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Abstract. — We determine the causal transformations of a class of
causal symmetric spaces (Th. 2.4.1). As a basic tool we use causal
imbeddings of these spaces as open orbits in the conformal compactification
of Euclidean Jordan algebras. In the first chapter we give elementary
constructions of such imbeddings for the classical matrix-algebras. In the
second chapter we generalize these constructions for arbitrary semi-simple
Jordan algebras: we introduceMakarevič spaces which are open symmetric
orbits in the conformal compactification of a semi-simple Jordan algebra.
We describe examples and some general properties of these spaces which
are the starting point of an algebraic and geometric theory we are going
to develop in subsequent work [Be96b].

0. Introduction

0.1 The classical theorems of LIOUVILLE and LIE. — A conformal
transformation of the Euclidean space V = Rn is a locally defined
diffeomorphism φ : V ⊃ V1 → V2 ⊂ V such that for all x ∈ V1, the
differential Dφ(x) of φ at x is a similarity (multiple of an orthogonal
transformation), that is, Dφ(x) belongs to the linear group G = O(n)×R+

generated by the orthogonal group and the multiples of the identity. The
translations by vectors of V and the elements of G are trivial examples
of such transformations. One can check that the inversion x &→ x

||x||2

is conformal. A classical theorem of LIOUVILLE (1850) states that every
conformal transformation of R3 (of class C4) is in fact rational and is a
composition of the previously described ones. S. LIE has generalized this
theorem for general n > 2 and general non-degenerate quadratic forms
replacing the Euclidean norm; the inversion is still defined by the same
formula. We would like to emphasize that the theorem contains a “local -
global” statement: from a local property and C4-regularity we can deduce
rationality and a global extension.

The case n = 4, with the LORENTZ pseudo-metric of signature (3, 1),
leads to the causal group of the MINKOWSKI-space: let Ω be the associated
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forward light-cone and G = G(Ω) = {g ∈ Gl(V )|g · Ω = Ω} be the group
of linear automorphisms of Ω. The condition Dφ(x) ∈ G (for all x in
some domain of V ) is equivalent to Dφ(x) · Ω = Ω, and we then say that
φ is a local automorphism of the flat causal structure defined on V by Ω.
Knowing that G(Ω) = O(3, 1)+ × R+, we can apply a version of LIE’s
theorem in order to conclude that such local automorphisms are in fact
rational and given by a composition of the trivial ones (G(Ω) and the
translations) and the negative of the inversion, x &→ − x

〈x,x〉 . In [Be96a] we
have generalized these results in the framework of Jordan algebras. Before
discussing this general context, let us mention one other important and
very typical example.

0.2 Causal transformations of the space of Hermitian matrices.
Let V be the space Herm(r,C) of Hermitian r × r-matrices, Ω ⊂ V the
open cone of positive definite Hermitian matrices and G := G(Ω) the
group of all linear invertible maps of V which map Ω onto itself. Then we
define, as above, a (local) causal automorphism of the flat causal structure
defined on V by Ω to be a locally defined diffeomorphism φ such that
Dφ(x) · Ω = Ω (this is equivalent to Dφ(x) ∈ G) for all x where φ is
defined. It is a special case of our generalized LIOUVILLE-theorem for
Jordan algebras [Be96a, Th.2.3.1] that every such transformation is in fact
rational and is a composition of a translation, of elements of G and of −j,
where j is the matrix-inversion j(X) = X−1, and these transformations
form a group of birational transformations of V the identity component
of which is isomorphic to SU(r, r). Now, it is known that the group
U(r) is, via the CAYLEY-transform, locally causally isomorphic to V .
Because our LIOUVILLE-theorem is of local nature, we can conclude that
the causal group of U(r) is also isomorphic to SU(r, r), thus giving a
positive answer to a conjecture by Segal [Se76, p.35]. Moreover, the groups
U(p, q) (p+ q = r) can be causally imbedded into the group U(r) by the
Potapov-Ginzburg transformation (see [AI89]) which assigns to a graph Γg

of g ∈ U(p, q) the graph P ·Γg, where P is the endomorphism of (Cp×Cq)2

defined by P (x1, x2, y1, y2) = (y1, x2, x1, y2); one easily checks that P · Γg

is in fact a graph belonging to an element P (g) of U(r). There is a causal
structure on U(p, q) for which the transformation P is a causal map, and
we may conclude that the “causal pseudogroup” of U(p, q) (see below for
a precise definition) is also isomorphic to SU(r, r).

The general problem we are interested in is the following: given a space
having a conformal or causal structure (as U(p, q) in the example), we
would like to determine all transformations of this space (even those which
are only locally defined) preserving the causal or conformal structure.
As the last example shows, this problem may in some cases be devided
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into two sub-problems: first determine whether the given causal or
conformal space locally looks like a matrix space (or, more generally, a
Jordan algebra) with a “constant” causal or conformal structure, then
use the “local-global” statement of our LIOUVILLE-theorem in order to
completely describe the conformal (or causal) transformations of the
given space. The first problem is of geometrical, and the second one
of analytical nature. Since the analytical problem is entirely resolved by
our LIOUVILLE-problem, it is the geometrical problem we are interested
in now. Generalizing the example of the group U(p, q), we will find
and describe a fairly large class of spaces having a conformal or causal
structure which is locally equivalent to a Jordan algebra with its flat (i.e.
“constant”) structure. It remains an open problem to give an intrinsic
criterion permitting to decide when, in general, a conformal or causal
structure is actually flat in this sense. In fact, it even is not obvious what
the suitable general definition of “conformal structure” should be. We will
briefly discuss this problem at the end of the introduction.

0.3 Causal symmetric spaces and their causal groups. — The
notion of “causal structure” is less problematic than the general notion
of “conformal structure”: it is given by a field of cones (Cx)x∈M on a
manifold M , where Cx is a regular (i.e. open, convex and pointed) cone
in the tangent space TxM . A local causal diffeomorphism between two
manifolds M and N with causal structures (Cx)x∈M , (C′

y)y∈N is a locally
defined diffeomorphsm φ such that Txφ · Cx = C′

φ(x) for all x where φ
is defined. If M = N , then these maps form an object called the causal
pseudogroup of M ; it is not a group because the maps are in general not
defined everywhere.

We now describe some spaces X having a causal structure which is
locally equivalent to the flat causal structure given by the symmetric cone
Ω of some Euclidean Jordan algebra V (the cone Ω of positive definite
Hermitian matrices introduced above is such a cone; for the general notion
cf. [FK94].) The spaces X we are interested in are actually symmetric
spaces, i.e. homogeneous spaces X = G/H under the action of some Lie
group G such thatH is open in the fixed point group Gσ of some involution
σ of G, and they are furthermore causal symmetric spaces in the sense that
G preserves the given causal structure. The following table shows that the
whole causal pseudogroup of X is actually much bigger than G. The table
should be read as follows: the spaces X = L/H, respectively X = L′/H
are locally causally isomorphic to the Euclidean Jordan algebra V given
to the right in the corresponding line; then, by the generalized LIOUVILLE-
theorem, the corresponding causal pseudogroup can be identified with the
group Co(V )0 given for each of the five types. The precise statement can
be found in Theorem 2.4.1. (In the following p+ q = n.)
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0.3.1 Table of causal pseudogroups. —

I. Vn = Herm(n,C), n > 1.
Causal groups: Co(Vn)0 = SU(n, n), Co(Vn × Vn)0 = SU(n, n) ×

SU(n, n).

L L′ H V
SU(n, n) SU(n, n) Sl(n,C)× R+ Vn × Vn

U(p, q)× U(p, q) Gl(n,C) U(p, q) Vn

SO∗(2n) SO(n, n) SO(n,C) Vn

Sp(2n,R) Sp(n, n) Sp(n,C) V2n

II. Vn = Sym(n,R), n > 1.
Causal groups: Co(Vn)0 = Sp(n,R), Co(Vn × Vn)0 = Sp(n,R) ×

Sp(n,R)

Sp(n,R) Sp(n,R) Sl(n,R)× R+ Vn × Vn

U(p, q) Gl(n,R) O(p, q) Vn

Sp(n,R)× Sp(n,R)Sp(n,C) Sp(n,R) V2n

III. Vn = Herm(n,H),
Causal Groups: Co(Vn)0 = SO∗(4n), Co(Vn × Vn)0 = SO∗(4n) ×

SO∗(4n)

SO∗(4n) SO∗(4n) SO∗(2n)× R+ Vn × Vn

U(2p, 2q) U∗(2n) Sp(p, q) Vn

SO∗(2n)× SO∗(2n)SO(2n,C) SO∗(2n) V2n

IV. Vn = R× Rn−1, n > 2.
Causal Groups: Co(Vn)0 = SO(2, n), Co(Vn × Vn)0 = SO(2, n) ×

SO(2, n).

SO(2, n) SO(2, n) SO(1, n− 1)× R+Vn × Vn

SO(n)× S1 SO(1, n− 1)× R+SO(n− 1) Vn

SO(2, n− 1) SO(1, n) SO(1, n− 1) Vn

V. V3 = Herm(3,O),
Causal groups: Co(V3)0 = E7(−25), Co(V3 × V3)0 = E7(−25) × E7(−25)

E7(−25) E7(−25) E6(−25) × R∗ V3 × V3

SU(6, 2) SU∗(8) Sp(3, 1) V3

E6(−14) × R+ E6(−14) × U(1) F4(−20) V3

Let us make a few comments on this table: the example of the group
U := U(p, q) mentioned above appears in the second line for type I,
where the group U is considered as symmetric space U × U/dia(U × U).
Furthermore, in each of the cases I - V there appears exactly one compact

4



symmetric space and one Riemannian symmetric space of non-compact
type (in cases I-III it appears for p = n, q = 0; we assume p + q = n);
the latter is actually isomorphic to the symmetric cone associated to the
Jordan algebra V . These spaces are c-dual to each other in the sense of
duality of symmetric spaces. More generally, the spaces L/H and L′/H
are c-dual to each other, the spaces L/H being compactly causal and the
spaces L′/H non-compactly causal. The spaces appearing in the first line
for each type are self-dual; they are known as causal symmetric spaces of
Cayley type.

The irreducible causal symmetric spaces have been classified by G.
Ólafsson (see [FÓ95]); “most” of them appear in our list. Those which do
not appear here fall into two classes: first, the semi-simple parts of the
reductive spaces appearing in our list - for example, the group U(p, q) is
reductive, and its semi-simple part SU(p, q) is included in the classification
by Ólafsson. Such spaces are hypersurfaces in a space appearing in our
list. We conjecture that they are not “causally flat” and that their causal
pseudogroups are small, possibly reduced to the affine group of the affine
connection belonging to the underlying symmetric space. Secondly, there
are two other series of causal symmetric spaces (the groups SO(n, 2) and
the spaces SO(2, p + q)/SO(p, 1) × SO(q, 1) with min(p, q) > 1) as well
as four exceptional spaces which do not appear in our list; it remains an
intriguing question wether these spaces can be related to Jordan algebras
or not.

In [Be96b] we will show that the “flat” realization of the spaces given
in the table is very useful to study problems related their geometry and
harmonic analysis.

0.4. Makarevič spaces. — The Jordan algebras V corresponding to
types I, II and III in table 0.3.1 are spaces of symmetric, resp. Hermitian
matrices. For these types, the local equivalence of the spaces L/H and
L′/H with V can be established by very elementary methods. We do this
in chapter one. This chapter could be read by an undergraduate student
having no knowledge in Jordan theory but a good understanding of linear
algebra. The basic idea is to analyze a linear transformations by its graph,
and in particular to understand the notion of adjoint operator in this way.
This permits to interprete the realizations for the types I, II and III as
natural analogues of the classical SIEGEL-space (Theorem 1.7.1).

However, for a deeper understanding one needs the general context
of Jordan algebras which we introduce in chapter two. The fact that a
homogeneous space X = G/H is locally conformally or causally equivalent
to such an algebra V will be precised in the following way: let Co(V ) be
the conformal or Kantor-Koecher-Tits group associated to V and V c be
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the conformal compactification of V ; this is an open dense and Co(V )-
equivariant imbedding of V into a compact space V c. If G is a subgroup
of Co(V ) and x ∈ V c such that the orbit G/H ∼= G ·x is open in V c, then
the homogeneous space X := G/H inherits by restriction from V a flat
G-invariant conformal structure, and our generalized LIOUVILLE-theorem
implies that Co(V ) can be identified with the corresponding pseudogroup
of conformal transformations.

Without loss of generality we can assume that the base point x is the
origin 0 of V ⊂ V c. If now we restrict our attention to symmetric spaces
X = G/H, then work of A.A. Rivillis [Ri70] and B.O. Makarevič [Ma73]
has shown that the space X can be realized in the form

X = X(α) := Co(V )(jα)∗0 · 0,

where j(x) = x−1 is the inverse in the Jordan algebra V , α is an invertible
linear map of V having the property that (jα)2 = idV and (jα)∗ is the
involution of Co(V ) given by conjugation with jα. An automorphism
as upper index of a group denotes as usual the fixed point group, and
lower index 0 denotes the identity component. Clearly j2 = idV and
(−j)2 = idV , hence we can choose α = idV or α = −idV , but we can
also take any involutive automorphism of V or its negative. We will call
the space X(α) a Makarevič space since such spaces have been classified
by B.O. Makarevič in [Ma73]. However, since the main interest of [Ma73]
lay in the classification problem, the simplicity of the construction of the
spaces X(α) by the above formula is rather hidden there. The formula
indeed defines an open symmetric orbit in V c; we will give the simple
proof in Proposition 2.2.1. Examples of Makarevič spaces, besides the
causal symmetric spaces listed in table 0.3.1, are given by orthogonal
groups, general linear groups, symmetric cones and their non-convex
analogues, Hermitian and pseudo-Hermitian symmetric spaces. It seems
very interesting that methods well-known from one of these classes can
be adapted to others of these classes where they are less obvious. In
particular, we will generalize the algebraic methods developed by Koecher
and Loos for Hermitian symmetric spaces (see [Lo77]) in subsequent work
[Be96b].

In this work we will only describe some basic features of Makarevič
spaces. The first one gives a particularly nice description of c-duality: the
spaces X(α) and X(−α) are c-duals of each other (Prop.2.3.2); we have
observed this duality already at the example of table 0.3.1. Another basic
feature is the existence of Cayley-transformed realizations in the case where
α is an involution of V . It will carry the space X(α) onto a generalized
tube domain (Example 2.2.6). Furthermore, it seems remarkable that all
Makarevič spaces appear as real forms of pseudo-Hermitian symmetric
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spaces (2.3.3). Finally, we prove that the classification by Makarevič is
indeed complete in the Euclidean case, given by table 0.3.1; the general
classification in [Ma73] is given without proof of completeness (actually
one class of pseudo-Hermitian spaces of tube type is missing in [Ma73].)

0.5 The conformal group of a Makarevič space. — Our main
theorem on causal groups (Theorem 2.4.1) generalizes to the case of general
Makarevič spaces: the group Co(V ) can be characterized as the conformal
pseudo-group of the space X(α). But as mentioned in section 0.2, already
the definition of “conformal structure” is not obvious in this general case.
There are different possibilities to define it:

a) in [Be96a] we used the notion of a field of groups to define a very
general kind of conformal structure, closely related to the so called G-
structures. When the field of groups is “constant”, given by the structure
group of a semi-simple Jordan algebra, we obtain the “flat conformal
structure of a semi-simple Jordan algebra”. This notion is not very
geometrical but convenient for proving the LIOUVILLE-theorem.

b) We can make the previously mentioned notion more geometric by
using the following characterization of the structure group of a semi-simple
Jordan algebra: if ∆ is the norm-polynomial of V (in the case of matrix
algebras this is the usual determinant, in the case of the Lorentz cone
this is the Lorentz quadric), then Str(V ) is the group of invertible linear
mappings preserving ∆ up to a factor (see [FK94, p.161]). If we define
a conformal structure to be a field of polynomials, up to equivalence by
nowhere vanishing functions, then the structure given by ∆ turns V and
V c in a conformal space having Co(V ) as its conformal group. This
notion is very close to the classical notion of the conformal structure
of a Riemannian manifold: the metric tensorfield is just replaced by a
symmetric tensorfield of a higher degree, and our LIOUVILLE theorem
generalizes exactly the classical one.

c) In [GiKa95], Gindikin and Kaneyuki propose a definition which
has the advantage to apply also to some Jordan triple systems and the
disadvantage not to cover the classical case of Riemannian conformal
structure: they essentially define a conformal structure to be a distribution
of conical subvarieties. In the Jordan algebra case, this is set of zeros of
the norm-polynomial ∆.

d) In the case of the classical matrix spaces we consider the “generalized
line structure” of a Grassmann manifold given by incidence relations of
subspaces (Section 1.8). This can be seen as a “global” version of the
conformal structure introduced by Gindikin and Kaneyuki. The conformal
group can then be characterized as the group preserving this “generalized
line structure” (Theorem 1.8.1). In this context, our LIOUVILLE theorem
thus shows a remarkable similarity with the fundamental theorem of
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projective geometry characterizing the projective group as the group
preserving the line-structure of projective space. See [Wey23] for an
interesting discussion of this theorem, seeing it in the same context as
the classical LIOUVILLE theorem.

e) It is in fact possible, following the viewpoint of
to prove the fundamental theorem of projective geometry by Jordan-

methods. However, none of the previously mentioned notions of conformal
structure does apply to this case.

Let us remark that in [Gi92] some special cases of conformal structures
are studied, and the author adds that ‘it would be interesting to develop
a general theory of such structures’ - we hope that this work might be a
step in this direction.

ACKNOWLEDGEMENTS. It is a pleasure to express my thanks to Jacques
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important paper [Ma73], and to Joachim Hilgert and Gestur ’Olafsson for
helpful comments. I also thank the Royal Swedish Academy of Sciences,
the staff of the Mittag-Leffler Institute and the organizers of the program
“Harmonic Analysis on Lie groups” during which this work was finished.

1. Elementary construction of causal and conformal imbeddings

1.0 Basic notions related to Jordan algebras. — In this chapter
we will be concerned with special Jordan algebras; these are subspaces
of some associative endomorphism-algebra End(E) of a vector space E
which are stable under the Jordan-product AB := 1

2(A ◦B+B ◦A). Thus
V := End(E) becomes a commutative algebra which is not associative,
but satisfies the so-called Jordan identity: A(A2B) = A2(AB). We will
always assume that a Jordan algebra V contains a unit element e ∈ V ;
if V = End(E), then e is the identity operator I. There is a notion of
inverse in a Jordan algebra. We will write j(x) = x−1 for the inverse of
x ∈ V ; then j is a birational map of V . If V = End(E), then j is just
the ordinary inverse which is clearly rational. For any birational map φ
of V we denote by j∗(φ) the birational map j ◦ φ ◦ j. The structure group
Str(V ) of V is defined as the group of invertible linear transformations
g of V for which j∗(g) is again linear. Then j∗ defines an involution (an
automorphism of order 2) of Str(V ). The orbit Ω := Str(V )0 · e (the
subscript zero denoting the identity component) is then open in V and is
a symmetric space, Ω ∼= Str(V )0/Str(V )j∗0 .

The conformal or Kantor-Koecher-Tits group of the (semi-simple) Jor-
dan algebra V is the group Co(V ) of birational transformations generated
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by the translations τv, v ∈ V (where τv(x) = x + v), the elements of
Str(V ) and j. We identify V with the subgroup of translations τv, v ∈ V ,
and let P be the subgroup of Co(V ) generated by Str(V ) and jV j. Then
the map

V &→ V c := Co(V )/P, v &→ τvP

is an open dense imbedding into a compact space, cf. [Be96a, Th.2.4.1]; we
call it the conformal compactification of V . It is clear from the definition
that the conformal group acts on V c; in particular, addition by vectors of
V and multiplication by scalars is defined on V c, and maps like −idV will
always be understood as defined on V c in this sense.

Besides Jordan algebras we will also use (implicitly) some special cases
of Jordan triple systems, namely spaces of skew-Hermitian matrices. These
spaces are usually considered as Lie algebras (of the corresponding unitary
groups), but it will be rather important to keep in mind that they are
considered here as Jordan triple systems and not as Lie algebras. Let
us explain briefly what we mean by this: the Jordan triple product of a
Jordan algebra V is given by the formula {a, b, c} := a(bc)− b(ac)+ (ab)c;
it is symmetric in a and c and satisfies an additional identity which is
used to define abstract Jordan triple-systems (see [Sa80], [Lo77]). If α
is an automorphism of a Jordan algebra, then the +1-eigenspace V α is
a Jordan subalgebra of V and the −1-eigenspace V −α is stable for the
triple product and is thus a sub-triple system of V . The triple product in
a space of skew-Hermitian matrices arises in this way from the space of
all matrices. (We conjecture that in fact all Jordan triple systems arise
as −1-eigenspaces of a Jordan algebra-involution; see [Be96b].) There
is also a notion of conformal group related to an abstract triple system
(see [Sa80], [Lo77]), but its description is more difficult than for Jordan
algebras because there is no notion of inverse in a triple system.

1.1 The matrix-algebras M(n,F). — Let F be the field of real
or complex numbers or the skew-field of quaternions and E be an n-
dimensional vector space over F (acting from the left on E). The space
V := EndF(E) of F-linear endomorphisms of E is a semi-simple Jordan
algebra with Jordan-product A · B = 1

2(AB + BA). (If F = H, then this
is just an R-algebra.) Using a basis of E, we can identify E with Fn and
End(E) with the matrix-algebra M(n,F). (The matrix of A ∈ End(Fn)
is defined by Aei =

∑

j Ajiej , and two matrices are multiplied by the rule
(Aij) · (Bjl) = (Cil), Cil =

∑

j BjlAij .)
The (identity component of the) structure group of V is given by the

action of the group Gl(E) × Gl(E) on V by (g, h) · A = g ◦ A ◦ h−1.
The involution j∗ is given by j∗(g, h) = (h, g), where j(X) = X−1 is the
Jordan inverse. The open orbit Ω = Str(V )0 · e (here e = idE) is the
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group Gl(E) ⊂ End(E) (or, if one prefers, Gl(n,F) ⊂ M(n,F)), viewed
as symmetric space with geodesic symmetry j at the origin I.

The graph-imbedding, and the conformal group. — The con-
formal compactification V c of V = End(E) is the Grassmannian G2n,n(F)
of n-dimensional subspaces of E ⊕E, where the imbedding Γ : V → V c is
given by identifying A ∈ End(E) with its graph ΓA := {(x,Ax)| x ∈ E} ∈
G2n,n. The image of this imbedding is dense in G2n,n because W ∈ G2n,n

is a graph if and only if the projection prW1 : W &→ E×0 onto the first fac-
tor is a bijection; the set of “non-graphs” is hence an algebraic subvariety
of G2n,n of strictly lower dimension, defined by det(prW1 ) = 0.

The group Gl(2n,F) = Gl(E ⊕ E) acts on the Grassmannian G2n,n in
the natural way, and one easily verifies that

(

a
c
b
d

)

ΓA = Γ(aA+b)(cA+d)−1 for
(

a
c
b
d

)

∈ Gl(2n,F) and A ∈ M(n,F). Thus the rational action of Gl(2n,F)
on V ⊂ V c is given by the formula

(

a b
c d

)

·X = (aX + b)(cX + d)−1.

The effective group of this action is PGl(2n,F). It is clear that the
translations are given by the matrices of the form

(

I
0
X
I

)

(where I = In
denotes the n×n-identity matrix), the elements of (the identity component
of) the structure group by the invertible matrices of the form

(

g
0
0
h

)

, and

the inversion j ∈ Co(V ) is induced by
(

0
I
I
0

)

. These matrices generate
PGl(2n,F), which is thus the identity component of the conformal group
Co(V ). Remark that −idV ∈ Co(V ) is induced by the matrix

(−I
0

0
I

)

,
which is conjugated to the matrix of j by the real Cayley transform
(“rotation of angle π

2 ”) R =
(

I
I
−I
I

)

.

1.2. The matrix spaces Sym(A,F) and Herm(A,F), the orthogo-
nal and unitary groups. — Notations being as above, let 〈·, ·〉 be a non-
degenerate bilinear or sesquilinear form on E. We recall that sesquilinear
forms are defined by bi-additivity and the property 〈λx, µy〉 = λ〈x, y〉ε(µ),
where ε denotes an anti-automorphism of the field F. The field R has
no non-trivial anti-automorphism, and C has only one, complex conjuga-
tion. The field H has many anti-automorphisms, but there is one among
them which is canonical, namely the conjugation which equals one on the
center Z(H) = R and minus one on the pure quaternions -(H). Usu-
ally, sesquilinearity is defined with respect to this conjugation, and if we
use another anti-automorphism ε, we will call the form more precisely ε-
sesquilinear. Non-trivial bilinear forms exist if and only if ε = idF is an
anti-automorphism, i.e. if F is commutative.

On E = Fn the standard R-bilinear form is given by (x|y) = xty =
∑

i xiyi. Then any ε-sesquilinear form can be written as 〈x, y〉 =
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(x|Aε(y)) = xtAε(y) with A ∈ M(n,F) and (ε(y))i := ε((y)i). With
respect to the standard basis of Fn, A is given by the matrix (Aij) =
(〈ei, ej〉). The form is non-degenerate if and only if the associated matrix
is non-singular. The adjoint operator X∗ of X ∈ End(E) (with respect to
the given form) is then defined by the relation

(∗) ∀u, v ∈ E : 〈Xu, v〉 = 〈u,X∗v〉

and is given in matrix representation by the formula

X∗ = ε−1A−1XtAε,

where Y t is the transposed of a matrix Y , and the matrix ε(Y ) := εY ε−1 is
obtained by applying ε to every coefficient of the matrix Y (if ε is complex
conjugation, this matrix is usually denoted by Y .) We write

Herm(A, ε,F) := {X ∈ M(n,F)|A−1XtA = εXε−1},

Aherm(A, ε,F) := {X ∈ M(n,F)|A−1XtA = −εXε−1},

for the spaces of Hermitian, resp. skew-Hermitian operators (with respect
to to the ε-sesquilinear form given by the matrix A.) If the form is bilinear
(i.e. ε = id), then we denote these spaces also by Sym(A,F), resp.
Asym(A,F). If we just write Herm(A,C) or Herm(A,H), we always
assume that ε is the canonical conjugation of the base field introduced
above.

It should be remarked that in general there are two possibilities to define
the adjoint operator, but they coincide if the given form satisfies one of
the symmetry conditions 〈u, v〉 = ε(〈v, u〉) or 〈u, v〉 = −ε(〈v, u〉) for all
u, v ∈ E.

1.2.1 Some special isomorphisms. — If F = C, then it is easily
seen that multiplication by i defines an R-isomorphism Herm(A,C) →
Aherm(A,C). For F = H, a similar statement is true: for any invertible
element u ∈ H let u∗ be the conjugation by u in H; then for any anti-
automorphism ε of H, u∗ ◦ ε is again an anti-automorphism of H. The
right multiplication by u is defined by ru : Hn → Hn, (xi) &→ (xi · u); this
is a H-linear map (recall that H acts from the left) and is represented by
the matrix (uδij) = uI. For X ∈ M(n,H), the H-linear map X ◦ ru is
represented by the matrix (X · uI)ij = (u · Xij). Let us now fix u ∈ H,
an anti-automorphism ε of H such that ε(u) = −u and A ∈ M(n,H) such
that A · uI = uI ·A, then

Herm(A, ε,H) → Aherm(A, u∗ ◦ ε,H), X &→ X · uI

11



is an R-isomorphism. (Using the assumptions, one verifies the following
equivalence: (A−1XA)ij = ε(Xji) ⇔ (A−1 ·X ·uI ·A)ij = −uε(Xji)u−1.)
The above conditions are satisfied, for example if u = j (defined by
H = C ⊕ jC), ε the canonical involution of H or its composition with
j∗ and A any matrix with real coefficients.

1.2.2 The structure group, the orthogonal and unitary groups.
Keeping all notations, let us write a(X) := X∗. Then the map a “adjoint
operator” is an anti-automorphism of the associative algebra End(E) and
hence an automorphism of the Jordan algebra V = End(E). Its fixed
point set (i.e. Herm(A)) is a Jordan sub-algebra, and its −1-eigenspace
(i.e. Aherm(A)) is a Jordan sub-triple-system of V (see section 1.0).
We remark that a is an involution if the given form is Hermitian or
skew-Hermitian (i.e. ε(A) = ±At); we will mainly be interested in this
case. The (identity component of) the structure group of Herm(A, ε,F)
is obtained from the action of the elements of Gl(n,F) × Gl(n,F) acting
on M(n,F) and commuting with a; it is given by

Gl(n,F)×Herm(A, ε,F) → Herm(A, ε,F), (g,X) &→ gXg∗.

It is clear from this formula that the orbit of I under this action is the
open set {gg∗|g ∈ Gl(n,F)} ⊂ Herm(A, ε,F) which can be considered as
the symmetric space Gl(n,F)/U(A, ε,F). Here we use the notations

O(A,F) = {g ∈ Gl(n,F)|A−1gtA = g−1}

and
U(A, ε,F) := {g ∈ Gl(n,F)|A−1gtA = εg−1ε−1}

for the orthogonal, resp. ε-unitary groups of the form given by A. We will
just write U(A,C) or U(A,H) if ε is the canonical conjugation of the base
field, and we will just write U(A) and O(A) if the specification of the base
field is not important. The symbol P denotes the quotient with respect to
the central subgroup of multiples of the identity matrix.

1.2.3 Classical notation and special isomorphisms. — In the
classical notation, for F = R or C, O(Ip,q,R) = O(p, q) (where Ip,q =
(

Ip
0

0
−Iq

)

), O(
( 0
−In

In
0

)

,R) = Sp(n,R), etc. For F = H, let us recall that the

identification H = C⊕ C · j induces an inclusion of M(n,H) in M(2n,C)
as the set of matrices X such that FXF−1 = X , where F =

( 0
−I

I
0

)

.
Under this identification, the canonical conjugation ε of H induces the

conjugation X &→ X
t
of M(n,H), and the conjugation ϕ := j∗ ◦ ε induces

the conjugation X &→ Xt of M(n,H). Then we get from the definition of

12



the unitary groups

SU(In, ε,H) = {g ∈ Sl(2n,C)| FgF−1 = g, gt = g−1}

= SU(2n) ∩M(n,H)
def.
= Sp(n),

SU(In,ϕ,H) = {g ∈ Sl(2n,C| FgF−1 = g, gt = g−1}

= SO(2n,C) ∩M(n,H)
def.
= SO∗(2n).

Furthermore, we can replace the system of two conditions defining the
above groups by an equivalent system and obtain thus

SU(In, ε,H) = SO(F,C) ∩M(n,H) = SO(F,C) ∩ SU(2n),

SU(In,ϕ,H) = SU(F,C) ∩M(n,H) = SU(F,C) ∩ SO(2n,C).

We remark that similar notations and isomorphismes have already been
introduced in [KoNa64], but the notation introduced here indicates in
addition the imbedding of the corresponding orthogonal or unitary groups
into the general linear group; this will be important in the next section.

1.3 Conformal compactification and conformal groups of the
algebras Sym(A,F) and Herm(A,F). — The conformal compactifi-
cation of the algebra V = M(n,F) has been constructed by the graph-
imbedding into G2n,n. We will now show that the automorphism a “ad-
joint operator” is transformed by this imbedding into an automorphism p
“orthocomplement”, and the conformal compactification of V a will then
be a connected component of the fixed point set of p. For this purpose,
given a form 〈·, ·〉 on E = Fn (with associated matrix A), we equip E ⊕E
with four non-degenerate bi- or sesquilinear forms:

(1) 〈(x1, x2), (y1, y2)〉1 := 〈x1, y1〉+〈x2, y2〉, given by the block-matrix
(

A
0

0
A

)

,

(2) 〈(x1, x2), (y1, y2)〉2 := 〈x1, y1〉 − 〈x2, y2〉, given by
(

A
0

0
−A

)

,

(3) 〈(x1, x2), (y1, y2)〉3 := 〈x1, y2〉 − 〈x2, y1〉, given by
(

0
−A

A
0

)

,

(4) 〈(x1, x2), (y1, y2)〉4 := 〈x1, y2〉+ 〈x2, y1〉, given by
( 0
A

A
0

)

,

and we will write W⊥j := {v ∈ F2n| 〈W, v〉j = 0} for the orthocomplement
of W ∈ G2n,n with respect to the form (j), j = 1, ..., 4. By the usual
dimension formulas, W⊥j is again an element of G2n,n; hence we have
maps (for j = 1, ..., 4)

p = pj : G2n,n → G2n,n, W &→ W⊥j .

Remark, as for the definition of the adjoint operator, that there are
in general two possibilities to define “orthocomplement”, and that they
coincide if (and only if) the map “orthocomplement” is an involution.
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1.3.1 Lemma. — The graph of the adjoint g∗ of g ∈ End(E) is
given by the formulas

(i) Γg∗ =
(

0
−I

I
0

)

Γ⊥1

g , Γ−(g−1)∗ = Γ⊥1

g ,

(ii) Γg∗ =
( 0
I
I
0

)

Γ⊥2

g , Γ(g−1)∗ = Γ⊥2

g ,
(iii) Γg∗ = Γ⊥3

g ,

(iv) Γg∗ = Γ⊥4

−g =
(

I
0

0
−I

)

Γ⊥4

g ,

where the second identity in (i) resp. (ii) holds for all invertible g. These
identities can also be written

(i) − aj = p1, (ii) aj = p2, (iii) a = p3, (iv) − a = p4,

with the maps a “adjoint” and pj, j = 1, ..., 4 “orthocomplement” defined
above.

Proof. — Writing the defining relation 1.1 (∗) of the adjoint operator
in the form

∀v, w ∈ E : 0 = 〈gv, w〉 − 〈v, g∗w〉 = −〈(v, gv), (w, g∗w)〉3,

we get (iii). Similar for the other relations.

1.3.2 Proposition. — Let notation be as above. By the graph-
imbedding we get the following inclusions as open and dense subsets:

Herm(A, ε,F) ↪→ {W ∈ G2n,n(F)|W = W⊥3}0,

Aherm(A, ε,F) ↪→ {W ∈ G2n,n(F)|W = W⊥4}0,

where the subscript 0 denotes “connected component of Γ0”. If A is Hermi-
tian or anti-Hermitian, these inclusions describe the conformal compacti-
fication of the corresponding matrix spaces, considered as Jordan algebras,
resp. - triple systems. The natural action of the corresponding unitary
group on the right-hand side spaces gives the action of the corresponding
conformal groups; i.e.

Co(Sym(A,F))0 = PO(

(

0 A
−A 0

)

,F)0 ⊂ PGl(2n,F),

Co(Herm(A, ε,F))0 = PU(

(

0 A
−A 0

)

, ε,F)0 ⊂ PGl(2n,F),

Co(Asym(A,F))0 = PO(

(

0 A
A 0

)

,F)0 ⊂ PGl(2n,F),
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Co(Aherm(A, ε,F))0 = PU(

(

0 A
A 0

)

, ε, ,F)0 ⊂ PGl(2n,F).

Proof. — a) Let us show that the first imbedding is well-defined: the
condition that g belongs to Herm(A) can be written as a(g) = g where a
is the map “adjoint w.r.t A”. By lemma 1.3.1, case (iii), a = p3, hence
Γg = Γ⊥3

g , which was to be shown. Similarly for −a.
b) We will now show that the first imbedding has open and dense

image. It is clear that an element of the right-hand side set is in the
image of the imbedding if and only if it is a graph, because then the
above reasoning can be reversed, showing that the graph necessarily
belongs to a Hermitian endomorphism. Recall that the set of graphs
in G2n,n is dense, its complement being given by the “non-graphs”
N := {W ∈ G2n,n| det(prW1 ) = 0} (see 1.1). Hence the image of the
imbedding is the set {W ∈ G2n,n|W = W⊥3}0 \ N which is open and
dense in {W ∈ G2n,n|W = W⊥3}0 (otherwise it would be empty, leading
to a contradiction). Similar for the second imbedding.

c) The unitary group of a form acts naturally on the space of Lagrangian
subspaces corresponding to this form. By the graph-imbedding just
described, we have hence a rational action of the group U(

( 0
−A

A
0

)

)0 on the
space Herm(A). We want to show that this is the action of the conformal
group, Co(Herm(A))0 = U(

( 0
−A

A
0

)

)0.
The map a “adjoint”, being an automorphism of the Jordan algebra

V = M(n,F), belongs to the conformal group Co(V ) of V . Recall that
for any φ ∈ Co(V ) we denote by φ∗(g) = φ ◦ g ◦ φ−1 the conjugation by
φ. The following lemma describes a∗:

1.3.3 Lemma. — For all g ∈ Gl(2n,F),

(1) (−ja)∗g = (g∗)−1,
(2) (ja)∗g = (g∗)−1,
(3) a∗g = (g∗)−1,
(4) (−a)∗g = (g∗)−1,

where the adjoint g∗ ∈ Gl(2n,F) in formula (j) is taken with respect to
the form (j) on E ⊕ E defined at the beginning of this section.

Proof of the Lemma. — It is an immediate consequence of the definition
of the adjoint operator that

g ·W⊥ = ((g∗)−1 ·W )⊥

for all W ∈ G2n,n. This can be written as p∗(g) = (g∗)−1, where p is the
map “orthocomplement”. The relations between p and a given by 1.3.1
now imply the lemma.
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Equation (3) of the lemma shows that Co(V )a∗ = U(
( 0
−A

A
0

)

). In order
to prove the claim we now only have to show that Co(V a) = Co(V )a∗ .
But this is easily verified sind the translations by elements of V a, the
group Str(V a)0 = Str(V )a∗

0 and j are in Co(V )a∗ and they generate its

identity component. In a similar way, we have Co(V −a)0 = Co(V )(−a)∗
0 =

U(
( 0
A

A
0

)

)0; but as we will not use in this work the formal definition of
the conformal group of a Jordan triple-system, one may take this equality
here simply as definition of Co(V −a).

d) It remains to show that the imbedding of V a into the corresponding
set of Lagrangian subspaces is a conformal compactificaton as defined in
[Be96a, Th.2.4.1]. Because we already know that the conformal group
acts on it by continuing the corresponding rational action on V a, it is now
enough to show that this action is transitive. This is the contents of the
Witt theorem, see [Bou59, 4, no.3, Cor 2], the hypothesis of which are
verified under our assumption on A.

Remarks. 1. When A is neither Hermitian nor anti-Hermitian, the Witt
theorem cannot always be applied. Furthermore, Herm(A) will then in
general not be semi-simple.

2. The whole set of Lagrangian subspaces is in general not connected.
as shows the example F = R, A = I2n+1.

1.4. Normal forms of the algebras Sym(A,F) and Herm(A,F)
and of their conformal groups. — We specialize Proposition 1.3.2
to the matrices of some standard bilinear forms. In some cases we ob-
tain block-matrices which can be diagonalized: let the following endomor-
phisms of E ⊕ E be defined by 2n × 2n block-matrices: R =

(

I
I
−I
I

)

(the

real Cayley transform), C =
(−I

iI
−iI
I

)

(the Cayley transform). We then
have for all A ∈ M(n,F),

(1) R
( 0
A

A
0

)

R−1 =
(−A

0
0
A

)

, R2 = −2
( 0
I
I
0

)

, 2R−1 = Rt,

(2) R
(

0
−A

A
0

)

R−1 =
(

0
−A

A
0

)

,

(3) C
(

0
A

A
0

)

C−1 =
(

0
−A

−A
0

)

, C2 = 2I, C
t
= C, C−1 = C

t
.

(4) C
( 0
−A

A
0

)

C−1 =
(−A

0
0
A

)

.

The conformal group then also takes a simpler form: we apply the relations

O(gtAg) = g−1O(A)g, U(gtAg−1) = g−1U(A)g,

which follow easily from the definitions (the last identity should, more
conceptually but less familiar, be written U(gtAε(g)−1, ε) = g−1U(A, ε)g.)
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Now Proposition 1.3.2 gives the following table:

F = R : Co(Sym(In,R))0 = PO(

(

0 I
−I 0

)

,R) = Sp(n,R)

Co(Asym(In,R))0 = PO(

(

0 I
I 0

)

,R)

= RPO(

(

I 0
0 −I

)

,R)R−1 = RSO(n, n)R−1

F = C : Co(Sym(In,C))0 = PO(

(

0 I
−I 0

)

,C) = Sp(n,C)

Co(Asym(In,C))0 = PO(

(

0 I
I 0

)

,C)

= RPO(

(

I 0
0 −I

)

,C)R−1 = RSO(n, n;C)R−1

Co(Herm(In,C))0 = PU(

(

0 I
−I 0

)

,C) = C SU(n, n)C−1

Co(Aherm(In,C))0 = PU(

(

0 I
I 0

)

,C)

= RPU(

(

I 0
0 −I

)

,C)R−1 = RSU(n, n)R−1

F = H : Co(Herm(In,H))0 = PU(

(

0 I
−I 0

)

,H)

= rjC PU(I2n, ε ◦ j∗,H)C−1r−1
j

∼= SO∗(4n)

Co(Aherm(In,H))0 = PU(

(

0 I
I 0

)

,H)

= RPU(

(

I 0
0 −I

)

,H)R−1 = RSp(n, n)R−1

(Here j is the element of the canonical basis of H and rj is right
multiplication by j.) By the following lemmas we reduce the description of
the conformal groups of the spaces (A)herm(

(

0
I
−I
0

)

) and (A)herm(Ip,q)
to the above listed spaces.

1.4.1 Lemma. — Let F := Fm :=
(

0
−Im

Im
0

)

and lF : M(n,F) →
M(n,F), X &→ FX. The following restrictions of lF :

Herm(I2m, ε,F) → Aherm(F, ε,F), X &→ FX

Aherm(I2m, ε,F) → Herm(F, ε,F), X &→ FX
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are bijections which induce isomorphisms of the corresponding conformal
groups, given by conjugation with

(

F
0

0
I

)

.

Proof. — The condition Xt = X is equivalent to F−1(FX)tF = −FX ,
which implies that the maps are well-defined. They are bijective, the
inverse given by X &→ −FX . More conceptually: define involutions
α(X) := Xt and β(X) := F−1XtF of V = M(2m,F); then α and −β
are conjugate: −β = lF ◦ α ◦ l−1

F . Therefore lF · V α = V −β and

Co(V −β) = Co(V )(−β)∗ = (lF )∗Co(V )α∗ = (lF )∗Co(V α),

where (lF )∗ is nothing but conjugation with
(

F
0

0
I

)

in Co(V ) = PGl(4m),
thus proving the statement about the conformal groups for the first case;
similar for the other.

1.4.2 Lemma. — The map

lIp,q : Herm(Ip,q, ε,F) → Herm(In, ε,F), X &→ Ip,qX

(where n = p+ q) is a bijection, and (lIp,q )∗ (= conjugation by
(

Ip,q
0

0
I

)

in

PGl(2n)) defines an isomorphism of the corresponding conformal groups.
A similar statement holds for Aherm(A, ε,F).

Proof. — Remark that the condition X = Xt is equivalent to
(Ip,qX)tIp,q = Ip,qIp,qX ; thus the map is well-defined. It is clear now
how to adapt the proof of the previous lemma to the given situation.

Remark. We used in 1.4.1 and 1.4.2 implicitely a notion of “conformal
isomorphism” as an isomorphism inducing an isomorphism of conformal
groups. It is therefore not very important that lF and lIp,q are actually
linear. There are other conformal isomorphisms not having this property.
For example, the Potapov-Ginzburg transformation (see section 0.2) can
be used; it is given by a rational conformal map which is not linear
when restricted to a matrix space. The isomorphisms introduced here
preserve hence some additional structure (which we do not need at
this stage); namely they are isomorphisms of Jordan triple-systems: we
equip all matrix spaces in question with a Jordan triple product given
by {X, Y, Z} = 1

2 (XY tZ + ZY tX). Then, for all matrices A and B,
F (ABtA) = FA(FB)tFA, which implies that lF is a homomorphism of
triple systems; similarly for lIp,q .

1.5. Open orbits in the conformal compactification of Herm(A, ε,F).
We now come to the main topic of this chapter: find subgroups G ⊂
Co(Herm(A)) such that there exists an open orbit G · x ⊂ Herm(A)c

for some x ∈ Herm(A)c. Remark that we have two distinguished base
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points: x = 0 and x = I. These two base points are related by the real
Cayley-transform R =

(

I
I
−I
I

)

.

A. Open orbits of type Gl(n,F)/O(A,F) or Gl(n,F)/U(A,F).
The open cone Ω = Str(Herm(A))0 · I ⊂ Herm(A) is isomorphic to
Gl(n,F)/U(A,F), see section 1.2.2. There is also a Cayley-transformed
realization having 0 as base point, cf. example 2.2.5.

B. Open orbits of group type. — The second type of open orbits
is of the form G × G/dia(G × G) which is nothing but the group G
considered as a homogeneous space under the action (G × G) × G → G,
((g, h), x) &→ gxh−1. Let us consider G = U(A) = U(A, ε,F). Using
Lemma 1.3.1 in the same way is in the proof of Proposition 1.3.2 we get
the following graph-imbedding:

U(A)0
Γ
↪→{W ∈ G2n,n|W = W⊥2}I .

Composing with the real Cayley-transform R and using the relation
R
(

A
0

0
−A

)

R−1 =
( 0
A

A
0

)

, we obtain:

U(A)0
Γ
↪→{W ∈ G2n,n|W = W⊥2}I

R→{W ∈ G2n,n|W = W⊥4}0 = Aherm(A)c.

We will write this shorter as

R · U(A)0 ⊂ Aherm(A)c,

which can be interpreted as a rational relation: if g ∈ U(A)0, then
(g − I)(g + I)−1 ∈ Aherm(A) whenever g + I is invertible. Conversely,
whenever X ∈ Aherm(A) and X − I and X + I are invertible, then
R−1X = (X + I)(X − I)−1 ∈ U(A). This implies that the intersection
of R · U(A) with Aherm(A)c is dense in Aherm(A)c and described by
the condition det(X2 − I) 2= 0. (In [Wey39, II.10] this realization is
called “CAYLEY’s rational parametrization of the orthogonal group”.)
The example of O(2n + 1,R) shows that R · U(A) may be bigger than
Aherm(A)c. We will now see that R · U(A)0 ⊂ Aherm(A)c is actually an
orbit of the form we are looking for.

1.5.1 Proposition. — For all non-singular matrices A,

R · U(A, ε,F)0 = Co(Aherm(A, ε,F))j∗0 · 0 ⊂ Aherm(A, ε,F)c

are open and symmetric orbits.
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Proof. — Only the stated equality remains to be shown. First,

U(

(

A 0
0 −A

)

)(−id)∗
0 · I = (U(

(

A 0
0 −A

)

) ∩
(

Gl(n) 0
0 Gl(n)

)

)0 · I

= {gh−1| g, h ∈ U(A)0} = U(A)0.

The last equality just describes the usual realization of U = U(A)0 as a
symmetric space U × U/dia(U × U) with base point I. Transforming by
R,

R(U(A)0) = R(U(

(

A 0
0 −A

)

)(−id)∗
0 · I)

= U(

(

0 A
A 0

)

)(R(−id)R−1)∗
0 · 0 = Co(Aherm(A))j∗0 · 0.

We can now use the isomorphisms 1.4.1 and 1.4.2 in order to get an
imbedding of some of the groups U(A) into spaces of Hermitian matrices
(which thus appear less natural, but have the advantage that the latter
spaces are Jordan-algebras, not only triple-systems). We get the following
table (where p+ q is even in the first line and n even in the third line, and
the notations for the quaternionic case have been introduced in section
1.2):

F = R : O(p, q) = O(Ip,q,R)
R
↪→Asym(Ip,q,R)

c

(

Ip,qF

0

0

I

)

−→ Sym(F,R)c

Sp(n,R) = O(F,R)
R
↪→Asym(F,R)c

(

F
0

0

I

)

−→ Sym(I2n,R)
c

F = C : O(I,C)
R
↪→Asym(I,C)c

(

F
0

0

I

)

−→ Sym(F,C)c

Sp(n,C) = O(F,C)
R
↪→Asym(F,C)c

(

F
0

0

I

)

−→ Sym(I2n,C)
c

U(p, q) = U(Ip,q,C)
R
↪→Aherm(Ip,q,C)

c

(

iIp,q
0

0

I

)

−→ Herm(In,C)
c

C U(n, n)C−1 = U(F,C)
R
↪→Aherm(F,C)c

(

F
0

0

I

)

−→ Herm(I2n,C)
c

F = H : Sp(p, q) = U(Ip,q,H)
R
↪→Aherm(Ip,q,H)c

(

Ip,qrj
0

0

I

)

−→ Herm(I, j∗ ◦ ε,H)c

SO∗(4n) ∼= U(F,H)
R
↪→Aherm(F,H)c

(

F
0

0

I

)

−→ Herm(I2n,H)c

SO∗(2n) = U(I, j∗ ◦ ε,H)
R
↪→Aherm(I, j∗ ◦ ε,H)c

(

rj
0

0

I

)

−→ Herm(I,H)c
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(The list [Ma73, p.415] contains an error: the image of the fourth
imbedding for F = C described above is there denoted by U∗(2m); but
U(F,C) is not isomorphic to this group.) We can keep track of the
group Co(Aherm(A))j∗ ∼= U(A) × U(A) acting on U(A) as described in
Prop.1.5.1 by conjugating it by the isomorphisms given above. For the
case of the Euclidean Jordan algebras we write down the result:

Sp(n,R)× Sp(n,R) = Co(Sym(I2n,R))
(αj)∗ withα(X) = −FXF−1,

U(p, q)× U(p, q) = Co(Herm(In,C))
(αj)∗ withα(X) = −Ip,qXIp,q,

SO∗(2n)× SO∗(2n) = Co(Herm(In,H))(αj)∗ withα(X) = −ϕXϕ−1,

where in the last case ϕ is the conjugation of Hn defined in section
1.2 (we remarked there that α(X) = Xt under the usual imbedding
M(n,H) ⊂ M(2n,C).)

C. Orbits of type Co(V )/Str(V ). — The homogeneous space Co(V )/
Str(V ) can be imbedded as open orbit into the conformal compactification
V c ×V c of V ×V . This is best described in the general context of Jordan
algebras, see example 2.2.10. In the cases of Hermitian matrices we get
imbeddings

SU(

(

0 A
−A 0

)

,F)/(Sl(n,F)×R∗) ↪→ Herm(A,F)c ×Herm(A,F)c.

D. Orbits of other type. — In section 2.4 we will see that open
imbeddings of symmetric spaces into compactifications of Euclidean Jor-
dan algebras are related to involutions of these algebras. It is known that
the Euclidean matrix algebra Herm(I,C) has “more” involutions than the
other Euclidean matrix algebras; for this reason we still have to discuss
two classes of orbits related to this algebra:

1.5.2 Proposition. — (i) Let α(Z) = Zt, Z ∈ Herm(In,C). Then
the orbits

X(±α) := Co(Herm(In,C))
(±αj)∗
0 · 0 ⊂ Herm(In,C)

c

are open. For −α, the orbit is isomorphic to SO∗(2n)/SO(n,C), and for
+α it is isomorphic to SO(n, n)/SO(n,C) as a symmetric space.

(ii) Let β(Z) = FZtF−1, Z ∈ Herm(I2n,C). Then the orbits

X(±β) := Co(Herm(I2n,C))
(±βj)∗
0 · 0 ⊂ Herm(I2n,C)

c
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are open. For −β, the orbit is isomorphic to Sp(2n,R)/Sp(n,C), and for
+β it is isomorphic to Sp(n, n)/Sp(n,C) as a symmetric space.

Proof. — The orbits in question are of the form Co(Herm(A))(±bj)∗ ·0,
where b is the involution defined by b(Z) = BZtB−1 with some symmetric
or anti-symmetric matrix B commuting with A. A simple computation in
the Lie algebra of Co(Herm(A)) (see Prop.2.2.1) shows that such orbits
are open. The involution (±bj)∗ of Gl(2n) is given by taking the adjoint
with respect to the form given by

(

B
0

0
∓B

)

, see 1.3.1. Hence

Co(Herm(A))(±bj)∗ = P(U(

(

0 A
−A 0

)

) ∩O(

(

B 0
0 ∓B

)

)).

A matrix of this form fixes the base point 0 if it is in the the group
(

Gl(n)
0

0
Gl(n)

)

fixed by (−idV )∗. One easily verifies that these are the

matrices of the form
(

a
0

0
A−1atA

)

with a ∈ O(B); hence the stabilizer of
the base point is isomorphic to O(B). We now specialize to the cases (i)
and (ii) given above:

In case (i), A = In, B = In. For −α, remark that SU(
( 0
−I

I
0

)

) ∩
SO(2n,C) equals SO∗(2n) (see section 1.2). For +α, the Cayley transform
maps SU(

( 0
−I

I
0

)

) ∩ SO(n, n;C) onto SO(n, n;R).

In case (ii), A = I2n, B = F . For −β, observe that SU(
(

0
−I

I
0

)

) ∩
SO(

(

F
0

0
F

)

,C) is mapped by the real Cayley transform R onto the

group Sp(n, n) (see section 1.2). For +β, one uses that SU(
(

0
−I

I
0

)

) ∩
SO(

(

F
0

0
−F

)

,C) is mapped by the complex Cayley transform C onto the
group Sp(2n,R).

1.6 Open orbits in the conformal compactification of V =
M(n,F). — As the constructions in these cases are similar to the
preceeding ones and because these algebras are never Euclidean, we will
give less details than in the preceeding section.

A. Orbits of type Gl(n,F). — For V = M(n,F) the open cone
Ω = Str(V )0 · I coincides with the group-type orbits and is isomorphic to
Gl(n,F) ⊂ M(n,F), see section 1.1. There is also a Cayley-transformed
realization having 0 as base point.

B. Orbits of type U(
(

A
0

0
±A

)

,F)/U(A)× U(A). — Let A be a non-
degenerate Hermitian or skew-Hermitian matrix and define an involution

of V = M(n,F) by α(X) = A−1X
t
A. Then the orbits X(±α) :=

Co(V )(±αj)∗
0 · 0 are open in V c (Prop.2.2.1), and a calculation similar to

the one given in 1.5 D shows that X(±α) ∼= U(
(

A
0

0
∓A

)

,F)/U(A)× U(A).
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C. Orbits related to complex conjugation. — This is a special
type of orbits having no analogue for Hermitian matrices because no
unitary groups will be involved: for V = M(n,C), τ(X) = X defines
a conjugation with respect to the real form M(n,R) of V . The orbits

X(±τ) := Co(V )(±τj)∗
0 · 0 are open in V c (Prop. 2.2.1), and C(X(τ)) =

Co(V )τ∗ · ie ∼= Gl(2n,R)/Gl(n,C). We have Co(V )(−τj)∗ = {g ∈
Gl(2n,C)|FgF−1 = g} = Gl(n,H), hence X(−τ) ∼= Gl(n,H)/Gl(n,C).

1.7 A generalization of the SIEGEL-space. — We will give now a
geometric description of the orbits constructed in section 1.5. Generalizing
the arguments used in the proof of Proposition 1.5.2, we obtain

1.7.1 Theorem. — Let A and B be non-singular n× n- F-matrices
and ε1, ε2 involutions of F, canonically extended to E := Fn, such that
ε1A◦ε2B = ε2B◦ε1A. Assume that A is ε1-Hermitian or -skew-Hermitian
and B is ε2-Hermitian or -skew-Hermitian. Then β(Z) = B−1ε2(Z)tB
defines an involution of V = Herm(A, ε1,F), and the orbits

X(±β) := Co(V )(±jβ)∗
0 · 0

= (U
(

(

0 A
−A 0

)

, ε1,F
)

∩ U
(

(

B 0
0 ∓B

)

, ε2,F
)

)0 · 0

are open in the conformal compactification V c of V . The stabilizer of
the base point 0 ∈ V is isomorphic to U(B, ε2,F). The orbit X(±β)

is a connected component of the set of n-dimensional subspaces W of
E ⊕E = Fn ⊕ Fn such that

(i) : W = W⊥ w.r.t. the ε1-sesquilinear form
( 0
−A

A
0

)

,

(ii) : the ε2-sesquilinear form
(

B
0

0
∓B

)

is non-degenerate on W .

The intersection X(±β) ∩ V is a union of connected components of the set
of matrices

{Z ∈ V | det(B ∓ ε2(Z)tBZ) 2= 0}.

Similar statements hold for the spaces V = M(n,F) and V = Aherm(A, ε1,F).
In the latter case, the choice B = I and ε2 = idF yields orbits of group
type.

Proof. — The compatibility conditions imply that V = Herm(A) is
stable by the involution β. We are going to show in Prop.2.2.1 that the

orbit X(±β) = Co(V )(±βj)∗
0 · 0 is open in V c. Lemma 1.3.3 gives the

description of Co(V )(±βj)∗ in terms of unitary groups, and the stabilizer
of the base point is calculated as in 1.5.2.

The condition (i) in the description of X(±β) is nothing but the
description of V c, see 1.3.2. For the second condition, recall that the base

23



point 0 is identyfied with its graph Γ0 = E ⊕ 0 ∈ G2n,n. The restriction
of the form

(

B
0

0
±B

)

to this space is given simply by B which is non-

degenerate by assumption. But then the whole U(
(

B
0

0
±B

)

)-orbit of Γ0

consists of spaces on which this form is non-degenerate. If W = ΓX

is a graph of X ∈ V = Herm(A), then the condition that
(

B
0

0
∓B

)

is non-degenerate on W is seen to be equivalent to the condition that
det(B ∓ ε2(X)tBX) 2= 0. All that remains to show in order to conclude
that the connected component of Γ0 of the set of graphs satisfying the
non-degenerate condition coincides with the orbit X(±β), is: if the form
(

B
0

0
±B

)

is non-degenerate on some n-dimensional subspace W , then the
orbit of W is open. In [Be96b] we will give a general algebraic and very
natural proof of this fact using the Jordan-theoretic idea of “mutation”.
In the more special situation here one may use the following arguments:
first consider the case F = C and ε1 = ε2 = idC. If the restriction of the
C-bilinear form

(

B
0

0
∓B

)

to W is non-degenerate, then this restriction has
normal form B. The stabilizer of W can thus be considered as a subgroup
of O(B); but then the dimension of the orbit of W is bigger or equal
than the dimension of the orbit of Γ0. Because the latter is of maximal
dimension, we must have equality, and the orbit of W is open in V c (and
one sees also that in the complex case there is just one open orbit). To
prove the desired statement in the general “real” set-up of the theorem,
we complexify first all the structures involved, use than the special case
just discussed and then restrict again to the real form we are interested
in.

An example: the classical SIEGELspace. — Let F = C, ε1 = idC, ε2 is
complex conjugation, and A = B = In. Then B is positive definite on the
base point, and

X(β) ∩ V = {Z ∈ Sym(n,C)| I − Z
t
Z >> 0}.

Since this set is bounded and open in Sym(n,C), we may conclude from
the last condition stated in the theorem that X(β) is isomorphic to this
space; in this case our theorem describes thus the classical SIEGEL-space,
see [Sa80, chap. II.7]. Similarly, the condition of the theorem implies that
X(−β) ∩ V = V because the Hermitian form

(

I
0
0
I

)

is non-degenerate on

any subspace. We will see in chapter 2 that actually X(−β) = V c; this is
a compact Hermitian symmetric space.

Let us also mention that the preceeding theorem permits to get hold
of the Co(V )(±βj)∗-orbit structure of V c. In fact, orbits are characterized
by the rank (and other invariants, such as signature) of the resctriction
of

(

B
0

0
±B

)

to subspaces W . An orbit is in the closure of another only
if the rank corresponding to this orbit is strictly lower than the rank
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corresponding to the other. In particular, there is one orbit (or finite
union of orbits) lying in the closure of every other orbit, namely the set
of n-dimensional subspaces W such that the forms

(

0
−A

A
0

)

and
(

B
0

0
±B

)

vanish simultaneously on W×W . When the orbit is a bounded symmetric
domain (as the SIEGEL-space), then this space is known to be the Shilov-
boundary of the orbit.

1.8 The LIOUVILLE-theorem for the matrix algebras. — We
will specialize our LIOUVILLE-theorem [Be96a, Th.2.3.1] to the case of
the special Jordan algebras M(n,F) and Herm(A,F). As explained in
the introduction, the case of a Euclidean Jordan algebra is related to
causal groups. In the general non-Euclidean situation, the result will
show strong analogies with the fundamental theorem of projective geometry
stating that every transformation of projective space PCn+1 (whith n > 1)
preserving collinearity is induced by an element of the group generated by
PGl(n+ 1,C) and complex conjugation (see [L85, p.158]).

Let us define for the Grassmannian G2n,n(F) a notion similar to
collinearity in projective space: let F ⊂ F2n be a subspace of dimension
n+ k, −n ≤ k ≤ n. If k ≥ 0, we will call the set

[F ] := {W ∈ G2n,n|W ⊂ F}

the k-pencil in G2n,n defined by F . In other terms, elements W1, ...,Wm of
G2n,n lie on the same k-pencil iff the subspace < W1, ...,Wm > generated
by them is of dimension less or equal than n+k. If k ≤ 0, then the k-pencil
in G2n,n defined by F is by definition the set

[F ] := {W ∈ G2n,n|F ⊂ W}.

In other terms, elements W1, ...,Wm of G2n,n lie in this case on the same
k-pencil iff their intersection is of dimension greater or equal than n+k. It
is clear from the usual dimension formulas that k-pencils and −k-pencils
are in bijection by the map W &→ W⊥ where the orthocomplement is
taken with respect to some non-degenerate form on F2n; hence k-pencils
and −k-pencils are the same objects. In contrast to the situation of lines
in projective space, there is in general no k-pencil joining two different
points, and already 1-pencils are higher dimensional objects. A k-pencil in
Herm(A,F)c is by definition the intersection of a k-pencil in G2n,n(F) with
Herm(A,F)c. The following theorem is a translation of our LIOUVILLE-
theorem to this geometrical setting:

1.8.1 Theorem. — Let V be the Jordan algebra M(n,F) (n > 1) or
one of its subalgebras Herm(A,F) (assumed to be non-isomorphic with R

or C) with conformal compactification V c given by G2n,n(F), resp. by the
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set of Lagrangian subspaces described in Proposition 1.3.1. Then Co(V )
is the group of transformations preserving k-pencils. More precisely, if
φ : V c ⊃ V1 → V2 ⊂ V c is a locally defined (on some domain V1 of V c)
diffeomorphism of class C4 such that pieces of k-pencils contained in V1

are transformed into pieces of k-pencils contained in V2, then φ is rational
and has a rational continuation onto V c, given by an element of Co(V ).

Proof. — We first check that Co(V ) does indeed preserve k-pencils: this
is clear for the action of Gl(2n,F), for the maps induced by conjugations
of the base field (i.e. complex conjugation if F = C) and for maps of the
form W &→ W⊥ (due to fact that k-pencils and −k-pencils are the same
objects as explained above). As these elements generate Co(V ), this group
preserves k-pencils.

Conversely, let φ as in the theorem be given. We may assume that
V1, V2 ⊂ V . In order to conclude using [Be96a, Th.2.3.1] we have to show
that for all x ∈ V1, Dφ(x) ∈ Str(V ). For this purpose, let us describe
the affine picture of k-pencils: two points X, Y ∈ V = End(Fn) lie on
the same k-pencil iff dim(ΓX ∩ ΓY ) ≥ k, that is iff rk(X − Y ) ≤ k. Any
k-pencil through X is obtained by adding X to a k-pencil through 0. The
set {X |rk(X) ≤ k} is the reunion of k-pencils through 0, and the set
{X | det(X) = 0} is the reunion of n − 1-pencils through 0. Let [V ] be
a k-pencil through 0 defined by F with dimF = n + k > n. We write
Fi, i = 1, 2 for the projections of F onto the first, resp. second factor of
Fn⊕Fn. Because Γ0 = Fn⊕0 ⊂ F , we have dimF1 = n, hence dimF2 = k.
The condition ΓX ⊂ [F ] is now seen to be equivalent to im(X) ⊂ F2. This
description shows that sums and scalar multiples of elements of [F ] still
lie on [F ]; i.e. the affine picture [F ] ∩ V of [F ] is a linear subspace of V .
By translation, the affine picture [F ] ∩ V of a k-pencil through X is an
affine subspace [F0]+X of V where [F0] = [F ]−X is a k-pencil through 0.
Coming back to our k-pencil preserving transformation φ, it is now clear
from the very definition of Dφ(x) being the linearization of φ at x that
Dφ(x) preserves k-pencils passing through the origin. In formulas,

Dφ(X) · [F ] = (φ([F ] +X)− φ(X))

for all k-pencils [F ] passing through the origin.
Now it remains to show that Str(V ) is the group of linear transforma-

tions of V preserving k-pencils passing through the origin. In particular,
such a transformation g stabilizes the set {X ∈ V | det(X) = 0} which is
the reunion of n − 1-pencils passing through the origin. But the polyno-
mial det being irreducible, we may conclude that det ◦g is a multiple of the
polynomial det, which in turn implies that g ∈ Str(V ) ([FK94, p.161]).

26



2. The Jordan-theoretic construction

In this chapter we construct open and symmetric orbits in the conformal
compactification of general semi-simple Jordan algebras (Prop. 2.2.1);
we call them Makarevič spaces since they have been classified by B.O.
Makarevič [Ma73]. We first recall some basic properties of the conformal
group of a Jordan algebra.

2.1 The three canonical involutions of the conformal group.
We have defined in section 1.0 the conformal or Kantor-Koecher-Tits group
of a (semi-simple) Jordan algebra V as the group of birational mappings
of V generated by the translations τv, v ∈ V (τv(x) = x+v), the structure
group Str(V ) and the Jordan inversion j(x) = x−1. The Lie algebra co(V )
of Co(V ) is a graded Lie algebra of polynomial vector fields ξ on V which
we write as

ξ(x) = v +H(x) + P (x)w, v, w ∈ V,H ∈ str(V ) = Lie(Str(V )),

where P (x)w = 2x2w − x(xw) is the quadratic representation of V . We
write

co(V ) = V ⊕ str(V )⊕W,

for the decomposition of co(V ) in spaces of homogeneous polynomial vector
fields of degree 0, 1 and 2.

Consider the following three involutive conformal mappings of V : −idV ,
j and−j = (−id)◦j = j◦(−id). The conjugation in Co(V ) by each of these
elements defines an involutive automorphism of Co(V ). Let us describe
these involutions. We will, for any φ ∈ Co(V ), denote by φ∗ the induced
automorphism on the group level (i.e. the conjugation) as well as on the
Lie algebra level (i.e. the adjoint representation). The latter is described
by the formula for the action of diffeomorphisms on vector fields living on
a vector space,

(φ∗ξ)(x) = ((Dφ)(φ−1(x))) · ξ(φ−1(x)).

For φ = −idV , ((−id)∗ξ)(x) = −ξ(−x), and we get the decomposition of
co(V ) in ±1-eigenspaces of the involution (−id)∗:

co(V ) = str(V )⊕ (V ⊕W ).

We know that (Dj)(x) = −P (x)−1 (see [FK94, Prop.II.3.3]); hence
(j∗ξ)(x) = −P (x) · ξ(x−1), in particular (j∗v)(x) = −P (x)v for constant
vector fields v. The decomposition of str(V ) in ±1-eigenspaces of j∗ is
given by

str(V ) = Der(V )⊕ L(V ),
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where Der(V ) is the algebra of derivations of the Jordan algebra V and
L(V ) = {L(v)|v ∈ V } where L(v)x = vx. We thus obtain the following
decompositions of co(V ):

w.r.t. j∗ : co(V ) = (Der(V )⊕ q(+))⊕ (q(−) ⊕ L(V )),

w.r.t.(−j)∗ : co(V ) = (Der(V )⊕ q(−))⊕ (q(+) ⊕ L(V )),

where q(±) := {v ± j∗v| v ∈ V }.

2.1.1 Lemma. — (i) The conformal mappings −idV and j are
conjugate in Co(V ), namely

R(x) := (x− e)(x+ e)−1

defines an element (the “real Cayley transform”) of Co(V ) such that
R ◦ j ◦ R−1 = −idV and R−1 ◦ j ◦ R = −idV . The inverse of R is
given by

R−1(x) = (x+ e)(x− e)−1 = R ◦ (−j)(x) = (−j) ◦R(x).

(ii) If V is in addition a complex Jordan algebra, then also −idV and −j
are conjugate in Co(V ), namely C ◦ (−j) ◦C−1 = −idV with C := i◦R ◦ i
(“the Cayley transform”), where i is the multiplication by i =

√
−1 in V .

The inverse of C is C.

Proof. — (i) Writing R(x) = e− 2(x+ e)−1 = τe ◦ 2idV ◦ (−j) ◦ τe(x),
we see that R ∈ Co(V ). Using the identiy (e + x−1)−1 = e − (e + x)−1

(which is a special case of HUA’s identity, see [FK94, p.39]), we get

R ◦ j(x) = (x−1 − e)(x−1 + e)−1 = (x−1 − e)(e− (e+ x)−1)

= (x−1 − e)x(e+ x)−1 = (e− x)(e+ x)−1 = (−idV ) ◦R(x).

For the second relation,

j(R(x)) = ((x− e)(x+ e)−1)−1 = (x+ e)(x− e)−1 = R(−x),

where it is implicitely used that V is power-associative. From this we get
R◦(−j) = j ◦R◦j = (−j)◦R, and one now verifies by similar calculations
the formula for the inverse of R.

(ii) C−1(−idV )C = i−1R−1(−idV )Ri = −j using (i) and j ◦ i = −i ◦ j.
Furthermore, C2 = iR(−idV )Ri = ijR2i = ij(−j)i = idV .

2.1.2 Remark. If α is an automorphism of V , then α((x − e)(x +
e)−1) = (α(x) − e)(α(x) + e)−1, i.e. αR = Rα. From this we get
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R(jα)R−1 = −α. (This is a generalization of 1.4 (1).) If V is complex
and α a C-conjugate linear (iαi−1 = −α) automorphism, C(jα)C−1 = α.

2.2 Makarevič spaces: definition and examples. — Consider
α ∈ Gl(V ) with the property that (jα)2 = idV - by this we mean that
(α(αx)−1))−1 = x for all x where this expression is defined. Then α
is actually in the structure group as we see by writing (jα)2 = idV in
the form jαj = α−1. Consequently, the conjugation by jα defines an
involutive automorphism j∗α∗ = (jα)∗ of the conformal group Co(V ).
We write Co(V )j∗α∗ for its fixed point group. Certainly there exist α
such that (jα)2 = idV : one may choose α or −α to be an involutive
automorphism.

2.2.1 Proposition. — If V is a semi-simple Jordan algebra and
α ∈ Gl(V ) is such that (jα)2 = idV , then the orbit

X(α) := Co(V )j∗α∗

0 · 0 ⊂ V c

is open in the conformal compactification V c and is a symmetric space with
symmetry −idV at the origin. The symmetric pair associated to X(α) is
(co(V )j∗α∗ , str(V )j∗α∗).

Proof. — Because α and j commute with −idV , Co(V )j∗α∗ is stable
under the conjugation (−id)∗. Therefore (−idV )∗ induces an involution
on this group and on its Lie algebra co(V )j∗α∗ . Recalling that co(V ) =
str(V )⊕ (V ⊕W ) is the decomposition in ±1-eigenspaces, we see that

co(V )j∗α∗ = h(α) ⊕ q(α); h(α) = str(V )j∗α∗ , q(α) = {v + j∗αv| v ∈ V };

is the decomposition in ±1-eigenspaces with respect to (−idV )∗. Let us
show now that κ : Co(V )j∗α∗

0 → V c, g &→ g · 0 is a submersion, so its
image will be open in V c. By equivariance, it is enough to show that the
differential at the origin

κ̇ : co(V )j∗α∗ → T0V
c = V, ξ &→ ξ(0)

is surjective. But this is clear because for v+j∗αv ∈ q(α), (v+j∗αv)(0) = v
(recall that j∗αv is homogeneous quadratic und thus zero at the origin).
Furthermore, ker κ̇ = h(α) because ξ(0) = 0 for all ξ ∈ str(V ). This means
that the stabilizer of the base point 0 in Co(V )j∗α∗ has Lie algebra h(α),
and so is open in the subgroup fixed by the involution (−idV )∗. Thus X(α)

is a symmetric space with the associated decomposition of the Lie algebra
given above. Let us calculate its symmetry σ at the origin: if x = g · 0
with g ∈ Co(V )j∗α∗ , then σ(x) = ((−idV )∗g) · 0 = −g · 0 = −x.

29



We will call a symmetric space, realized as an open orbit X(α) as in the
preceeding proposition, aMakarevič space. Work of Rivillis and Makarevič
shows that actually any reductive symmetric space G/H which can be
realized as on open orbit in V c (in such a way that G acts as a subgroup
of Co(V )) is isomorphic to a space X(α) ([Ri70, Th.3], [Ma73, Th.3]).
Spaces of the form X(α) have been classified by B.O.Makarevič in [Ma73]
(but no proof of completeness of this classification is given there). The
most important examples are:

2.2.2 A class of causal symmetric spaces. All spaces listed in table
0.3.1 are of the form X(α); see Theorem 2.4.1.

2.2.3 General linear groups Gl(n,F). See 1.6.A.
2.2.4 Unitary groups U(A, ε,F). See 1.5.B. We have remarked

there that only some of these groups can be realized as open orbits in
Jordan algebras, but all of them a Jordan triple system of skew-Hermitian
matrices. In [Be96b] we will call such spaces Makarevič spaces of the
second kind.

2.2.5 Symmetric cones and their non-convex analogues. See
1.5.A and 1.6.A.We consider here a Cayley-transformed realization: we use
the relation α(Gβ) = Gαβα−1

holding for any group G and automorphisms
α and β of G. By this relation, for all φ ∈ Co(V ),

φ(Co(V )j∗α∗ · 0) = Co(V )φ∗j∗α∗φ
−1

∗ · φ(0).

Taking for φ the real Cayley-transform R given in Lemma 2.1.1 we obtain,
using that RjR−1 = −idV ,

R−1(X(idV )) = Co(V )(R
−1jR)∗

0 ·R−1(0) = Co(V )(−idV )∗
0 · e = Str(V )0 · e,

which is by definition the open cone Ω associated to the Jordan algebra
V .

2.2.6 Tubes over convex or non-convex cones. Generalizing the
preceeding calculation, if α is an involutive automorphism of V , then (by
remark 2.1.2)

R−1(X(α)) = Co(V )(−α)∗
0 · e.

This domain contains as an open subset the tube V − ⊕ Ω+, where
V ± = {v ∈ V |α(v) = ±v} and Ω+ is the cone Ω+ = Str(V +)0·e associated
to the Jordan algebra V +. This is an immediate consequence of the fact
that Co(V )(−α)∗ contains the translations by elements of V − and and the
group Str(V )α∗ which acts transitively on Ω+.

2.2.7 Hermitian and pseudo-Hermitian symmetric spaces. If
V is a complex Jordan algebra, then Co(V ) is a complex Lie group acting
C-rationally on V ; hence V c is a complex manifold on which Co(V ) acts
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holomorphically. Clearly any Makarevič space X(α) ⊂ V c inherits the
invariant complex structure from V c. If α is complex-linear, then X(α)

will be a complex symmetric space, i.e. a quotient of complex Lie groups.
If α is conjugate-linear, then X(α) will be a pseudo-Hermitian symmetric
space in the proper sense, i.e. have an invariant complex structure without
being a quotient of complex Lie groups.

2.2.8 Hermitian and pseudo-Hermitian symmetric spaces of
tube type. Let V be a complex Jordan algebra and τ be a conjugation,
i.e. a conjugate-linear involution of V . Then V τ is a real form of V . A
similar calculation as in 2.2.5, using the Cayley transform C from Lemma
2.1.1, yields

C(X(τ)) = Co(V )(CjτC−1)∗
0 · ie = Co(V )τ∗0 · ie.

This orbit contains as an open subset the tube TΩ := V τ + iΩτ where
Ωτ is the open symmetric orbit associated to the real form V τ . In
fact, this is a special case of 2.2.6. Here we have the additional feature
that multiplication by i =

√
−1 yields an isomorphism of V τ and V −τ ,

permitting us to realize the tube over V τ instead of V −τ . Spaces of this
type are called pseudo-Hermitian symmetric spaces of tube type; they are
studied in [FG95]. If V τ is Euclidean, then X(τ) is the well-known tube
domain in its disc realization. In [Be96b] we will explain how to consider
bounded symmetric domains which are not of tube type as Makarevič
spaces of the second kind.

2.2.9 c-duals of the preceeding spaces. We will prove that X(−α)

is the c-dual of X(α) (Proposition 2.3.2). By duality, we get from 2.2.3 and
2.2.4 the spaces GC/G where G is one of the above mentioned groups, from
the symmetric cones we get compact causal symmetric spaces, and from
the bounded symmetric domains we get compact Hermitian symmetric
spaces.

2.2.10 Orbits of type Co(V )/Str(V ). If V = W ×W is the product
of two copies of the semi-simple Jordan algebra W , then Co(V )0 =
Co(W )0 × Co(W )0 and (W × W )c = W c × W c (see [Be96a, Th.2.3.1]).
We define an involutive automorphism of V by α((x, y)) = (y, x). The
induced involution of Co(W ) × Co(W ) is given by α∗(g, h) = (h, g), and
because jV = jW × jW we get (αj)∗(g, h) = (j∗h, j∗g). The fixed point
group of this involution is {(g, j∗g)|g ∈ Co(W )}, and an element of this
group stabilizes 0V = (0W , 0W ) iff g ∈ Str(W ). Hence

X(α) = Co(W ×W )(αj)∗0 · 0 ∼= Co(W )0/Str(W )0.

If we replace α by −α, we get an isomorphic orbit: let J(x, y) = (−y, x);
then jJj = −J , hence J ∈ Str(V ), and the lemma to be stated next
implies then that X(−α) = JXα.
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Back to the general set-up. In order to get a hold of the spaces X(α),
we write

Str(V )Jj∗ := {α ∈ Str(V )| j∗(α) = α−1}.

This is the fixed-point set of the involutive anti-automorphism Jj∗ of
Str(V ), where J(g) = g−1 is the inversion in Str(V ) and j∗(α) = jαj is
the canonical involution of Str(V ). The formula g ·α := j∗g◦α◦g−1 defines
an action of Str(V ) on Str(V )Jj∗ which is in general not transitive. The
next lemma states that X(α) essentially only depends on the connected
components of Str(V )Jj∗ .

2.2.11 Lemma. — (i) The action of Str(V ) is transitive on every
connected component of Str(V )Jj∗ .

(ii) For all g ∈ Str(V ) and α ∈ Str(V )Jj∗ , X(g·α) = g(X(α)) (the space
translated by the map g).

Proof. — (i) This is a general fact about any Lie group G with
involution σ, acting on the set GJσ = {g ∈ G|σ(g) = g−1} by g · α =

σ(g)αg−1: fix α ∈ GJj∗ ; its stabiliser in G is the fixed point group Gα−1

∗
◦σ,

and it is easy to show that the submanifold αGα−1

∗
◦σ of G intersects GJj∗

transversally at α, and hence G · α has the same dimension as GJj∗ .
(ii) For g ∈ Str(V ) and α ∈ GJj∗ , j◦(g·α) = j◦jgj◦α◦g−1 = g◦jα◦g−1,

so

Co(V )j∗(g·α)∗ ·0 = Co(V )g∗j∗α∗g
−1

∗ ·0 = (g∗(Co(V )j∗α∗))·0 = g(Co(V )j∗α∗ ·0).

2.2.12 Corollary. — Let V be a complex Jordan algebra, and denote
by i : V c → V c multiplication by i =

√
−1.

(i) For all C-linear α ∈ Str(V )Jj∗ ,

iX(α) = X(−α).

(i) For all C-conjugate-linear α ∈ Str(V )Jj∗ and t ∈ R,

eitX(α) = X(α)

(i.e. the pseudo-Hermitian spaces from example 2.2.7 are circled.)

Proof. — For any scalar λ ∈ C, λ · α = λ−1 ◦ α ◦ λ−1.
(i) By C-linearity of α, i · α = i ◦ α ◦ i = −α. Now use the preceeding

lemma, part (ii).
(ii) By conjugate-linearity of α, eit · α = α, and the claim follows as

above.
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2.3 Complexifications and c-duality. — Any symmetric space
X = G/H admits, at least locally, a complexification XC = GC/HC. We
first show that the spaces X(α) always admit globally a complexification,
and we will not have to make assumptions of the kind “GC simply
connected”. This is due to the fact that our set-up is essentially algebraic.
There are two interesting features related to complexification: first, the
spaces X(α) and X(−α) are c-dual, and second, the spaces X(α) admit yet
another kind of complexification which we call Hermitian complexification:
namely, they are real forms of pseudo-Hermitian spaces introduced in
example 2.2.7. For general symmetric spaces, no such complexification
is known; hence it seems that this is a quite specific feature of Makarevič
spaces. It turns out that all is a straightforward consequence of the
fact that a real Jordan algebra V can be complexified, just as a Lie
algebra, in a natural way (see [FK94, ch. VIII]); we will denote by VC

the complexification of V .

2.3.1 Lemma. — Let V be a semi-simple Jordan algebra, VC its
complexification and τ the conjugation of VC such that V τ

C
= V . Then

Co(VC) (respectively, its Lie-algebra co(VC)) is stable under conjugation
with τ (resp. under its differential at the origin), and if we define

(i) Co(V ) → Co(VC)
τ∗ , φ &→ φC,

(ii) co(V ) → co(VC)
τ∗ , ξ &→ ξC,

where φC (resp. ξC) is the unique C-rational (resp. -polynomial) continu-
ation of φ (resp. ξ), then (i) is an injection as an open subgroup and (ii)
is an isomorphism.

Proof. — We first check, using that τ commutes with the Jordan-
inverse j, that the structure group Str(VC) ⊂ Gl(VC) (and hence also
its Lie algebra) is stable by the conjugation τ∗. Then the chain rule
implies immediately that, if φ is Str(VC)-conformal, this is also the
case for τ∗(φ) = τφτ , so Co(VC) is τ∗-stable, and taking differentials
at the origin we get the analogous statement for the Lie algebra. It
is clear that (i) and (ii) are injective. To show that (ii) is also sur-
jective, one just shows that ξ &→ ξ|V is a well-defined inverse of (ii):
in fact, if ξ is τ∗-fixed, then, if x ∈ V = V τ

C
also ξ(x) ∈ V , and it

is easily seen that then ξ|V is str(V )-conformal. So (ii) is an isomor-
phism, and that the image of (i) is open is an immediate consequence.

We will from now on consider the map (i) of the preceeding lemma
as an inclusion and thus get an inclusion, compatible with the inclusion

33



V ⊂ VC, of the corresponding conformal compactifications:

V c = Co(VC)
τ∗
0 · 0 ⊂ (VC)

c = Co(VC)/PC.

If X(α) is a conformally flat symmetric space, we can now define its

inclusion in its complexified space X(α)
C

by

X(α) = Co(V )j∗α∗

0 · 0 ⊂ X(α)
C

:= Co(VC)
j∗α∗

0 · 0 ⊂ (VC)
c,

where we use the same letters j and α for the corresponding conformal
map of V as well as for its C-rational continuations. The conjugation of

X(α)
C

with respect to X(α) is τ . Recall that the c-dual of a symmetric
space X = G/H is a symmetric space Y = L/H such that the associated
eigenspace decomposition of the Lie algebra l of L is l = h⊕iq if g = h⊕ q is
the decomposition associated to G/H. It is well-known that Riemannian
symmetric spaces of compact and non-compact type are c-dual in this
sense.

2.3.2 Proposition. — For all α ∈ Str(V )Jj∗ , the symmetric spaces
X(α) and X(−α) are c-duals of each other.

Proof. — By Corollary 2.2.12 (i) we have iX(−α)
C

= X(α)
C

. Recall that
−idV is the geodesic symmetry of a conformally flat symmetric space with

respect to the origin. Hence the c-dual real form of X(α)
C

is given by

(X(α)
C

)−τ
0 = (iX(−α)

C
)−τ
0 = i(X(−α)

C
)τ0 = iX(−α),

i.e. X(−α) is isomorphic to the real form of XC with respect to the
conjugation −τ . This means that X(−α) is (globally) c-dual to X(α), and
it implies the weaker, infinitesimal notion of c-duality introduced above.

Example: the Borel-imbedding. — a) Let V be Euclidean. Then X(idV )

is a Riemannian symmetric space of non-compact type, isomorphic to the
symmetric cone Ω (ex. 2.2.5). Hence X(−idV ) is compact. Because it is
open in the connected space V c, we have X(−id) = V c.

b) Let V be complex and τ be a conjugation with respect to Euclidean
real form. Then D = X(τ) a bounded symmetric domain and hence of non-
compact type (ex. 2.2.8), and it follows as above that X(−τ) = V c. The
imbedding X(τ) = D ⊂ V c = X(−τ) is the well-known Borel-imbedding of
the disc D into its compact dual. We can thus consider the preceeding
proposition as a generalization of the Borel-imbedding where in general the
situation will be much more complicated because we won’t have inclusion
of one space in the other but only open intersections.
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2.3.3 The Hermitian complexification of X(α). — It is defined
by by

X(α)

C
:= Co(VC)

(jτα)∗
0 · 0 ⊂ (VC)

c.

Here τα = ατ is nothing but the conjugate-linear continuation of α onto

VC. As explained in example 2.2.7, X(α)

C
is a pseudo-hermitian symmetric

space, and X(α) appears as its real form with respect to the conjugation
τ . Remark that, by Cor. 2.2.12 (ii), the real form with respect to
the conjugation −τ will be isomorphic to X(α), so there is no notion of
“hermitian c-dual”. This is related to the following remarkable property:

Multiplication by i in any tangent space of X(α)

C
extends to a globally

biholomorphic map of X(α)

C
. We finally remark that, if V is already

a complex Jordan-algebra, then VC
∼= V × V , and then the Hermitian

complexification will also be a complex symmetric space in the ordinary

sense; one may check that in this case X(α)

C

∼= Co(V )/Str(V ), cf. ex.
2.2.10.

2.4 The Euclidean case (causal symmetric spaces). — Recall
that the cone Ω = Str(V )0 · e associated to a Jordan-algebra is convex
if and only if V is Euclidean. Thus the Makarevič spaces X(α) have an
invariant causal (flat) structure given by Ω if and only if the Jordan-algebra
used in the construction is Euclidean. Recall that G(Ω) is the group of
all linear automorphisms of Ω; it is an open subgroup of Str(V ) ([FK94,
p.150]).

2.4.1 Theorem. — Let V be a Euclidean Jordan algebra (having no
ideal isomorphic to R) and Ω the associated symmetric cone.

(i) Every locally defined causal transformation (class C4) of the flat
causal structure defined by Ω is birational, and its rational extension is
given by an element of the group Co(G(Ω)) generated by the translations,
the group G(Ω) and −j, where j is the Jordan inversion. These transfor-
mations extend to globally defined causal automorphisms of the conformal
compactification V c of V . The identity component of the causal group
Co(G(Ω)) is Co(V )0.

(ii) If X(α) ⊂ V c is a Makarevič space, then X(α) inherits a (flat)
causal structure from V c. Every element of the causal pseudogroup of this
structure on X(α) is rational and can, by (i), be identified with an element
of Co(G(Ω)).

(iii) The symmetric spaces X = L/H and X ′ = L′/H given in table
0.3.1 can be realized as Makarevič spaces in V c where V is given in the
column to the right, and their causal pseudogroup can, by (ii), be identified
with a group of birational transformations the identity component of which
is the group Co(V )0 given in the table.
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(iv) Table 0.3.1 gives a complete list of Makarevič spaces associated to
simple Euclidean Jordan algebras.

Proof. — The first claim of (i) is a restatement of [Be96a, Th.2.3.1
(ii)], observing that a local diffeomorphism φ is causal if and only if
Dφ(x) ∈ G(Ω) for all x where φ is defined. By the same theorem, Co(V )
and Co(G(Ω)) have the same identity component. Its action on V c is
transitive by definition of V c, and hence the causal structure of V can,
by forward transport, be extended to an invariant causal structure on V c.
This proves (i). Now (ii) is just the specialization of (i) to maps having
domain and range in X(α).

(iii) The spaces X = L/H and X ′ = L′/H are c-duals of each other,
and by Prop. 2.3.2 one of these two spaces admits a causal imbedding
into V c if and only if the other does. For each line corresponding to the
cases I - III we constructed in section 1.5 explicitely the imbedding of one
of the spaces L/H or L′/H into V c; in fact, the first line in each case
contains the so-called Cayley-type spaces which arise from ex. 2.2.10 (see
1.5.C); the second line contains the open Str(V )0-orbits in V , in particular
the symmetric cone and its compact dual (ex. 2.2.5, see 1.5.A), and the
following lines are from 1.5.D (case I) and 1.5.B (case II and III). The
list for cases IV and V is taken from [Ma73, p.416]; for case IV see also
[Ri69]. By (ii), the causal pseudogroup is given by Co(V )0 which we have
described, for cases I - III, in section 1.4; for the other cases cf. [Ma73].

The proof of part (iv) will be prepared by somme lemmas.

2.4.2 Lemma. — If V is Euclidean, then j∗ is a Cartan-involution
of Str(V ), and Str(V )j∗ = ±Aut(V ).

Proof. — If V is Euclidean, then Str(V ) = ±G(Ω) (see [FK94, p.150]).
Because an element of the structure group is an automorphism if and
only if it fixes the unit element e (see [FK94, p.148]), we can write
Ω ∼= G(Ω)/Aut(V ), and the involution of this symmetric space is j.
As well known, Ω is a symmetric space of the non-compact type, and
thus j∗ is a Cartan-involution of G(Ω) and also of Str(V ) = ±G(Ω), and
±G(Ω)j∗ = ±Aut(V ).

One can also show that, if V is Euclidean, using that Co(V )/Co(V )(−j)∗

is a symmetric space of the non-compact type (the tube domain), that
(−j)∗ is a Cartan-involution of Co(V ).

2.4.3 Lemma. — Let G be a reductive Lie group, θ : G → G be
a Cartan-involution with associated decomposition g = h⊕ p of the Lie
algebra of G and Cartan decomposition G = K exp p, and let GJθ = {g ∈
G|θ(g) = g−1}. Then the Cartan decomposition induces a diffeomorphism

GJθ ∼= {(k,X)| k ∈ K, k = k−1;X ∈ p, Ad(k)X = X}.

36



Proof. — Writing g ∈ GJθ as g = k expX with k ∈ K = Gθ and
X ∈ p = g−θ, an easy calculation shows that the condition θ(g) = g−1 is
equivalent to k = k−1 and X = Ad(k)X .

2.4.4 Corollary. — If V is Euclidean, then any Makarevič space
X(α) associated to V is isomorphic to a space X(±β) arising from an
involutive automorphism β or from its negative −β.

Proof. — As j∗ is a Cartan-involution of Str(V ), every connected
component of Str(V )Jj∗ contains by the previous lemma an element
k ∈ K = ±Aut(V ) with k2 = id, which is thus either an involutive
automorphism of V or its negative. By Lemma 2.2.12, the space associated
to any element of the connected component of Str(V )Jj∗ containing k is
isomorphic to the space associated to k.

The involutive automorphisms of a Euclidean Jordan algebra have
been classified, see [Kay94] or [H67]. Using Corollary 2.4.4 and this
classification, one can check that table 0.3.1 gives indeed a complete list
of all Makarevič spaces associated to simple Euclidean Jordan algebras.
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Jordan, Bulletin Soc. Math. Française 124 (1996) p. 299-327.

[Be96b] W. BERTRAM, Algebraic structures of Makarevič spaces, in
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