometries carry
all the preceding structures, plus an additional one, called an absolute null system. This
means, roughly, that the geometry is canonically isomorphic to its dual geometry. For
instance, among ordinary projective spaces KPn, only the projective line KP1 has this
feature: it is canonically isomorphic to its dual projective space of hyperplanes (since only
in dimension 1 a hyperplane is a point!). Therefore geometries corresponding to Jordan
algebras can be considered as “non-associative generalizations of the projective line” – see
[Be08] for all this.

Now, as already mentioned above, the Jordan algebra of Quantum Mechanics, Herm(H),
is special, and it even is very special in the sense that it is a space of Hermitian elements in
an associative ∗-algebra. Therefore there must be some additional geometric structure on
the corresponding “projective line”, corresponding to the additional algebraic structure
given by the associative product: we may call it “associative geometry”. What sort of
geometry is this? Surprisingly, it seems that this question has never been seriously inves-
tigated. The purpose of the present Note is to give the necessary mathematical definitions
and background for its understanding; the “associative geometry” itself will be axiomati-
cally defined and investigated in subsequent work with Michael Kinyon ([BeKi08]).

Algebraically, “associative geometry” in this sense is closely related to concepts of
“Jordan-Lie” and “Lie-Jordan” algebras that have appeared in the literature, and which
in a sense are axiomatic versions of decompositions, like (0.1), of the associative product.
We recall the basic definitions and give some comments on them (Chapter 2); a very
remarkable feature is that they introduce a “coupling constant” C measuring the way in
which the Jordan- and Lie-structures are linked to each other. For C = 0, we essentially
get commutative Poisson-algebras, whereas for C = 1 and C = −1 we get two different
properly “quantum” structures. The “classical limit” C → 0 thus is interpreted as “going
from commutative non-associative to commutative associative”. This calls for comparison
with the philosophy of Non-commutative Geometry – see the final Chapter 3 for some
concluding remarks.

Acknowledgments. Parts of the present work have been presented at the XXVII Work-
shop on Geometrical Methods in Physics in Bia lowieża 2008. I would like to thank the
organizers for their kind invitation and great hospitality.
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1 Geometry of the Hermitian projective line

1.1 The projective line over a ring

Let A be an associative algebra, defined over some commutative base field or ring K. The
projective line over A is, by definition (cf., e.g., the article by A. Herzer in [Bue95]), the set
AP1 of all submodules x of the right A-module A⊕A that are isomorphic to A and admit
a complementary submodule x′ isomorphic to A. The projective line AP1 is non-empty
since it contains at least the two elements

o+ := 0 ⊕ A = e2A (second factor), o− := A ⊕ 0 = e1A (first factor).

The general A-linear group G := GL(2, A) acts in the usual way on A2 from the left;
this action permutes all A-right modules and defines a transitive action of G on AP1: if
x ∈ AP1 with base vector v, having a complement x′ with base vector v′, just let g be the
A-linear map sending e2 to v and e1 to v′; then go+ = x (and go− = x′). The stabilizer
of o+, resp. of o−, is the subgroup P− of lower (resp. upper) triangular matrices in G, so
that AP1 can be written as a homogeneous space

X+ := G.o+ = G/P−, X− := G.o− = G/P+.

Of course, X+ = X− = AP1 as sets; but the base points are different.
We say that a pair (x, y) ∈ AP1 × AP1 is transversal (in incidence geometry one also

uses the term remote, cf. [Bue95], loc. cit., meaning “as non-incident as possible”), and
then write x>y, if x and y are complementary subspaces:

A ⊕ A = x ⊕ y

We sometimes write (X+ × X−)> for the set of transversal pairs. This set is non-empty
since the pair (o+, o−) is transversal, and the action of Gl(2, A) on it is transitive (just
define the matrix g as above). The stabilizer of the canonical base point (o+, o−) is the
subgroup H of G consisting of diagonal matrices:

(X+ ×X−)> = G.(o+, o−) = G/H.

The projective line can be seen, in a natural way, as a “projective completion of the
algebra A”: let, for any y ∈ AP1,

y> := {x ∈ AP1|x>y},

the set of elements that are transversal to y. Then y> is, in a natural way, an affine space
over K isomorphic to A: indeed, since the action of Gl(2, A) is transitive, without loss
of generality we may assume that y = o− is the first factor. But all complements of the
first factor have a unique base vector of the form (a, 1) with a ∈ A. In other words, the
subgroup of matrices

(

1 a
0 1

)

, a ∈ A,
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acts simply transitively on the set of complements of the first factor. In particular, we
may canonically identify A with (o+)> or with (o−)>, and regard the projective line as
some sort of “projective completion” of A.

Examples (cf. [Be07], [Be08], [BeNe05]).
(1) Assume A is a skew-field, or, in other words, an associative division algebra over K.
Then we can write AP1 = A ∪ {∞}, where ∞ = o− is the “unique point at infinity of
the affine part A”. In particular, if A = R, C or another locally compact topological field,
then AP1 is the one-point compactification of A.

If A is not a skew-field, the “set at infinity” has more than just one element, and its
geometric structure is richer and more interesting.

(2) If A = R[ε], ε2 = 0, is the ring of dual numbers over R, then AP1 is the tangent bundle
T (RP1) of the usual real projective line. The set at infinity is the tangent space T∞(RP1)
at the point ∞ of RP1.

(3) If A = M(n, n; K) is the matrix algebra over a commutative unital ring K, then AP1

is naturally isomorphic to the Grassmannian manifold of n-spaces in K2n.

(4) If A = F (M, K) is the commutative algebra of all functions from a set M to the
commutative base ring K, then AP1 is the space of all functions from M to the projective
line KP1.

(5) If A is a principal ideal ring, then AP1 is the one-point completion of the quotient
field FA of A; in other words, it is the projective line over the field FA. Indeed, let q ∈ FA.
If q = 0, we associate to it the point x = [pr1] = o− of AP1. Else write q = s

r
with r

and s relatively prime in A, so there exist a, b ∈ A with ar − bs = 1, hence the matrix

g :=

(

s a
r b

)

is invertible. The point x := g.[pr1] ∈ AP1 (submodule with base vector

(s, r)) only depends on q. Conversely, let x ∈ AP1 generated by (s, r) ∈ A2. Then
the vector (s, r) can be completed by a vector (a, b) ∈ A2 to a matrix g as above with
determinant equal to 1. If s = 0, then x = [pr1]; if r = 0, then x = [pr2], and in all other
cases x can be identified with the element q = s

r
of the quotient field. Both constructions

are inverse to each other, and thus we have a bijection between FA ∪ {∞} and AP1.
For instance, ZP1 is the rational projective line QP1, and if A = K[X ] is the polynomial

ring over a field K, then AP1 = K(X) ∪ {∞} is the completion of the rational function
field by a “function” ∞ which can be considered as the inverse of the zero function. In
both cases, the “set at infinity” is very big: it is a sort of infinite dimensional manifold
over A.

(6) Let us assume that A is a continuous inverse algebra (c.i.a.): a topological algebra over
a topological ring K such that the unit group A× is open in A and inversion i : A× → A

is a continuous map. We assume also that K× is dense in K (in particular, the topology
is not discrete). Then inversion is actually smooth over K, and AP1 is a smooth manifold
over K, modelled on the topological linear space A (see [BeNe05]). For instance, A may
be any Banach algebra over K = R, C or Qp.
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1.2 The Hermitian projective line

Next we consider an associative algebra A with an involution ∗ : A → A, a 7→ a∗ (antiau-
tomorphism of order 2 stabilizing K = K1; following standard terminology [Le06] we say
that ∗ is of the first kind if ∗ induces the identity on K, and of the second kind else). Then
the involution ∗ lifts to an involution of the projective line AP1 whose fixed point set is
called the Hermitian projective line, see [BeNe05]. Let us give here a slightly modified
version of the construction given in loc. cit.: for any matrix B = (bij) ∈ M(2, 2; A) we
may define a sesquilinear form β = βB on A2 by

β(x, y) =

2
∑

i,j=1

x∗
i bijyj .

The sesquilinearity property reads

∀λ, µ ∈ A : β
(

xλ, yµ
)

= λ∗β(x, y)µ,

hence the orthogonal complement E⊥,β of an A-right submodule E is again an A-right
submodule. Assume now that β is non-degenerate, i.e., B is an invertible matrix. Then,
if E ∈ AP1, also E⊥,β ∈ AP1: indeed, if A⊕A = x⊕ y is a direct sum decomposition with
both factors x and y isomorphic to A, then so is A ⊕ A = x⊥ ⊕ y⊥. Moreover, the map
thus defined

⊥β: AP1 → AP1, E 7→ E⊥,β.

is a bijection (with inverse corresponding to B−1). It is G-equivariant in the following
sense: (g.x)⊥ = φ(g)−1.x⊥ where φ is the anti-automorphism “β-adjoint” of M(2, 2; A)
given by

φ

(

a b
c d

)

= B−1

(

a∗ c∗

b∗ d∗

)

B.

Now let us consider the following three sesquilinear forms on A2 given by

ω
(

(x1, x2), (y1, y2)
)

= x∗
1y2 − x∗

2y1,
ϑ
(

(x1, x2), (y1, y2)
)

= x∗
1y2 + x∗

2y1,
σ
(

(x1, x2), (y1, y2)
)

= x∗
1y1 − x∗

2y2,

corresponding to the three matrices

Ω :=

(

0 1
−1 0

)

, T :=

(

0 1
1 0

)

, S := I1,1 =

(

1 0
0 −1

)

,

called the “∗-symplectic”, “∗-hyperbolic”, ad “∗-symmetric” forms. Since these forms are
Hermitian, resp. skew-Hermitian, the corresponding maps ⊥β are involutions, i.e., of order
2. The fixed point sets

Ph := (AP1)⊥,ω = {E ∈ AP1|E⊥,ω = E},
Psh := (AP1)⊥,ϑ = {E ∈ AP1|E⊥,ϑ = E},
Pu := (AP1)⊥,σ = {E ∈ AP1|E⊥,σ = E}
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are called the Hermitian, respectively skew-Hermitian and unitary projective line over the
involutive algebra (A, ∗). To justify the last terminology, note that the ∗-unitary group

U(A, ∗) := {a ∈ A| a∗a = aa∗ = 1}

is imbedded into Pu via a 7→ (1, a)A (to see this, just note σ
(

(1, a), (1, a)
)

= 1− a∗a = 0).
In some cases, this imbedding is a bijection (see examples below). Of course, via a base
change the forms ϑ and σ are isomorphic, and therefore also the skew-Hermitian and
the unitary projective line are isomorphic. In general, they are not isomorphic to the
Hermitian projective line; but in some interesting special cases they are (see below).

Let us denote by X one of the three kinds of projective line Ph, Psh, Pu just defined.
There are some general features already encountered for the full projective line AP1 that
carry over: the notion of transversality in X remains the same; we have a transversal pair
of base points: for Ph and Psh it is again (o+, o−); for Pu we rather have to take the two
diagonals in A ⊕ A. There is a natural group G acting, namely the unitary groups of the
respective forms. For ω, we call it the ∗-symplectic group, denoted by Sp(A, ω); for ϑ,
the ∗-pseudo unitary group, denoted by U(A, A, ∗). One can show that, for ω, this action
is always transitive both on the Hermitian projective line and on the set of transversal
pairs, so we may consider homogeneous spaces of the form G/P−, G/P+, G/H as before,
whereas for ϑ, this need not always be the case: in this case we better write

X+ := U(A, A, ∗).o+, X− := U(A, A, ∗).o−,

and these two orbits may be equal or disjoint in the skew-Hermitian projective line. In
any case, it remains true that the set y> of all transveral elements in X to a given element
y is always an affine space over K, which now is modelled on the sets

Herm(A, ∗) := {a ∈ A| a∗ = a}, respectively Aherm(A, ∗) := {a ∈ A| a∗ = −a}

for the Hermitian, resp. skew-Hermitian, projective line.

Examples (cf. [Be07], [Be08], [BeNe05]).

(1) If A is commutative, then Herm(A, ∗) is also a commutative algebra, and Ph is just
the projective line over this algebra. If A = F (M, K) is a function algebra, then Pu is the
group of functions with values in the “circle group” {r ∈ K×| r∗ = r−1}.

(2) If A = M(n, n; K) and X∗ = Xt, then Ph is the variety of Lagrangian subspaces of
the canonical symplectic form on K2n, and Psh is the Lagrangian variety for the quadratic
form of signature (n, n). For K = R, the imbedding of the orthogonal group O(n) into the
latter is a bijection.

1.3 The unitary-Hermitian projective line

Quantum mechanics requires to work over the field C of complex numbers and the involu-
tion ∗ to be C-antilinear. This has the particular consequence that the spaces of Hermitian
elements (a∗ = a) and skew-Hermitian elements (a∗ = −a) are isomorphic. In general,
let us call an involution ∗ of an associative K-algebra A of complex type if there exists
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an element i ∈ K with i2 = −1 and i∗ = −i. Then multiplication by i is a K-linear
isomorphism from Herm(A, ∗) onto Aherm(A, ∗). The diagonal matrix dia(i, 1) ∈ Gl(2, A)
then induces a bijection from the Hermitian projective line onto the skew-Hermitian one.
Mathematically, this is a very special feature; but nevertheless Nature has chosen it as
being part of the structure of Quantum Mechanics:

Example. Let A = M(n, n; C) and X∗ = X
t
. Then Ph, Psh and Pu are all isomorphic to

the variety of all Lagrangian subspaces of the Hermitian form on C2n with signature (n, n).
The imbedding of the unitary group U(A; ∗) = U(n) into Pu is in this case a bijection.
The “big” group G acting on Ph

∼= U(n) is PU(n, n). To get the setting of Quantum
Mechanics, one may in this example replace M(n, n; C) by the bounded operators on an
infinite dimensional Hilbert space H (unbounded operators can be dealt with by a more
subtle choice of Jordan pair, see below).

One may also replace the positive involution considered above by the “indefinite in-

volution” X∗ := Ip,qX
t
Ip,q, where Ip,q is the usual diagonal matrix of signature (p, q) and

square one. As spaces, Ph, Psh and Pu are then still the same as above, the only thing that
changes is that we now consider another “polarity”, which corresponds to the imbedding
of the pseudo-unitary group U(Å, ∗) = U(p, q) as open dense set into the compact space
Pu (in the Russian literature this is called the “Potapov-Ginzburg transformation”).

1.4 Positivity

There is another particular feature of Quantum Mechanics that one has to take account
of: positivity. Algebraically, this corresponds to the positivity condition in the definition
of a C∗-algebra (||xx∗|| = ||x||2); geometrically, it corresponds to the fact that there
exists a partial order on the Jordan algebra Herm(A, ∗) such that squares are positive (in
particular, Herm(K, ∗) then has to be an ordered ring or field), and also to the fact that
(under some additional conditions) the imbedding of the unitary group U(A, ∗) into Pu

becomes a bijection. These are interesting topics for further work; however, for the logical
development of the theory it seems useful not to introduce such positivity assumptions at
an early stage.

2 Jordan-, Lie- and Jordan-Lie algebras

2.1 Jordan pairs and triple systems

For the sake of completeness, we just recall here the mere definitions: a (linear) Jordan pair
is a pair (V +, V −) of K-modules together with two trilinear maps T± : V ±×V ∓×V ± →
V ± satisfying the following identities (LJP1) and (LJP2):

(LJP1) T±(x, y, z) = T±(z, y, x),

(LJP2) T±(a, b, T±(x, y, z)) =

T±(T±(a, b, x), y, z) − T±(x, T∓(b, a, y), z) + T±(x, y, T±(a, b, z)).
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The basic example of a linear Jordan pair is given by spaces of rectangular matrices:

(V +, V −) =
(

Hom(F, E), Hom(E, F )
)

with T±(x, y, z) = xyz + zyx.

By definition, a Jordan triple system (JTS) is a K-module V together with a trilinear
map T : V × V × V → V satisfying the identities (JT1) and (JT2) obtained from (LJP1)
and (LJP2) by omitting the superscripts ±. The basic example is again the space of
rectangular matrices,

V = M(p, q; K) with T (x, y, z) = xytz + zytx. (2.1)

Note that the transpose corresponds to the choice of a scalar product. If p = q, or if
V = A is any associative algebra, one also has another Jordan triple product given by
T (a, b, c) = abc+cba. In general, every JTS gives rise to a Jordan pair (V +, V −) := (V, V )
with T + = T− = T (but not every Jordan pair is of this form), and every Jordan algebra
(with product •) gives rise to a JTS via

T (x, y, z) =
1

2

(

x • (y • z) − y • (x • z) + (x • y) • z
)

. (2.2)

Summing up, there are several functors between the following categories: associative al-
gebras; Jordan algebras; Jordan triple systems; Jordan pairs (and several others, such as:
Lie triple systems; associative and alternative pairs, etc). Each of these functors sheds
light on certain features of the categories between which it is defined.

2.2 Jordan-Lie algebras

As already noticed above, some algebras carry simultaneously the structure of a Jordan
and of a Lie algebra: on the one hand, we have the full associative algebras A with the
usual (anti-) commutators; on the other hand, the spaces Herm(H) of Hermitian operators
in a complex Hilbert space H, where a factor i comes in. The concept of a Jordan-Lie
algebra takes account of both cases; the definition is due to G. Emch ([E84]), although the
concept seems to have appeared first in the paper [GP76].

Definition. Let C ∈ K be a constant. A K-module V , equipped with two bilinear
products [x, y] and x • y is called a Jordan-Lie algebra (with coupling constant C) if

(JL1) (V, [·, ·]) is a Lie algebra;

(JL2) (V, •) is a Jordan algebra;

(JL3) the Lie algebra acts by derivations of the Jordan algebra, that is,

[x, u • v] = [x, u] • v + u • [x, v],

(JL4) the associators of both products are proportional:

(x • y) • z − x • (y • z) = −C
(

[[x, y], z] − [x, [y, z]]
)

.

9



Of course, (JL4) can also be written (x • y) • z − x • (y • z) = C[[z, x], y], thanks to the
Jacobi identity. The main examples are:

(1) Commutative Poisson algebras: for C = 0, Condition (JL4) says that • is a commu-
tative and associative product, on which the Lie algebra acts by derivations, by (JL3).

(2) Associative algebras V = A with usual Jordan product and Lie bracket: (JL3) is clear
since the Lie algebra already derives the associative product; (JL4) with C = 4 follows by
a direct calculation.

(3) Hermitian elements: under the assumptions from Section 1.3, let V = Herm(A, ∗)
with its usual Jordan product and the modified Lie bracket [x, y] := i(xy− yx). The same
calculation as in the preceding example yields an additional factor i2 = −1 on the right
hand side of (JL4), whence we get a Jordan-Lie algebra with coupling constant C = −4.

Conversely, given a Jordan-Lie algebra with coupling constant C, consider the scalar
extension R := K[X ]/(X2 − C) of K; writing i := [X ], this is simply the ring K ⊕ iK
with defining relation i2 = C. (For C = 0, these are the dual numbers over K.) Let
VR := V ⊕ iV the scalar extension of the given Jordan-Lie algebra, which is again a
Jordan-Lie algebra, now defined over R. Define a new product on VR by

xy := x • y + i[xy].

By a direct calculation (cf. [E84], p. 307) one sees that the associator of this product is

(xy)z − x(yz) = C[[x, z], y] − i2
(

[[x, y], z] − [[y, z], x]
)

= (C − i2)[[x, z], y] = 0,

hence VR is an associative algebra. The “conjugation map” a+ ib 7→ a− ib is an involution
of this algebra. If C is a square in K×, we get back Example (2), and if −C is a square
in K×, we get back Exemple (3). If C = 0, we have constructed an associative, in
general non-commutative algebra out of a commutative Poisson algebra; it is a sort of first
approximation of a deformation quantization of that algebra.

Categorial notions for Jordan-Lie algebras follow the usual pattern: homomorphisms,
ideals, simple, semi-simple objects are those which have the corresponding properties both
for the Jordan and the Lie product; for invertible C, simple objects then correspond to
simple associative algebras over R with involution. For K = R, the classification of simple
finite-dimensional objects is therefore very easy: for C > 0, we get simple associative
algebras (that is, matrix algebras over the three associative real division algebras, by
the classical Burnside theorem); for C < 0, we have to look at simple complex algebras
M(n, n; C) with C-antilinear involution: it is known that all such involutions correspond to
adjoints with respect to a non-degenerate Hermitian form on Cn (see [Le06]). Therefore
the Jordan part of a simple finite-dimensional real Jordan-Lie algebra is isomorphic to
V = Herm(p, q; C) and its Lie part isomorphic to u(p, q), the Lie algebra of the pseudo-
unitary group U(p, q). In infinite dimension, the classification of Jordan-Lie algebras
contains the classification of C∗-algebras as a subproblem.

We add two remarks on important special features of Jordan-Lie algebras:

1. Jordan-Lie algebras permit to single out complex Hermitian matrices by a purely real
concept. This means that an axiomatic approach to quantum mechanics without making
use of complex numbers is possible. See also [La93] and [La96].
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2. Tensor products exist in the category of Jordan-Lie algebras. This is very remarkable
since tensor products neither exist in the category of Jordan algebras nor in the one of Lie
algebras. This observation is the starting point of the paper [GP76], where the notion of
composition class as a class of two-product algebras closed under tensor products is intro-
duced; the idea to characterize quantum and classical mechanics as certain composition
classes goes back to Niels Bohr.

2.3 Lie-Jordan algebras

The folllowing definition is (for C = 1) due to Grishkov and Shestakov [GS01]: Let C ∈ K

be a constant. A K-module V , equipped with a bilinear product [x, y] and a trilinear
product T : V 3 → V is called a Lie-Jordan algebra (with coupling constant C) if

(LJ1) (V, [·, ·]) is a Lie algebra,

(LJ2) (V, T ) is a JTS,

(LJ3) the Lie algebra acts by derivations of the JTS T , that is,

[x, T (u, v, w)] = T ([x, u], v, w) + T (u, [x, v], w) + T (u, v, [x, w]),

(LJ4) skew-symmetrized T is proportional to the triple Lie bracket:

T (x, y, z) − T (y, x, z) = C[[x, y], z].

Similar comments as in the preceding section can be made. Every Jordan-Lie algebra
gives rise to a Lie-Jordan algebra, but the converse is false: the −1-eigenspace of any
involution of an associative algebra (A, ∗) gives rise to a Lie-Jordan algebra (and Grishkov
and Shestakov show that every Lie-Jordan algebra is obtained in this way, if C = 1). For
instance, if A = M(n, n; R) and X∗ = Xt, the −1-eigenspace is the Lie algebra o(n) of
the orthogonal group, which is stable under the usual Jordan triple product (2.1), giving
rise to Lie-Jordan algebra; but it is not a Jordan-Lie algebra since (2.1) never is obtained
from a Jordan algebra via (2.2).

3 Comments and afterthoughts

3.1. Jordan-Lie algebras (with a certain positivity condition, see [E84]) are equivalent to
C∗-algebras. Therefore there is no contradiction between associative or non-associative
geometry in our sense and the philosophy of Non-commutative Geometry: it is just a
difference of language. Jordan geometry leads back to a classical language for describing
non-classical results; we re-introduce the language of point-spaces on a level where Non-
commutative Geometry teaches us to abandon point-spaces. However, the point of view of
Jordan-Lie algebras separates the Jordan and Lie aspects of a C∗-algebra, and thus sheds
light onto aspects that remain unnoticed in a purely associative theory.

3.2. We think that Bohr’s idea of “composition classes” (see Remark 2 in Section 2.2)
is interesting and deserves a careful re-investigation. Composition classes with C = 0 are
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called “classical” and those with C invertible are called “quantal”. Classical composition
classes are thus commutative Poisson algebras; quantal composition classes are generally
non-associative, but also contain associative commutative Jordan algebras (which, how-
ever, are then just considered as commutative and not as Poisson algebras: if the left-hand
side of (JL4) is zero and C is invertible, it follows that [[V, V ], V ] = 0). In [GP76] (Ap-
pendix A) also the case of symmetric and exterior tensor powers is considered; only the
symmetric ones give rise to a composition class. Maybe the extension of such concepts to
ternary products (Lie-Jordan algebras) permits to include exterior powers in this picture.

3.3. In his work [Pen89], [Pen05], Roger Penrose frequently expresses the opinion that
foundational problems of unifying quantum theory with general relativity are related to the
coexistence of two different modes of time evolution in quantum mechanics, the “unitary
Schrödinger evolution” U and the “state reduction” R. Mathematically, as already noticed
by G. Emch [E84], the “Jordan part” of an observable somehow reflects its “quantum
aspect”, that is, R, whereas its “Lie part” rather represents U. Since the concept of
a Jordan-Lie algebra clearly separates these two aspects, it seems to meet the heart of
the problem as formulated by Penrose. This indicates that the “coupling axiom” (JL4)
is of central importance and should be better understood. In particular, it is not at all
easy to find a geometric interpretation of this axiom on the level of the geometries of the
corresponding projective lines.
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