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Abstract. – By “general” differential geometry and Lie theory we mean those parts of the theory which can be

generalized to (almost) arbitrary base fields and -rings and to arbitrary dimension. In this Note we describe two basic

features of such a theory: we interprete the tangent functor as the functor of scalar extension by dual numbers, and we

investigate the structure of higher order tangent bundles from the point of view of the theory of connections. Full details

are given in [1].

Géométrie différentielle et théorie de Lie générales

Résumé. – Par géométrie différentielle et théorie de Lie “générales” nous désignons les parties de la théorie que l’on

peut étendre au cas de dimension arbitraire sur un corps (presque) arbitraire ou même sur des anneaux. Dans cette Note,

nous décrivons deux aspects fondamentaux d’une telle théorie: nous interprétons le foncteur tangent comme un foncteur

d’extension scalaire par des nombres duaux, et nous étudions la structure des fibrés tangents itérés sous le point de vue de

la théorie des connexions. Une version détaillée est donnée dans [1].

Version française abrégé. – Dans [2], un calcul différentiel a été développé qui fonctionne
sur tout anneau commutatif topologique K dont le groupe des éléments inversibles est dense dans
K, et les variétés et groupes de Lie modelés sur des K-modules topologiques séparées ont été
introduits.

Nous prouvons que, dans ce contexte, le fibré tangent TM d’une variété M sur K est, de
manière naturelle, une variété définie sur l’anneau K[ε] = K[x]/(x2) ∼= K ⊕ εK (ε2 = 0) des
nombres duaux sur K. Ainsi le foncteur tangent peut être vu comme un foncteur d’extension
scalaire de K à K[ε], ce qui donne une nouvelle et très simple approche aux “points infiniment
voisins” d’André Weil [10].

Les fibrés tangents itérés T kM := T (T k−1M) sont des variétés sur l’anneau K[ε1] . . . [εk] ;
ils contiennent comme sous-fibrés des fibrés de jets JkM = (T kM)Σk (points fixes de l’action
canonique du groupe symétrique Σk). Pour k > 1, ces fibrés, vus sur la base M , ne sont plus des
fibrés vectoriels car leur fonctions de changement de carte sont multilinéaires et non linéaires en
fibres (cf. formule (2) ci-dessous). Ceci nous amène à définir des fibrés multilinéaires comme étant
des fibrés sur M dont les fonctions de transition sont multilinéares (dans un sens à préciser) en
chaque fibre. Les fibres ne sont donc plus des espaces linéares (i.e. des K-modules), mais plutôt
des espaces sur lesquels une multitude de structures linéaires coexiste, permutées entre elles de
manière simplement transitive par un groupe que nous appelons le groupe multilinéaire spécial.

En choisissant, de manière différentiable, dans chaque fibre une de ces structures linéaires, on
obtient une connexion multilinéaire sur T kM (resp. sur un fibré multilinéaire quelconque). Pour
k = 2 et K = R, ceci cöıncide avec la notion usuelle de connexion affine sur TM . Partant d’une
connexion affine L sur TM , nous construisons une suite de connexions multilinéaires Lk,σ sur
T k+1M , paramétrée par k ∈ N et σ ∈ Σk. Un résultat principal affirme que la courbure de L peut
être vue comme étant une “différence” entre L2,id et L2,(12), et que les fibrés de jets JkM sont des
sous-fibrés linéares par rapport aux Lk,σ.

Cette théorie s’applique aux cas des groupes de Lie G et des espaces symétriques M . Les fibrés
tangents, T kG, resp. T kM , sont encore des groupes de Lie, resp. des espaces symétriques (sur K
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et même sur K[ε1] . . . [εk]), et nous cherchons à analyser leur structure sur la base G, resp. sur
M , en construisant d’abord des connexions canoniques qui correspondent à des trivialisations à
gauche, resp. à droite. Dans le cas de caractéristique nulle, on peut construire, de manière purement
algébrique, une application exponentielle pour les groupes (T kG)e, resp. (JkG)e, qui représente une
connexion multilinéaire et totalement symétrique sur T kG. Dans ce cas, on retrouve essentiellement
la formule de Campbell-Hausdorff; dans le cas général, on trouve une formule similaire, mais
beaucoup plus simple et qui est valable en toute caractéristique (formules (5) et (6)).

—————————————

1. Differential calculus. – We fix as base ring K a topological ring (commutative, with unit 1)
such that the group K

× of invertible elements is dense in K. Following [2], we say that a continuous
map f : V ⊃ U → W (where V,W are Hausdorff topological K-modules, and U is open in V ) is
differentiable or of class C1 if there exists a continuous map f [1] : U × V × K ⊃ U [1] → W (where
U [1] := {(x, v, t)|x + tv ∈ U}, an open set in V × V × K) such that, for all (x, v, t) ∈ U [1],

f(x + tv) − f(x) = t · f [1](x, v, t). (1)

By density of K
× in K, the map f [1] is then unique, and we may let df(x) := f [1](x, v, 0) and

Tf(x, v) := (f(x), df(x)v). We say that f is of class C2 if it is of class C1 and f [1] is of class C [1],
and so on, thus defining classes Ck for all k ∈ N ∪ {∞}. All basic rules of differential calculus,
including Schwarz’ lemma and a version of Taylor’s formula, are very easily proved in this context
(see [1] or [2]). However, in general it is impossible to integrate differential equations, not even the
equation df = 0.

2. Smooth manifolds over general base fields and rings. – Smooth manifolds, modelled on
a topological K-module V , are defined in the usual way using charts and atlasses (not necessarily
maximal ones), and similarly for vector bundles and more general bundles. The tangent bundle
TM of a manifold M is defined via its transition maps Tf , if f is a transition map of M , and not
via point derivations. Vector fields are smooth sections of the tangent bundle, and as usual they
form a Lie algebra under their Lie bracket (see [1] or [2]).

3. Tangent functor and scalar extensions. – The ring of dual numbers over K is the ring
K[ε] := K[x]/(x2) ∼= K⊕ εK with ε2 = 0. We call it also the tangent ring, because of the following

Lemma 1. – The tangent maps of the ring operations on K turn the tangent bundle TK into a
ring which is naturally isomorphic to K[ε]. The ring TK has again a dense unit group.

A central result of our theory generalizes this fact to the whole category of manifolds:

Theorem 1. – If M is a smooth manifold over K, then TM is, in a natural way, a manifold over
the tangent ring TK ∼= K[ε], and if f : M → N is smooth over K, then Tf : TM → TN is smooth
over TK. Summing up, the tangent functor T can be seen as a functor of scalar extension from K

to TK in the category of smooth manifolds.

The theorem is proved by writing Equation (1) as a commutative diagram and realizing that,
applying the tangent functor to this diagram, via Lemma 1 we get the same kind of diagram for K

replaced by TK. In a way, this result contains a new justification of “infinitesimals” as proposed
by A. Weil in [10], having the advantage not to use the heavy logical or model-theoretic machinery
introduced in synthetic differential geometry, cf. e.g. [8].

Corollary 1. – The higher order tangent bundles T kM := T (T k−1M) are smooth manifolds over
the ring T k

K ∼= K[ε1, . . . , εk], where ε2
i = 0, εiεj = εjεi.
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4. Jet functor and scalar extensions. – The symmetric group Σk acts in a natural way by
bundle automorphisms on the higher order tangent bundle T kM over M . It is easily proved that
the fixed space, JkM := (T kM)Σk , is a subbundle of T kM .

Corollary 2. – The bundle JkM is a smooth manifold over the ring Jk
K := (T k

K)Σk ∼= δ(1)
K ⊕

. . . ⊕ δ(k)
K, where δ(j) :=

∑
i1<...<ij

εi1 · · · εij
. If the integers 2, . . . , k are invertible in K, then

Jk
K is isomorphic to a truncated polynomial ring K[x]/(xk+1).

We call Jk the k-th order jet functor since, in usual differential geometry, JkM corresponds to the
bundle of k-jets of curves in M ; our definition has advantages in the case of positive characteristic
since in this case it is not always possible to “integrate” jets to suitable (locally defined) curves.

5. Multilinear bundles. – Our approach to the theory of connections is by analyzing the
structure of the bundles T kM (resp. of the bundles T k−1F for a general vector bundle F over
M) over the base M . For k > 1, these bundles are no longer vector bundles, but still their fibers
have a rather rich algebraic structure: they are multilinear spaces, and thus T kM and T k−1F are
multilinear bundles over M . In order to explain these concepts, let us start with the transition
functions of the bundle T kM which are of the form T kf , where f is a typical transition function
of M . Using multi-indices α ∈ Ik := {0, 1}k, a typical point u ∈ T kM is represented in a bundle
chart by u = x +

∑
α∈Ik
α 6=0

εαvα, with εα =
∏

i εαi

i and vα belonging to the model space V of the

manifold M . Then we have

T kf(x +
∑

α∈Ik
α 6=0

εαvα) = f(x) +
k∑

j=1

∑

α∈Ik
|α|=j

εα(

j∑

l=1

∑

Λ∈Pl(α)

dlf(x)(vΛ1 , . . . , vΛl)), (2)

where |α| :=
∑

i αi, and Λ runs through the set Pl(α) of partitions of α of length l, i.e. Λ =
(Λ1, . . . ,Λl) with Λi ∈ Ik such that

∑
i Λi = α and Λ1 < . . . < Λl with respect to some fixed

total ordering of Ik (lexicographic, for instance). The formula suggests to consider self-maps
g := gb : E → E of the fiber E := (T kM)x over x ∈ M of the form

g(x +
∑

α∈Ik
α>0

εαvα) = x +
∑

α∈Ik
α>0

εαvα +
k∑

j=2

∑

α∈Ik
|α|=j

εα(

j∑

l=2

∑

Λ∈Pl(α)

bΛ(vΛ1 , . . . , vΛl)), (3)

where b = (bΛ)Λ is a family of K-multilinear maps bΛ : V l → V (not necessarily symmetric, and
depending on x), indexed by all non-trivial partitions Λ of elements of Ik. Putting this into a
purely algebraic context, we define a multilinear space to be given by a collection of K-modules Vα,
α ∈ Ik, together with the (non-linear) action of the special multilinear group Gm1,k(E) on the total
space E := ⊕α∈Ik

α>0

Vα, where Gm1,k(E) is given by all maps of the form (3) when b = (bΛ)Λ runs

over all families whith K-multilinear maps bΛ : VΛ1 × . . . × VΛl → Vα (α =
∑

i Λi). The action of

the group Gm1,k(E) on the fibers of T kM , resp. of T k−1F , is an intrinsic feature, and hence these
bundles are multilinear bundles over M in the sense that their fibers carry a canonical structure
of a multilinear space. For k = 2 all formulas simplify considerably; this is related to the fact that
in this (and only in this) case the group Gm1,2(E) is abelian.

6. Linear connections. – A linear structure on a fiber bundle F over M is given by fixing,
in a smooth way, on each fiber Fx a linear (i.e. K-module) structure. A linear connection on a
vector bundle F over M is given by fixing a linear structure L on TF over M which, on every
fiber E, is conjugate under the group Gm1,2(E) to one (and hence to all) linear structures induced
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on E by bundle charts of TF (i.e. charts coming from charts of F ). It can be shown that, in
all classical situations, this definition coincides with more traditional ones (e.g., via connection
one-forms, connectors or covariant derivatives); in our general situation this definition seems to
have most advantages.

7. Multilinear connections on multilinear bundles. – Generalizing the preceding definition, we
say that a multilinear connection on the multilinear bundle T kF is given by fixing a linear structure
L on T kF over M which, on every fiber E, is conjugate under the group Gm1,k+1(E) to one (and
hence to all) linear structures induced on E by bundle charts of T kF . Such connections are (in
the classical situation) special cases of Ehresmann-connections; this follows from the following

Theorem 2. A multilinear connection L on T kM induces an isomorphism of bundles over M ,

Φ :
⊕

α∈Ik
α>0

εαTM → T kM, (4)

where εαTM is just a formal copy of TM , and the direct sum is a direct sum of bundles over M .
A similar statement holds for multilinear connections on T k−1F .

For k = 2 and K = R, the preceding result is known as the Dombrowski Splitting Theorem (cf. [4,
Theorem X.4.3]).

8. Curvature. – Our main strategy of constructing multilinear connections is by “deriving
linear connections”; this operation is canonical up to the chosen order (ε1, . . . , εk) when interpret-
ing the tangent functor as scalar extension by K[εi]; the “difference” between linear structures
belonging to different orders gives rise to curvature:

Theorem 3.

(1) Given linear connections L on F and L′ on TM , one can construct, in a canonical way, a
sequence of “derived linear structures” Lk,σ on T kF , indexed by k ∈ N and σ ∈ Σk.

(2) If L′ is torsionfree, then L2,id and L2,(12) are related via a well-defined fiberwise trilinear map
which does not depend on L′, called the curvature of L.

(3) The subbundles JkF ⊂ T kF are linear subbundles with respect to the linear structures Lk,σ,
and the linear structure induced on JkF depends only on k and not on σ.

It can be shown that the interpretation of curvature from (2) coincides with all classical ones.
Moreover, there is a conceptual interpretation of Bianchi’s identities in this context.

9. Lie groups and symmetric spaces. – Lie groups over K are defined to be groups in the
category of manifolds over K, and symmetric spaces over K are defined to be manifolds with a
smooth multiplication map µ : M × M → M , (x, y) 7→ µ(x, y) = σx(y) satisfying a version of the
axioms given by O. Loos in [7] (here we need that 1

2
∈ K, see also [3]). The Lie functor assigning

to a Lie group a Lie algebra and to a symmetric space with base point a Lie triple system can be
defined as in the classical situation (cf. [1], [2], [3]).

Theorem 4. Assume G is a Lie group over K, resp. M a symmetric space over K.

(1) T kG and JkG are Lie groups over T k
K, resp. over Jk

K, and similarly for T kM and JkM .

(2) Left- and right-trivialization of TTG induce two canonical linear connections Ll and Lr on
TG.

(3) The fibers of TTM over M are abelian symmetic spaces whose symmetric space structure is
induced by a unique linear structure LS on TTM ; this structure defines a canonical torsionfree
linear connection on TM .

(4) If M = G is a Lie group, considered as symmetric space, then LS = Ll+Lr

2 .
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The group T kG can be trivialized from the left and from the right, and one can show that this
coincides with the trivializing map Φ coming from the right-, resp. from the left connection, Lr

resp. Ll. Then a combinatorial formula for the group structure of (T kG)e (and hence also of
(JkG)e) in terms of the Lie bracket can be given:

Theorem 5. With respect to the identification (T kG)e
∼= ⊕α∈Ik

α>0

εαg given by the left trivialization,

the group structure of (T kG)e is described by the product

∑

α>0

εαvα ∗
∑

β>0

εβwβ =
∑

γ>0

εγzγ

with

zγ = vγ + wγ +
k∑

j=2

∑

Λ∈Pj(γ)

[. . . [[vΛj , wΛ1 ], wΛ2 ], . . . , wΛj−1 ], (5)

and inversion is given by

(
∑

α>0

εαvα)−1 =
∑

γ>0

εγ(−vγ +
k∑

j=2

(−1)j
∑

Λ∈Pj(γ)

[vΛj , [vΛj−1 , . . . [vΛ2 , vΛ1 ]]]). (6)

There are similar formulae with respect to the right trivialization. By restriction to Σk-invariants,
one gets the corresponding multiplication and inversion formulae for jets, i.e. for the group (JkG)e.

Formula (5) may be seen as an analog of the Campbell-Hausdorff formula; it is much simpler and
works in arbitrary characteristic, but nevertheless the combinatorial structure of its restriction
to Σk-invariants is fairly complicated. Similar formulae can be given for symmetric spaces with
respect to the linearization coming from the connection LS .

10. Exponential map and exponential jet. – Formulae (5) and (6) show that (T kG)e, with
respect to left- or right-trivialization, is a polynomial group of degree at most k which we define,
in a purely algebraic context, as a K-module together with a group structure such that product
and inversion are polynomial maps and the degree of the iterated product maps m(j)(x1, . . . , xj) =
x1 · · · xj is, for all j ∈ N, bounded by k.

Theorem 6. Assume M is a polynomial group over K and that the integers are invertible in K.
Then there exist polynomials exp : M → M and log : M → M , inverse of each other and of degree
at most k, uniquely characterized by the properties:

(1) the term of degree one of exp is the identity map of M ,

(2) for all n ∈ Z and X ∈ M , we have exp(nX) = (expX)n.

The polynomials exp and log can be described by explicit formulas in terms of m(j), j = 1, . . . , k.

Our proof of this result is much more elementary than the ones of corresponding results in the
theory of formal groups (cf. [9]). Applying Theorem 6 to the polynomial group M = (T kG)e, we
get a canonical exponential map

expk : ⊕α∈Ik
α>0

εαg → (T kG)e

with inverse logk. This map contains all information of the k-th order Taylor expansion of a “usual”
exponential map of the group G (if it exists !) The group structure of (T kG)e with respect to expk

is described by the k-th order Taylor polynomial of the Campbell-Hausdorff formula. Taking the
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projective limit k → ∞, we get a formal power series group, together with its “exponential jet”
exp∞, which in the classical, real or p-adic, theory ([9]) corresponds to the germ of G. Finally,
similar results, including the existence of an exponential jet, can be proved for symmetric spaces.

11. Diffeomorphism groups. Using their theory of Weil functors, G. Kainz and P. Michor
have shown that the space of sections of bundles such as T kM and JkM (for M finite dimensional
over K = R) carry a canonical group structure (see [4], [5]). In our context, this is generalized and
interpreted in terms of the groups DiffT kK(T kM) of all diffeomorphisms of T kM that are smooth
over the ring T k

K (recall from Cor. 1 that T kM is a manifold over this ring).

Theorem 7.

(1) The space Xk(M) of smooth sections of the bundle T kM over M carries a canonical group
structure which turns it into a polynomial group (in the sense defined above). The group
structure is defined by the property that every section X : M → T kM admits a unique extension
to a T k

K-smooth diffeomorphism X̃ : T kM → T kM .

(2) The group DiffT kK(T kM) is a semidirect product of the group DiffK(M), which is imbedded

via f 7→ T kf , and the (normal) polynomial group Xk(M), which is imbedded via X 7→ X̃.

Theorem 7 can be interpreted by saying that, in may respects, the group G = DiffK(M) behaves like
a Lie group with higher order tangent groups T kG = DiffT kK(T kM). For instance, the structure
formulas from Theorem 5 apply, and in case of characteristic zero one may define an exponential
mapping expk which should be seen as a partial analog of the map associating to a vector field its
flow at time t = 1.
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