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Abstract. We show that differential calculus (in its usual form, or in the general
form of topological differential calculus) can be fully imdedded into a functor
category (functors from a small category of anchord tangent algebras to anchored
sets). To prepare this approach, we define a new, symmetric, presentation of
differential calculus, whose main feature is the central rôle played by the anchor
map, which we study in detail. Our aim for developing this theory is twofold:
(1) define a setting for calculus over any commutative ring, including finite rings;
(2) define a setting that can be generalized to categories of graded rings (super
differential calculus).
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Introduction

Differential Calculus is a central ingredient of modern mathematics. While the
“working mathematician” takes this tool for granted, thinking about its conceptual
foundations remains a potentially important topic. In the present work, we con-
tinue the line of research started with [BGN04, Be08, BeS14, Be17], and combine it
with what Grothendieck once called the “simple idea of a good functor from rings
to sets” (according to W. Lawvere, cf. n-lab)1. The “simple idea” mentioned by

2010 Mathematics Subject Classification. 18A25 , 18B40 , 18D05 , 58A05 .
Key words and phrases. differential calculus, functor category, anchor, tangent algebra .
1Here the quote from the n-lab: “The 1973 Buffalo Colloquium talk by Alexander Grothendieck

had as its main theme that the 1960 definition of scheme ... should be abandoned AS the FUN-
DAMENTAL one and replaced by the simple idea of a good functor from rings to sets. The
needed restrictions could be more intuitively and more geometrically stated directly in terms of
the topos of such functors, and of course the ingredients from the “baggage” could be extracted
when needed as auxiliary explanations of already existing objects, rather than being carried always
as core elements of the very definition.”

1

https://ncatlab.org/nlab/show/functorial+geometry#Lawvere03
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Grothendieck is currently used in algebraic geometry, and in Lie Theory, where
one often considers a real “space” – for instance, a Lie group G – as set of “real
points” GR of a complex Lie group GC. This is a kind of non-linear analog of the
complexification VC = V ⊗R C of a real vector space (or of a real Lie algebra).
Grothendieck’s insight was that this idea of “complexification” should not be lim-
ited to field extensions, but enlarged to more general ring extensions, in order to
incorporate operations belonging to infinitesimal calculus: a K-Lie group G, or a
general K-smooth manifold M , should admit “scalar extensions” MA akin to a hy-
pothetic tensor product M ⊗K A, for certain K-algebras A. The simplest example
of such an extension is the one by dual numbers,

(0.1) K[ε] := K[X]/(X2) = K⊕ εK (ε2 = 0),

where the nilpotent element ε is the class [X] modulo (X2). Grothendieck, following
ideas of Weil [We53], realized that the tangent bundle TM of a “space” M , which
is “defined over K”, could be understood as something like M ⊗K K[ε]. This idea
has been used by Demazure and Gabriel in their theory of algebraic groups [DG], in
differential calculus over general base field and rings [Be08], and in the approach to
natural operations in differential geometry via the so-calledWeil functors ([KMS93],
cf. also [BeS14]). The most elaborate and systematic development of these ideas
leads to what is called nowadays synthetic differential geometry (SDG, see [MR91]).
The approach to be presented here pursues the same goals as SDG, but by different
means: we keep closer to the idea of generalizing the algebraic tensor product.
In a very direct sense, our problem is to generalize the algebraic scalar extension
VA := V ⊗K A of a K-module V (basic facts are recalled in Appendix A), to more
general spaces M , like, e.g., manifolds – where we face the problem that such an
operation won’t be possible for all K-algebras A, so we have to single out a good
class (good category) of algebras for which such an extension is possible. Such
a class, called the category of (anchored) tangent algebras, will be defined in this
paper. It arises naturally, when questioning the very shape of differential calculus,
instead of taking it for granted. Let us briefly explain the main ideas.

0.1. Topological differential calculus. In differential calculus we consider maps
f whose domain U and codomain U ′ are locally linear sets – by this we mean U ⊂ V
and U ′ ⊂ V ′ are non-empty subsets of linear (or affine, if one prefers) spaces V and
V ′. In this situation, we may define the slope or difference quotient map: when
t, s ∈ K are such that t− s is invertible, we look at the difference quotient

(0.2) f [1](v0, v1; t, s) := f
[1]
(t,s)(v0, v1) :=

f(v0 + tv1)− f(v0 + sv1)

t− s
.

To speak of topological calculus, we shall assume that V, V ′ are topological vector
spaces or modules over topological fields or rings K, and U,U ′ are open. For the
moment, let’s consider the “classical case” K = R and V = Rn, V ′ = Rm. Then
the following holds (cf. [BGN04, Be08]): The map f is of class C1 if, and only if,
the difference quotient map f [1] extends continuously to a map defined on the set

(0.3) U [1] :=
{
(v0, v1; t, s) ∈ V 2 ×K2

∣∣∣ v0 + tv1 ∈ U
v0 + sv1 ∈ U

}
.

https://ncatlab.org/nlab/show/synthetic+differential+geometry
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If this is the case, we denote still by f [1] : U [1] → U ′ the extended map. Then
f [1](v0, v1; 0, 0) = df(v0)v1 gives the differential df of f . Now, these conditions make
perfectly sense for any “good” topological ring K and for maps defined on open
locally linear sets, and thus can serve as definition of differentiability over K – the
“topological differential calculus” thus defined has excellent functorial properties
allowing to give a “purely algebraic” presentation of certain features of usual cal-
culus (see [BGN04, Be11]). To understand the structure of formulae like (0.2) and
(0.3), the following way of talking turns out to be useful:

• call v = (v0, v1) “space variables”, with v0 the “foot point” and v1 the
“direction” (in which we differentiate),

• call (t, s) “time variables”, and t “target time”, and s “source time”,
• call (t, s) “regular”, or “finite”, if t− s is invertible in K, and “singular” or
“infinitesimal” else, with t− s = 0 being the “most singular value”,

• call v0 + sv1 the “source”, and v0 + tv1 the “target evaluation point”,
• for fixed (t, s), call α

(
(v0, v1)

)
:= v0 + sv1 the “source map”, and define the

“target map” β
(
(v0, v1)

)
:= v0 + tv1 .

The slogan summarizing topological calculus is: the slope extends continuously
(jointly in space and time variables) from finite to singular times. The notable
difference with [BGN04, Be11] is that here we shall use a pair of time parameters
(t, s), instead of a single parameter t as in loc. cit. Although the expression (0.2)
is of course symmetric under switch of target and source time, it will be important
to distinguish “target” and “source”. The setting of [BGN04, Be11] is gotten by
restricting to s = 0 (we call this “target calculus”); symmetrically, the theory could
also be formulated when letting t = 0 (“source calculus”). But now we can take
advantage to define a third calculus, the “symmetric calculus”, which corresponds
to the case t = −s: then v0 = v0+sv1+v0+tv1

2
, so the footpoint is the midpoint of

target and source evaluation point.2 This symmetric setting is best suited for a
transition of our methods towards super-calculus (cf. Section 4).

0.2. The underlying algebraic structure: anchor. In the second section we
shall carve out the algebraic structures underlying topological differential calculus.
As in general groupoid theory, the pair (α, β) given by source and target will be
called anchor map3. We use the same term when considering the pair of time
variables (t, s) as a “frozen parameter” (temporarily considered to be fixed); then
we write (t, s) as lower index – for instance,

(0.4) U
[1]
(t,s) := {(v0, v1) | (v0, v1; t, s) ∈ U [1]}.

For fixed (t, s), we call again anchor the (linear) map sending the space variables
v = (v0, v1) to the pair of evaluation points:
(0.5)

Υ(t,s) : U
[1]
(t,s) → U ×U,

(
v0
v1

)
7→
(
x0
x1

)
=

(
1 s
1 t

)(
v0
v1

)
=

(
v0 + sv1
v0 + tv1

)
=

(
α(v)
β(v)

)
.

2 A price has to be paid: one will have to require that 2 be invertible in K. Analysts won’t
bother, some algebraists might...

3 This map is indeed the anchor map of a groupoid structure, see Lemma 4.1.
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Of course, a choice is made here: the “first” component of U×U shall be associated
with “source”, and the “second” with “target”. One of our concerns in the sequel
will be to formalize the levels on which such choices are operated. Anyhow, by direct
computation, the anchor is seen to be invertible if, and only if, t − s is invertible,
and then its inverse is given by

(0.6) Υ−1
(t,s) : U × U → U

[1]
(t,s),

(
x0
x1

)
7→ 1

t− s

(
t −s
−1 1

)(
x0
x1

)
=

(
tx0−sx1
t−s
x1−x0
t−s

)
.

The first component is an affine combination v0 =
s
s−tx1 +

t
t−sx0, and the second a

“difference quotient”. From this, comparing with (0.2), we see that f
[1]
(t,s) is precisely

the second component of the map f
{1}
(t,s) := Υ−1

(t,s) ◦ (f × f) ◦Υ(t,s), given by

(0.7) f
{1}
(t,s)

(
v0
v1

)
=

(
tf(v0+sv1)−sf(v0+tv1)

t−s
f(v0+tv1)−f(v0+sv1)

t−s

)
.

The big advantage is that f
{1}
(t,s) depends functorially on f : the “chain rule” simply

reads (g ◦ f){1}(t,s) = g
{1}
(t,s) ◦ f

{1}
(t,s). Now we can reformulate the property of being C1

K
(Lemma 1.2): The map f : U → U ′ is of class C1

K if, and only if, for all (t, s) ∈ K2

there exists a continuous map f
{1}
(t,s) : U

{1}
(t,s) → (U ′)

{1}
(t,s), jointly continuous also in the

parameter (t, s) ∈ K2, such that

(0.8) Υ(t,s) ◦ f {1}
(t,s) = (f × f) ◦Υ(t,s) :

U(t,s)

f
{1}
(t,s)−→ U ′

(t,s)

Υ ↓ ↓ Υ

U × U
f×f−→ U × U

In a nutshell, this diagram contains the essential ingredients needed for our ap-
proach: our aim is to translate diagram (0.8) into a “categorical” formulation, so
that it will make sense in an abstract setting, not requiring topology any more. In a
first step, we generalize this diagram at higher order n ∈ N (Theorem 1.7): indeed,
differentiability at order n is characterized by a diagram of the same kind, replacing

f
{1}
(t,s), etc., by higher order maps f

{n}
(t,s), etc., where (t, s) = (t1, . . . , tn; s1, . . . , sn) ∈

K2n. Technically, we work with 2n-fold direct products, which have to be indexed
by elements A of the n-hypercube P(n) (power set of n = {1, . . . , n}).

0.3. The simple idea of a good functor from rings to sets. In order to

formalize the idea that the extended domains and maps (U
{n}
(t,s), f

{n}
(t,s)) are scalar

extensions (U ⊗K A, f ⊗K A), we look at the case U = K. From functoriality, it

follows that the spaces K{n}
(t,s) are in fact K-algebras, which can easily be identified,

(1) in terms of polynomial rings: they are polynomial algebras K[X1, . . . , Xn],
quotiented by the relations (Xi − ti)(Xi − si) = 0, for i = 1, . . . , n,

(2) in terms of tensor products: they are n-fold tensor products of “first order
algebras” K(t1,s1) ⊗ . . .⊗K(tn,sn).

Likewise, the n-fold anchor is identified as the natural evaluation morphism of the
polynomial algebra into KP(n) ∼= K2n , or as the n-fold tensor product of first order
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anchors. This allows us to find an explicit formula for the n-fold anchor (Theorem
2.24), and for its inverse when (t, s) is regular (Theorem 2.25). These are the
essential ingredients to define a small category of K-algebras, the category of n-
th order anchored tangent algebras talgK,n, by an explicit list of its objects and

morphisms: its objects are precisely the anchors Υn
(t,s) : Kn

(t,s) → KP(n) with (t, s) ∈
K2n, and there is an explicit list of morphisms. Putting these categories together,
for all n ∈ N, we get the category of all anchord tangent algebras, talgK. This
setting emphasizes the central rôle of the anchor – its status has been “upgraded”:
it is not a morphism like the others, but is considered as the central object of our
theory.

Now, the “simple idea of a good functor from rings to sets” is to view “n times
K-differentiable spaces” as functors M from the (small) category talgK,n to the
category of anchored sets, assigning to an anchor Υ : A → A′ a pair of sets (MA,MA′)
together with a map MΥ : MA → MA′ . The family fn

(t,s) then defines a natural
transformation of such functors, and which behaves in all respect like a family of
“algebraic scalar extensions” f ⊗K Kn

(t,s), thus achieving our goal.

In order to fully justify such a functorial approach to differential calculus, one
usually requires in SDG that the model be well-adapted, that is, that we obtain
a full and faithful imbedding of a “usual” category of differential calculus into the
“functorial” one. We show that, for our setting, this is indeed the case (Theorem
3.5). The proof is much easier than the one of analogs in SDG, because, in essence,
the whole setting is designed for such a theorem to hold: it is merely the translation
of Theorem 1.7 into a more abstract language.

0.4. Towards higher (super) algebra. The present functorial approach is de-
signed to fit best with further developments: on the one hand, higher algebra (by
n-fold iteration, the functor categories are in fact n-categories, and they take values
in n-fold groupoids), and super-calculus, on the other hand – see Section 4).

0.5. Appendices on linear algebra and on functor categories. In Appendix
A we recall some basic facts about scalar extension V ⊗K A of K-modules V by K-
algebras A, in Appendix B we develop some linear algebra on “2n-spaces”, and in
Appendix C we recall the definition of functor categories (cf. e.g., [CWM, MM92]),
with particular attention to categories of functors from anchored K-algebras to
anchored sets.

Acknowledgment. Part of these results should have been presented at the CIMPA
spring school “Lie groupoids and algebroids”, which had to be cancelled due to
the Covid-19 crisis. We thank the organisers for their work, and we hope that the
school will take place soon after the end of this crisis.

Notation. We let n = {1, 2, . . . , n}. Categories are denoted in boldface characters:
small letters for small categories, such as talgK, and capital letters for large cate-
gories, such as Sets (category of sets). The letter Fn stands for “functor category”,
so Fn(c,Sets) is the category of (covariant) functors from a (small) category c to
Sets (cf. Appendix C). Throughout, K is a commutative base ring with unit 1.

https://www.univ-saida.dz/cimpagal2020/
https://www.univ-saida.dz/cimpagal2020/
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1. Topological differential calculus

In differential calculus, one usually is mostly interested in the morphisms, that
is, in maps of class Cn. However, let us first say some words about the objects:

1.1. Locally linear sets, and the anchor. A locally linear set is a pair (U, V ),
where V is a K-module, and U ⊂ V a non-empty subset. Without fixing time
parameters, we define the set U [1] by (0.3), and the anchor by

(1.1) Υ : U [1] → (U ×K)2, (v0, v1; t, s) 7→ (v0 + sv1, s; v0 + tv1, t).

When time parameters (t, s) ∈ K2 are fixed, we define U(t,s) := U
[1]
(t,s) := U

{1}
(t,s) by

(0.4), and the anchor

Υ(t,s) := Υ
{1}
(t,s) : U

[1]
(t,s) → U × U

is given by restricting the map Υ defined above, i.e., it is given by (0.5). Direct
computation shows that Υ(t,s) is invertible iff s − t is invertible in K, with inverse

given by (0.6). Note that (U
[1]
(t,s), V

2) is again a locally linear set, and hence the

construction can be iterated, with some new parameter (t2, s2), and so on. Explicit
formulae, describing this, will be given later (restricted iteration, Def. 1.4).

1.2. The topological setting. In the remainder of this section we assume that K
is a good topological ring (a topological ring whose unit group K× is open and dense,
and inversion is a continuous map), that all K-modules are topological modules, and
that all locally linear sets (U, V ), (U ′, V ′), . . . are open inclusions.

Definition 1.1. We say that f : U → V ′ is of class CK
1 if the slope given by (0.2)

extends to a continuous map f [1] : U [1] → V ′. We then define df(x)v := ∂vf(x) :=
f [1](x, v; 0, 0).

Remark 1.1. Letting s = 0, this clearly implies that f is of class C1
K in the sense of

[BGN04] or [Be08]. Conversely, the map denoted here by f [1] can be expressed by
the one denoted f [1] in loc. cit., and hence the C1

K-notions used there are equivalent
to the one given above. We call the calculus obtained by restricting to s = 0 target
calculus. Recall from [BGN04] that, in the real or complex finite dimensional case
this definition is equivalent to all usual ones, and in the infinite dimensional locally
convex case it is equivalent to Keller’s definition of differentiability.

Lemma 1.2. For a map f : U → U ′, the following are equivalent:

(1) f is C1
K,

(2) for all (t, s) ∈ K2, there exists a map f(t,s) = f
{1}
(t,s) : U(t,s) → U ′

(t,s), such that

(a) the map U [1] → (U ′)[1], (x, v; t, s) 7→ f(t,s)(x, v) is continuous,
(b) for all (t, s) ∈ K2,

Υ(t,s) ◦ f {1}
(t,s) = (f × f) ◦Υ(t,s) :

U(t,s)

f(t,s)−→ U ′
(t,s)

Υ ↓ ↓ Υ

U × U
f×f−→ U ′ × U ′
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Proof. As we have already seen, when t−s is invertible in K, then f(t,s) is necessarily

given by (0.7). Since its second component is the slope f [1], existence of f(t,s), jointly
continuous in (x, v; t, s), implies existence of a continuous extension of the slope,
whence (2) ⇒ (1). To prove the converse, assume (1). Then the second component
of f(t,s) (that is, the slope) admits a continuous extension, by definition. Let us
show that the first component of f(t,s) also admits a continuous extension. Indeed,

let x0 := f(x+ sv) and x1 := f(x+ tv) and v1 = f [1](x, v; t, s). Then x0 = v0 + sv1,
x1 = v0 + tv1, whence the first component of f(t,s) is

v0 = x1 − tv1 = f(x+ tv)− tf [1](x, v; t, s),

showing that this expression extends continuously for all (t, s) if so does f [1]. □
Example 1.1. If f : V → V ′ is linear and continuous, then direct computation using
(0.7) shows that f(t,s)(v0, v1) = (f(v0), f(v1)), so f is C1

K.

Remark 1.2. Letting v1 = 0 in (0.7), we always get f(t,s)(v0, 0) = (f(v0), 0). In
diagrammatic form, the map f itself imbeds into f(t,s): we define the imbedding

(1.2) ι(t,s) : U → U(t,s), v0 7→ (v0, 0)

then the computation just mentioned shows that f(t,s) ◦ ι(t,s) = ι(t,s) ◦ f :

(1.3)
U(t,s)

f(t,s)−→ U ′
(t,s)

ι ↑ ↑ ι
U

f−→ U

Note that Υ ◦ ι is the diagonal imbedding ∆ : U → U × U , x 7→ (x, x).

In this setting, the usual rules of first order calculus hold (chain rule, product
rule, linearity of first differential) – for a systematic exposition we refer to [BGN04,
Be08, Be11]. Most important for our purposes is the Chain Rule, which we write
in functorial form

(1.4) ∀(t, s) ∈ K2 : (g ◦ f)(t,s) = g(t,s) ◦ f(t,s).
This follows easily from Lemma 1.2: for invertible t − s, we have functoriality
(g × g) ◦ (f × f) = (g ◦ f)× (g ◦ f), and for general (t, s), it follows “by density”.

1.3. Full versus restricted iteration. Higher order differentiability is defined by
iterating first order differentiability. However, there are various ways of doing so,
and it is important to distinguish them. In [BGN04], f is defined to be of class C2

K
if it is C1 and if f [1] also is C1, so that we can define f [2] := (f [1])[1], etc.:

Definition 1.3 (Full iteration). We say that f is of class Cn
K if: f is of class C1

K,
and f [1] is of class Cn−1

K . In this case we let f [n] := (f [1])[n−1].

Remark 1.3. In the real or complex finite dimensional case this is equivalent to
the usual definitions (see [BGN04, Be11]). However, since full iteration repeats
the procedure for all variables together, the number of variables exploses, and it is
hard to get control over the structure of the maps f [n] (see [Be15b]). To reduce the
number of variables, in restricted iteration we consider in each step time variables
to be frozen, and take difference quotients only with respect to space variables.
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Notation. For each k ∈ N, we denote by an upper index {k} a copy of the procedure
{1} that has been defined above. An upper index {i, j} (i < j) indicates a double
application of the procedure (first {i}, then {j}), etc. E.g., an upper index n :=
{1, . . . , n} indicates that we first apply {1}, then {2}, etc., and finally {n}.

To abbreviate, in the sequel, we let (t, s) = (t1, . . . , tn; s1, . . . , sn) ∈ K2n.

Definition 1.4 (Restricted iteration). A map f : U → U ′ is called of class CK,n if:

it is of class C1
K, and, for all (t1, s1) ∈ K2, the map f

{1}
(t1,s1)

is of class CK,n−1. In

this case we define

fn
(t,s) := (f

{1}
(t1,s1)

)
{2,...,n}
(t2,...,tn,s2,...,sn)

: Un
(t,s) → (U ′)n(t,s).

The map fn
(t,s) is defined on the restricted iterated domain

Un
(t,s) := (U

{1}
(t1,s1)

)
{2,...,n}
(t2,...,tn,s2,...,sn)

.

We also require that fn
(t,s) be jointly continuous both in space and in time variables.

In other terms, the inductive definition of Un
(t,s) and of fn

(t,s) amounts to

Un
(t,s) = U

{1,...,n}
(t,s) = (. . . (U

{1}
t1,s1)

{2}
(t2,s2)

) . . .)
{n}
(tn,sn)

,

fn
(t,s) = f

{1,...,n}
(t,s) := (. . . (f

{1}
t1,s1)

{2}
(t2,s2)

) . . .)
{n}
(tn,sn)

.

Theorem 1.5. When K = R or C, and V is a locally convex topological vector
space, then the conditions Cn

K and CK,n are both equivalent to the usual (Keller’s)
definition of Cn-maps.

Proof. As already mentioned, Cn
K clearly implies CK,n, and equivalence of Cn

K with
Keller’s definition has been proved in [BGN04]. On the other hand, CK,n obviously
implies Keller’s Cn-definition, which arises simply by taking (t, s) = (0, . . . , 0) in
the CK,n-condition. Thus all three conditions are equivalent. □
Remark 1.4. For general K, properties Cn

K and CK,n cease te be equivalent: in
positive characteristic, condition Cn

K appears to be strictly stronger than CK,n (cf.
the proof of the general Taylor formula in [BGN04, Be11], which really uses full
iteration; concerning this item, cf. also [Be13]). It would be interesting to have a
criterion allowing to decide when Cn

K and Cn,K are equivalent.

Definition 1.6. For all (t, s) ∈ K2n, the n-th order anchor of U ⊂ V is defined as
follows: for all locally linear sets (U, V ), (U ′, V ′), we consider the map

(U × U ′)(t,s) → U(t,s) × U ′
(t,s), ((v0, v

′
0), (v1, v

′
1)) 7→ ((v0, v1), (v

′
0, v

′
1))

as identification. Under such identifications, the map Υ := Υn
(t,s) :=

(Υ
{1}
(t1,s1)

)
{2,...,n}
(t2,...,tn,s2,...,sn)

: Un
(t,s) → (U

{1}
(t1,s1)

)
{2,...,n}
(t2,...,tn,s2,...,sn)

× (U
{1}
(t1,s1)

)
{2,...,n}
(t2,...,tn,s2,...,sn)

inductively gives rise to a map Υn
(t,s) : U

n
(t,s) → U2n which we call the n-fold anchor.

Remark 1.5. In order to fully formalize this definition, we need an explicit labelling
of the 2n copies of U in U2n . For the moment, this is not needed, and will be
taken up later (Def. 2.23). Let us, however, give the result for n = 2: space
variables have labels 0, 1, 2, 12 corresponding to the subsets of {1, 2}, so we write
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v = (v0, v1, v2, v12) ∈ U
{1,2}
(t1,t2,s1,s2)

. Then iteration shows that the linear map Υ is

given by the (block) matrix (Kronecker product of two first-order anchors)

(1.5)

(
1 s1
1 t1

)
⊗
(
1 s2
1 t2

)
=


1 s1 s2 s1s2
1 t1 s2 t1s2
1 s1 t2 s1t2
1 t1 t2 t1t2

 ,

so we have four “evaluation points” given by the four lines of the (block) matrix:

(1.6)

Υ∅(v) = v∅ + s1v1 + s2v2 + s1s2v12,
Υ1(v) = v∅ + t1v1 + s2v2 + t1s2v12,
Υ2(v) = v∅ + s1v1 + t2v2 + s1t2v12,
Υ12(v) = v∅ + t1v1 + t2v2 + t1t2v12.

The inverse matrix of (1.5) is the Kronecker product of the inverses of the respective
first order anchors (when these are invertible): writing dΥ := (t1 − s1)(t2 − s2),

(1.7)
1

dΥ

(
t1 −s1
−1 1

)
⊗
(
t2 −s2
−1 1

)
=

1

dΥ


t1t2 −s1t2 −t1s2 s1s2
−t2 t2 s2 −s2
−t1 s1 t1 −s1
1 −1 −1 1


For the general case, see Theorem 2.25.

Theorem 1.7. For a map f : U → U ′, the following are equivalent:

(1) f is CK,n,
(2) for all (t, s) ∈ K2n, there exists a map fn

(t,s) : U
n
(t,s) → (U ′)n(t,s), such that

(a) fn
(t,s)(v) is jointly continuous in space and time variables (v; t, s),

(b) for all (t, s) ∈ K2n, Υn
(t,s) ◦ fn

(t,s) = f 2n ◦Υn
(t,s):

Un
(t,s)

fn
(t,s)−→ (U ′)n(t,s)

Υn
t,s ↓ ↓ Υn

(t,s)

U2n f2
n

−→ (U ′)2
n
.

The map fn
(t,s) depends functorially on f : (f ◦ g)n(t,s) = fn

(t,s) ◦ gn(t,s) (Chain Rule).

Proof. By induction: for n = 1, this is Lemma 1.2. Assume the claim holds on

level n − 1 and apply it to f replaced by f
{1}
(t1,s1)

. From the inductive definitions,

it follows readily that the properties are again equivalent on level n. The (higher
order) Chain Rule now also follows by induction. □
Example 1.2. Using Formula (1.7), let us give explicit formulae for n = 2:

f 2
(t1,t2,s1,s2)

(v) = Υ−1
(
f(Υ∅(v)), f(Υ1(v)), f(Υ2(v)), f(Υ12(v))

)
(1.8) =

1

dΥ


t1t2f(Υ∅v)− s1t2f(Υ1v)− t1s2f(Υ2v) + s1s2f(Υ12v)

−t2f(Υ∅v) + t2f(Υ1v) + s2f(Υ2v)− s2f(Υ12v)
−t1f(Υ∅v) + s1f(Υ1v) + t1f(Υ2v)− s1f(Υ12v)

f(Υ∅v)− f(Υ1v)− f(Υ2v) + f(Υ12v)
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Since dΥ = (t1− s1)(t2− s2), the first term is in fact an affine combination of values
of f at the four evaluation points, whereas the other three terms are “zero-sum
combinations” of these values, and hence correspond to “true” difference quotients.
In order to state results at arbitrary order, we need some notation:

1.4. Hypercube notation, and formula for higher order slopes.

Definition 1.8. We call n-hypercube the power set P(n) = P({1, . . . , n}). It serves
as index set for space variables, which we write in the form v = (vA)A∈P(n). Recall
that P(n) is a semigroup for union ∪ and intersection ∩, and a group with respect
to the symmetric difference

A∆B = (A ∪B) \ (A ∩B) = (A ∩Bc) ∪ (B ∩ Ac),
where Ac = n \ A is the complement of A in n. Recall also that Ac∆Bc = A∆B,
and that A∆Bc = (A∆B)c = Ac∆B, whence |A∆Bc| = n− |A∆B|.

Definition 1.9. For all t, s ∈ Kn and A ∈ P(n), we let t∅ = 1 = s∅, and

tA =
∏
k∈A

tk, sA =
∏
k∈A

sk, (t− s)A =
∏
k∈A

(tk − sk).

Call (t, s) regular, or finite, if, ∀i = 1, . . . , n : (ti − si) ∈ K×, and singular if
∀i = 1, . . . , n : (ti − si) /∈ K×, and mixed else.

Theorem 1.10. Let f : U → U ′ be of class CK,n. Then, for all regular (t, s) ∈ K2n,
and all B ∈ P(n), the component (fn

(t,s)(v))B is given by

(fn
(t,s)(v))B =

1

(t− s)n

∑
A∈P(n)

(−1)|A∆B|sBc∩AtBc∩Ac f
( ∑
C∈P(n)

sC∩ActC∩AvC
)
.

The proof will be given in Subsection 2.7. For B = ∅, the component is an affine
combination of values of f at the 2n evalation points, and for all other components
it is again a “zero sum combination”.

1.5. Categories of locally linear sets and CK,n-maps. To summarize, we have
defined a category of locally linear sets and their CK,n-morphisms:

Definition 1.11. We denote by LlinK,n the category whose objects are pairs (U, V ),
where V is a topological K-module and U ⊂ V a non-empty open subset, and mor-
phisms are CK,n-maps f : U → U ′. (For n = 0, morphisms are continuous maps,
and for n = ∞, these are maps that are CK,n for all n ∈ N.)

Definition 1.12. For m ≥ n and (t, s) ∈ K2n, the (n; t, s)-tangent functor is the
functor from LlinK,m to LlinK,m−n given by (U, V ) 7→ (Un

(t,s), V
n
(t,s)) and f 7→ fn

(t,s).

Remark 1.6 (Manifolds). By the usual glueing procedures, one may now define
CK,n-manifolds over K, modelled on locally linear sets – since these methods are
independent of the particular form of differential calculus, we do not wish to go here
into details (see [Be16] for a formulation of such principles, adapted to most general
contexts). The (n; t, s)-tangent functor then carries over to manifolds : for every
K-smooth manifold M we have a “generalized higher order tangent bundle” Mn

(t,s),

depending functorially on M , and coming with an anchor map Mn
(t,s) →M2n .



A FUNCTORIAL APPROACH TO DIFFERENTIAL CALCULUS 11

2. The rings of calculus: tangent algebras

Our next aim is to understand the (n; t, s)-tangent functor as a functor of scalar
extension, fromK to a ringKn

(t,s), as a generalisation of the algebraic scalar extension
functor −⊗KKn

(t,s). To this end, let’s first restrict attention to the case V = U = K.
Since K carries canonical structures, so will, by functoriality, the spaces Kn

(t,s); and
the anchor map will be a ring morphism, which we can compute explicitly. In this
section, we continue to assume that K is a good topological ring.

2.1. Bilinear maps. We can differentiate bilinear continuous maps β : V ×W → Y
in the usual way. Since we think of β as a “product”, let us write v •w := β(v, w).

Concerning Cartesian products, we use the convention from Def. 1.6, so that β
{1}
(t,s)

is considered as a map

β
{1}
(t,s) : V(t,s) ×W(t,s) → Y(t,s), (

(
v0
v1

)
,

(
w0

w1

)
) 7→

(
v0
v1

)
•{1}(t,s)

(
w0

w1

)
which by an explicit computation using Formula (0.7) is given by

(2.1)

(
v0
v1

)
•{1}(t,s)

(
w0

w1

)
=

(
v0 • w0 − st v1 • w1

v0 • w1 + v1 • w0 + (s+ t)v1 • w1

)
.

Moreover, by Lemma 1.2, the anchor Υ(t,s) is a “morphism” from the product β
{1}
(t,s)

to β × β (the “direct product algebra”).

2.2. First order tangent algebras. Now take V = W = K and β(x, y) = xy.

Definition 2.1 (Normalization: source, target, anchor). When V = W = K, the
anchor is a map Υ : K2 × K2 → K2 × K2, and when (t, s) ∈ K2 is fixed, then we
have a (linear) map Υ(t,s) : K2 → K2. The standard basis in the domain of Υ(t,s)

will be denoted by e∅ := (1, 0), e1 := (0, 1), and the standard basis in its range by
E∅ := (1, 0) and E1 := (0, 1), so v = v∅e∅ + v1e1. We make the choice to associate
E∅ with “source” and E1 with “target”, that is, we let

α(v) = α(v0e∅ + v1e1) = (v0 + sv1)E∅,

β(v) = β(v0e∅ + v1e1) = (v0 + tv1)E1,

Υ(v) = Υ(v0e∅ + v1e1) = (v0 + sv1)E∅ + (v0 + tv1)E1.

In other terms,
Υ(e∅) = E∅ + E1, Υ(e1) = sE∅ + tE1.

With respect to ordered bases, with “usual” ordering (e∅, e1), (E∅, E1), these linear
maps correspond to the matrices

α =
(
1 s

)
, β =

(
1 t

)
, Υ(t,s) =

(
1 s
1 t

)
.

As usual, dual bases are denoted by ((e∅)
∗, (e1)

∗), resp., ((E∅)
∗, (E1)

∗). Thus

α = e∗∅ + s · e∗1,
β = e∗∅ + t · e∗1,

Υ(t,s) = α⊗ E∅ + β ⊗ E1 = e∗∅ ⊗ E∅ + e∗1 ⊗ E1 + s e∗1 ⊗ E∅ + t e∗∅ ⊗ E1.
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The choice appearing in this definition should be seen as an additional structure,
akin to the choice of an “orientation”.

Lemma 2.2. For all (t, s) ∈ K2, the map induced by m : K×K → K, (x, y) 7→ xy,

m
{1}
(t,s) : K

{1}
(t,s) ×K{1}

(t,s) → K{1}
(t,s), ((v0, v1), (w0, w1)) 7→ (v0, v1) · (w0, w1)

turns K{1}
(t,s) into an associative commutative K-algebra which, under identification

of the K-bases e∅ = 1 = [1], e1 = e = [X], is isomorphic to the quotient algebra

K{1}
(t,s)

∼= K[X]/(X − t)(X − s).

Proof. The fact that K{1}
(t,s) is an associative commutative algebra follows by functo-

riality from the fact that so is K ([Be08, BeS14]), but it can also be obtained as a
consequence of the following computational argument: we compare Formula (2.1),
relative to e∅, e1, with the product in K[X]/(X − t)(X − s), relative to the basis
[1], [X]. In both cases, 1 = e∅ is a neutral element, and we have

(2.2) e2 = −st · 1 + (s+ t)e,

showing that, with respect to these bases, the formulae describing the product in
K(t,s) and in K[X]/(X − t)(X − s) are the same. □

Definition 2.3. We call K{1}
(t,s) the (t, s)-tangent algebra of K. For t = s = 0 we

get the algebra of dual numbers, see Eqn. (0.1).

Lemma 2.4. The anchor

Υ
{1}
(t,s) : K(t,s) → K×K, (v0, v1) 7→ (v0 + sv1, v0 + tv1)

is an algebra morphism into the direct product algebra. It is an isomorphism iff
s− t ∈ K×. Source α and target β are characters (morphisms K(t,s) → K).

Proof. Under the identification K{1}
(t,s)

∼= K[X]/((X − s)(X − t)), we have Υ([P ]) =

(P (s), P (t))), the evaluation morphism of the quotient algebra at (s, t). □

Theorem 2.5 (Structure of the first order tangent algebra K{1}
(t,s)).

(1) The ideals ker(α) and ker(β) satisfy ker(α) · ker(β) = 0.

(2) The product of w, v ∈ K{1}
(t,s) is given by the “fundamental relation”

w · v = α(w)v − α(w)β(v) + β(v)w.

(3) The map

κ : K{1}
(t,s) → K{1}

(t,s), v 7→ (α + β)(v) · 1− v

is an algebra automorphism of order 2 such that α ◦ κ = β. Moreover,

∀v ∈ K{1}
(t,s) : v · κ(v) = α(v)β(v)1.

(4) An element v is invertible in K{1}
(t,s) if, and only if, α(v)β(v) ∈ K×, and then

the inverse is

v−1 =
1

α(v)β(v)
κ(v) = (

1

α(v)
+

1

β(v)
)1− v

α(v)β(v)
.
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Proof. (1) ker(α) = K(e − s) and ker(β) = K(e − t), and, by the defining relation
of the algebra, (e− s)(e− t) = [(X − t)(X − s)] = 0 .
(2) Since α(v − α(v)1) = 0 and β(w − β(w)1) = 0, the preceding item implies

0 = (v − α(v))(w − β(w)) = vw − α(v)w − β(w)v + α(v)β(w).

(3) Note that κ(1) = 1 + 1 − 1 = 1 and κ(e) = s + t − e, whence κ(κ(e)) =
s+ t− (s+ t− e) = e, so κ2 = id. Next,

α(κ(v)) = (α + β)(v)− α(v) = β(v).

To prove that κ is an automorphism, since κ(1) = 1, it suffices to show that κ(e2) =
κ(e)2. Indeed, κ(e)2 = (t + s)2 − 2(t + s)e + e2 = (t + s)2 − ts − (t + s)e and
κ(e2) = κ(−ts+ (t+ s)e) = −ts+ (t+ s)κ(e) = −ts+ (t+ s)2 − (t+ s)e. Finally,

v · κ(v) = α(v)κ(v)− α(v)β(κv) + β(κv)v = α(v)β(v)1.

(4) If v is invertible, then applying the morphisms α and β, it follows that both
α(v) and β(v) are invertible. Conversely, the last formula from (3) shows that under
this condition v has an inverse given by v−1 as in the claim. □

Remark 2.1. Under Υ, the corresponding “fundamental relation” in K2 reads

(x1, x2)(y1, y2) = (x1y1, x2y2) = x1(y1, y2)− x1y2(1, 1) + y2(x1, x2),

and inversion in K2 can be written (x1, x2)
−1 = 1

x1x2
(x2, x1).

Definition 2.6. We define the following elements in K{1}
(t,s) (the latter if 2 ∈ K×)

a := e− t1 = [X − t],

b := e− s1 = [X − s],

j :=
a+ b

2
= e− t+ s

2
.

Remark 2.2. The pair (1, a) is a basis of K{1}
(t,s), and so is (1, b). When (t, s) is

regular, then (a, b) also is a basis, but when t = s, we have a = b. In the symmetric
case (t = −s), we have e = j. This situation is represented by Figure 1 (where
t = 0.4 = −s). The arrows indicate the direction of the kernel of the projection α,
resp. β, cf. the following lemma.

Lemma 2.7. The elements a, b, j satisfy the relations

(1) ab = 0, a2 = (s− t)a, b2 = (t− s)b, j2 = (t−s)2
4

1
(2) α(a) = s− t = −β(b), α(b) = 0 = −β(a),
(3) κ(a) = −b, κ(j) = −j
(4) Υ(a) = (s− t)E∅, Υ(b) = (t− s)E1, Υ(j) = s−t

2
(E∅ − E1).

Proof. Since α(b) = α(e)− s = s− s = 0, and β(a) = β(e)− t = t− t = 0, we get
from Theorem 2.5, for all v ∈ V ,

v · a = α(v)a, v · b = β(v)b,

and everything follows more or less directly from this. □
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Figure 1. The plan K(t,s) and its distinguished elements.

b
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b a b bb
e = j

b 1
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b
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b
−j
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Definition 2.8. Assume (t, s) is regular, that is, t−s is invertible. Then we define
the idempotent basis (Ẽ∅, Ẽ1) in K(t,s) by

Ẽ∅ := Υ−1(E0) =
a

s− t
=

e

s− t
− t

s− t
,

Ẽ1 := Υ−1(E1) =
b

t− s
=

e

t− s
− s

t− s
.

By this definition, the elements Ẽ0, Ẽ1 are orthogonal idempotents, and the ma-
trix of Υ with respect to the Ẽ-basis in its codomain and the E-basis in its domain
is the identity matrix. The base change matrix from the e-basis to the the Ẽ-basis
is the “usual” matrix of Υ: indeed,

e∅ = 1 = Ẽ∅ + Ẽ1, e1 = e = sẼ∅ + tẼ.

2.3. The category of first order anchored tangent algebras. Our aim is to
define a (small) category of tangent algebras: so, we have to say, what are the
objects, and what are the morphisms ?

Definition 2.9. Objects of the category of anchored first order K-tangent algebras
are all anchor maps

Υ(t,s) = Υ
{1}
(t,s) : K(t,s) = K{1}

(t,s) → K2

for (t, s) ∈ K2, as well as the “trivial” anchor id : K → K. Thus, objects can
be considered as triples (K(t,s),K2,Υ(t,s)), resp. (K,K, id) (domain and codomain
of the anchor, and its “formula”). For every anchored tangent algebra Υ, there is
an opposite anchored tangent algebra Υ′ := τ ◦ Υ, where τ(x, y) = (y, x) is the
exchange automorphism of K2.

Definition 2.10. A pair of algebra morphisms

Φ : K(t′,s′) → K(t,s), Φ′ : K2 → K2,

is called anchor-compatible if

Υ(t,s) ◦ Φ = Φ′ ◦Υ(t′,s′) : K(t′,s′) → K2.
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We say that Φ is direct if the pair (Φ, idK2) is anchor-compatible, and indirect if the
pair (Φ, τ) is anchor-compatible. Equivalently, Φ is indirect iff α◦Φ = β, β◦Φ = α,
and direct if α ◦ Φ = α, β ◦ Φ = β.

We shall require that morphisms are anchor-compatible, either direct or indirect.
When (t, s) is regular and Φ is direct, then necessarily Φ = (Υ(t,s))

−1 ◦ Υ(t′,s′), so
there is exactly one direct morphism from K(t′,s′) to K(t,s). However, when (t, s)
is singular, then we cannot always “classify” direct morphisms, and therefore we
will proceed to give an explicit list of morphisms that are admitted in our small
category. The case of indirect morphisms is reduced to the case of direct ones:

Lemma 2.11. For every (t, s) ∈ K2, the automorphism κ : K(t,s) 7→ K(t,s) defined in
Theorem 2.5 is indirect. There is a bijection between the sets of direct and indirect
morphisms.

Proof. We have seen in Theorem 2.5 that α ◦ κ = β and β ◦ κ = α, so J is indirect.
Clearly, Φ is direct iff Φ ◦ κ is indirect, whence the claimed bijection. □

Remark 2.3. The map κ can be interpreted as the inversion map of the groupoid
U(t,s), see Lemma 4.1. As such, it exchanges source and target of the groupoid.

Lemma 2.12. Let (t, s), (t′, s′) ∈ K2. Any K-affine map ϕ : K → K such that
ϕ(t′) = t, ϕ(s′) = s, induces a direct algebra morphism

Φ := ϕ∗ : K(t,s) = K[X]/(X − t)(X − s) → K(t′,s′), [P ] 7→ [P ◦ ϕ].

Proof. Any affine map ϕ induces an algebra-morphism K[X] → K[X], P 7→ P ◦
ϕ. By our assumption on ϕ, this map passes to the quotient and thus defines a
morphism of quotient algebras. It is direct,

Υ(ϕ∗([P ])) = Υ([P ◦ ϕ]) = (P (ϕ(t)), P (ϕ(s))) = (P (t′), P (s′)) = Υ([P ]). □

Definition 2.13. A morphism defined by the preceding lemma is called of affine
type. We distinguish the following cases:

(1) morphism of translation type: (t′, s′) = (t+ µ, s+ µ), ϕ(x) = x− µ,
(2) morphism of scaling type: (t, s) = (λt′, λs′), ϕ(x) = λx,

Remark 2.4. The affine map ϕ(x) = s − x + t induces ϕ∗ : K(t′,s′) → K(t,s) with
s′ = t, t′ = s. As algebra morphism, it is the same as κ; but κ acts from the label
(t, s) to itself, and thus is considered as indirect, whereas ϕ∗ acts from the label to
the reversed label, and thus is considered as direct.

Remark 2.5. By the lemma, each tangent algebra K(t,s) is isomorphic to an algebra
K(r,0) with r belonging to a system of representatives of the K×-orbits in K. Thus,
when K is a field, there are only two isomorphism classes, corresponding to r = 1
(direct product algebra K2) and r = 0 (dual numbers TK).

Definition 2.14. Morphisms of the category of anchored first order K-tangent
algebras are all morphisms of affine type (direct), as well as their compositions with
κ (indirect), and the canonical injection of the trivial anchor morphism, given by

Φ : K → K(t,s), x 7→ x1, Φ′ : K → K2, x 7→ x(1, 1).
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Remark 2.6. It may turn out to be useful, or necessary, to add more morphisms
to this list when developing the theory further (for instance, for the moment we
refrain from adding α and β to our list, although they give rise to anchor-compatible
morphisms). In any case, the list should be explicit, in order to control the behaviour
of calculus with respect to morphisms, see the following proposition. Note also
that the anchor “morphism” does not appear in our list of morphisms, since it is
considered as “object”!

Proposition 2.15. Let U ⊂ V be open, (t, s) ∈ K2, λ, µ ∈ K. Then the maps

Hλ : U(λt,λs) → U(t,s), (v0, v1) 7→ (v0, λv1),

Tµ : U(t+µ,s+µ) → U(t,s), (v0, v1) 7→ (v0 + µv1, v1),

J : U(t,s) → U(t,s), (v0, v1) 7→ ((s+ t)v1 + v0,−v1)
are well-defined, and, for every map f : U → U ′ of class C1

K, they commute with
tangent maps, in the sense that

Hλ ◦ f(λt,λs) = f(t,s) ◦Hλ, Tµ ◦ f(t+µ,s+µ) = f(t,s) ◦ Tµ, κ ◦ f(t,s) = f(t,s) ◦ κ.

Proof. Direct computation using (0.3) and (0.7). □
2.4. Higher order tangent algebras. Now we apply restricted iteration to the

construction of the tangent algebra. Recall that K{k}
(tk,sk)

is simply a copy of K{1}
(t1,s1)

which we call “of k-th generation”. Now, each iteration step doubles the K-
dimension of our K-algebra, so that in degree n we get an algebra of dimension
2n. We will index basis elements by the hypercube P(n) of n = {1, . . . , n}, which is
in keeping with notation for restricted iteration introduced above.

Definition 2.16. For any K-module V , the canonical isomorphism

V ⊕ V = (V ⊗K K)⊕ (V ⊗K K) = V ⊗K K2

gives an identification V
{1}
(t,s) = V × V = V ⊗K K{1}

(t,s). By restricted iteration, let

Kn
(t,s) = K{1}

(t1,s1)
⊗ . . .⊗K{n}

(tn,sn)
.

The canonical basis e∅, ek in each factor K{k}
(tk,sk)

gives rise to a canonical basis in

the K-module Kn
(t,s), indexed by elements A ∈ P(n), and given by

eA = ⊗n
k=1e{k}∩A.

Lemma 2.17. Applying restricted iteration n-times, with parameter (t, s) ∈ K2n,
to the product map of K, we obtain an algebra structure on Kn

(t,s), isomorphic to

(1) the n-fold tensor product of algebras K{1}
(t1,s1)

⊗ . . .⊗K{n}
(tn,sn)

,

(2) equivalently, to the quotient algebra

K[X1, . . . , Xn]/((Xi − ti)(Xi − si), i = 1, . . . , n).

The canonical basis (eA)A∈P(n) of the tensor product corresponds to the canonical
K-basis of the polynomial algebra,

eA = [
∏
k∈A

Xk].
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If V is a (topological) K-module, then applying n-fold restricted iteration to the
scalar multiplication map K × V → V gives the scalar action of the ring Kn

(t,s) on
the algebraic scalar extension V ⊗K Kn

(t,s).

Proof. Formula (2.1) shows that, if µ : A × A → A, (x, y) 7→ x • y is any (finite-

dimensional) algebra (associative or not), then µ
{k}
(tk,sk)

is, as algebra, isomorphic to

the tensor product of algebras A⊗K{k}
(tk,sk)

, that is, the algebraic scalar extension of

the algebra A by the ring K{k}
(tk,sk)

. If A is an associative commutative algebra, then

this algebraic scalar extension is also isomorphic to A[Xk]/((Xk − tk)(Xk − sk)).
Applying this remark n times, starting with A = K, the lemma follows. Similarly
for the bilinear salar multiplication map K× V → V . □
Note that, since e∅ is the unit element in K(t,s), we have, e.g.,

e{1,2} = e1 ⊗ e2 = (e1 ⊗ e∅) · (e∅ ⊗ e2) = e1 · e2,
by identifying x⊗ 1 with x and 1⊗ y with y. And so on: we may write

eA =
∏
k∈A

ek.

Definition 2.18. Elements v ∈ Kn
(t,s), or of V ⊗K Kn

(t,s), are written

v =
∑

A∈P(n)

vAeA, vA ∈ V.

We also define the a-basis, resp. b-basis, of Kn
(t,s) by a∅ = 1 = b∅,

aA := ⊗n
k=1a{k}∩A =

∏
i∈A

ai, ai := [Xi − ti] = ei − ti, bA =
∏
i∈I

bi,

again indexed by A ∈ P(n). If 2 is invertible in K, we define the j-basis by

ji :=
ai + bi

2
= ei −

si + ti
2

, jA :=
∏
i∈A

ji.

Lemma 2.19. We have the product rules, for all A,B ∈ P(n),

aAaB = (s− t)A∩B aA∪B,

bAbB = (t− s)A∩B bA∪B,

jAjB =
1

4|A∩B| (t− s)2A∩B jA∆B.

Proof. The first product rule comes from a2k = (sk − tk)ak and aiaj = a{i,j} when
i ̸= j, and similarly for the other two, with j2k =

1
4
(tk − sk)

2 = 1
4
(tk − sk)

2j∅. □
Corollary 2.20. When t = 0 and s = (1, . . . , 1), then Kn

(0,1) with a-basis is the

semigroup algebra of (P(n),∪), and when s = −t = (1, . . . , 1), then Kn
(1,−1) with

j-basis is the group algebra of (P(n),∆).

Proof. In the first case, aAaB = aA∪B, which are the defining relations for the
semigroup algebra K[P(n)] (with ∪), and in the second, jAjB = jA∆B, which defines
the group algebra of K[P(n)] with ∆. □
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2.5. The n-fold anchor and its inverse. By restricted iteration, the n-fold an-
chor, taken for U = V = K, has been defined, in Definition 1.6, to be a (linear)
map Υn

(t,s) : Kn
(t,s) → K2n . By induction, it will be an algebra morphism, but in

order to put hands on it, we now have to fix a basis in K2n , in such a way that it
is compatible with iteration procedures. Forgetting the algebra structure, we get a
linear space, called hypercubic space, see Appendix B.

Definition 2.21. For any subset N ⊂ N of finite cardinal n, the 2n-fold direct
product algebra of K, in standard order, is the algebra

K2n := KP(N) :=
⊕

A∈P(N)

KEN
A

with K-basis (EN
A )A∈P(N), and product defined on basis elements by

EA · EA = EA, ∀A ̸= B : EA · EB = 0.

When N is fixed, the notation EA suffices. In particular, this notation is in keeping

with our preceding one for the standard basis in K2: E∅ = E
{1}
∅ , E1 = E

{1}
{1} . We

simplify notation by writing, e.g., k instead of {k}, and ij instead of {i, j}, etc.

Lemma 2.22. The algebra KP(N) is an associative algebra canonically isomorphic
to the algebra of functions from P(N) to K with pointwise product, with EN

A cor-
responding to the function having value 1 at A and 0 else. For two disjoint finite
subsets N1, N2 ⊂ N, we have an isomorphism of algebras

KP(N1) ⊗KP(N2) → KP(N1⊔N2), EN1
A ⊗ EN2

B 7→ EN1⊔N2
A⊔B .

Proof. For the first statement, just recall that the algebra KS of K-valued functions
on a finite set S has canonical basis (1x)x∈S, where 1x(y) = δx,y, so EA corresponds
to the element 1A. For the second statement, recall that for finite sets S, T ,

KS ⊗KT → KS×T , f ⊗ g 7→ ((x, y) 7→ f(x)g(y))

defines an isomorphism of algebras sending 1x ⊗ 1y to 1(x,y), and combine this with
the canonical bijection

P(N1)× P(N2) → P(N1 ⊔N2), (A,B) 7→ A ∪B

having inverse C 7→ (C ∩N1, C ∩N2). □

E.g., using the lemma, for n = 2, the algebra KP({1,2}) has K-basis

E12
∅ = E1

∅ ⊗ E2
∅ , E12

1 = E1
1 ⊗ E1

∅ ,
E12

2 = E1
∅ ⊗ E2

2 , E12
12 = E1

1 ⊗ E2
2 ,

In general, the neutral element of KP(N) is the function that is 1 everywhere, that
is, the sum of all basis elements:

1 =
∑

A∈P(N)

EN
A .
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Definition 2.23. The n-fold anchor is the tensor product of n copies of the first
order anchor, with respect to bases defined as above: it is the algebra morphism

Υn
(t,s) := ⊗n

i=1Υ
{i}
(ti,si)

: Kn
(t,s) → KP(n),

where for each k ∈ N, Υ{k}
(tk,sk)

: K{k}
(tk,sk)

→ KP({k}) is a copy of the first order anchor.

Thus, by definition,

Υ
{k}
(tk,sk)

(e∅) = Ek
∅ + Ek

k , Υ
{k}
(tk,sk)

(ek) = skE
k
∅ + tkE

k
k .

Recall Formula (1.5) for the matrix of the second order anchor. Note that, when
s1 = 1 = s2, then this matrix is a symmetric matrix, whereas for t1 = 1 = t2, this
is not the case. Using notation introduced above, we generalize:

Theorem 2.24. Fix n ∈ N, and (t, s) ∈ K2n. With respect to the bases (eA)A∈P(n)

in its domain and (EA)A∈P(n) in its range, the n-fold anchor is given by

Υ = Υn
(t,s) =

∑
(A,B)∈P(n)2

tA∩BsA∩Bc e∗A ⊗ EB.

In other terms, it is characterized by the following equivalent conditions:

(1) Υ(eA) =
∑

B∈P(n) tA∩BsA∩BcEB,

(2) Υ(
∑

A∈P(n) vAeA) =
∑

B∈P(n)

(∑
A∈P(n) tA∩BsA∩BcvA

)
EB,

(3) the matrix of Υ with respect to these bases has coefficients

Υ(B,A) := E∗
B(Υ(eA)) = tA∩BsA∩Bc , (A,B) ∈ P(n)2.

In particular, in the symmetric case s = −t, we have Υ(B,A) = (−1)|A∩B|sA:

Υ = Υn
(−s,s) =

∑
A∈P(n)

sA
∑

B∈P(n)

(−1)|A∩B|e∗A ⊗ EB.

Proof. This is the special case of Theorem B.3 for a = 1 = c, b = s, d = t. □
Next, to compute the inverse of the anchor, in the regular case, recall Formula

(1.7) concerning the case n = 2. This generalizes as follows:

Theorem 2.25. Fix n ∈ N and (t, s) ∈ K2n. Recall the notation (t − s)n =∏n
k=1(tk − sk). The anchor map Υ = Υn

(t,s) is invertible if, and only if, tk − sk is
invertible for all k = 1, . . . , n, and then its inverse map is given by the formula

Υ−1 =
1

(t− s)n

∑
(A,B)∈P(n)2

(−1)|A∆B|sAc∩BtBc∩Ac E∗
A ⊗ eB.

Equivalently,

(1) Υ−1(EA) =
1

(t−s)n

∑
B∈P(n)(−1)|A∆B|sAc∩BtBc∩Ac eB,

(2) Υ−1(
∑

A∈P(n) yAEA) =
1

(t−s)n

∑
B∈P(n)(−1)|A∆B|yAsAc∩BtBc∩Ac eB.

In particular, in case s = −t, we get (using (A∆B) ⊔ (Ac ∩Bc) = (A ∩B)c)

Υ−1(EA) =
1

(−2)nsn

∑
B∈P(n)

(−1)|A∩B|sBc eB.

Proof. This is a special case of Theorem B.4. □
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2.6. The idempotent basis. Just like in case n = 1, we define, for regular (t, s)
the basis (ẼA)A∈P(n) of Kn

(t,s) by

ẼA := Υ−1(EA).

Thus, by definition, the matrix ME
Ẽ
(Υ) of Υ for these bases is the identity matrix,

whereas Υ := ME
e (Υ) is its “usual” matrix, computed in Theorem 2.24. It follows

that the base change matrix from Ẽ to e is given by

M e
Ẽ
(id) =M e

E(Υ)ME
Ẽ
(Υ−1) = Υ · 1 = Υ.

Thus the idempotent basis is given by base change with the coeffiencts of the matrix
Υ−1 computed in Theorem 2.25.

Remark 2.7. For A ∈ P(n), the linear form E∗
A : KP(n) → K is the A-projection,

which is a character, i.e., an algebra morphism into the base ring. Thus

ΥA := Ẽ∗
A = E∗

A ◦Υ : Kn
(t,s) → K

also is a character (generalising α, β from n = 1). Seen this way, the anchor Υ can
be considered as an analog of the Fourier transform for the algebra Kn

(t,s).

2.7. The n-th order restriced slope map. Having established the explicit for-
mulae for Υ and Υ−1, we can prove the already anounced formula from Theorem
1.10 for fn

(t,s) = Υ−1 ◦ fP(n) ◦ Υ when (t, s) is regular. We decompose v ∈ V n
(t,s) =

V ⊗KKn
(t,s) in the form v =

∑
A∈P(n) vAeA, and Υ(v) =

∑
A∈P(n) ΥA(v)EA, with the

2n evaluation points given by

ΥA(v) =
∑

C∈P(n)

sC∩ActC∩AvC .

Then

fn
(t,s)(

∑
A∈P(n)

vAeA) = Υ−1
( ∑
A∈P(n)

f
(
ΥA(v)

))
=

1

(t− s)n

∑
B∈P(n)

eB

( ∑
A∈P(n)

(−1)|A∆B|tAc∩BcsBc∩Af
(
ΥA(v)

))
=

1

(t− s)n

∑
B∈P(n)

eB

( ∑
A∈P(n)

(−1)|A∆B|tAc∩BcsBc∩Af
( ∑
C∈P(n)

tC∩AsC∩AcvC
))
.

2.8. The category of anchored n-th order tangent algebras. We generalize
the concepts defined in 2.3 to the case of any order n ∈ N:

Definition 2.26. Objects of the category talgK,n of anchored n-th order K-tangent
algebras are all anchor morphisms

Υn
(t,s) : Kn

(t,s) → KP(n)

for (t, s) ∈ K2n, along with the trivial anchor morphism id : K → K.
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Definition 2.27. A pair of algebra morphisms

Φ : Kn′

(t′,s′) → Kn
(t,s), Ψ : KP(n′) → KP(n)

is called anchor-compatible if

Υn
(t,s) ◦ Φ = Ψ ◦Υn′

(t′,s′) :
Kn′

(t′,s′) → Kn
(t,s)

↓ ↓
KP(n′) → KP(n).

It is called anchor preserving if n = n′ and Ψ = id.

Note that, when (t′, s′) is regular, then this condition is automatically satisfied,
by taking Ψ = Υn

(t,s) ◦ Φ ◦ (Υn′

(t′,s′))
−1. From Lemma 2.12 we directly get, by taking

tensor products, the following anchor preserving morphisms:

Definition 2.28. Let ϕi : K → K affine maps, i = 1, . . . , n, and ϕ = ϕ1× . . .×ϕn :
Kn → Kn. Then ϕ induces an anchor-preserving morphism, called of affine type,
ϕ∗ : Kn

(t′,s′) → Kn
(t,s). In particular, we say that ϕ∗ is

(1) of translation type if ϕ∗ is the tensor product of morphisms of translation
type, parametrized by µ = (µ1, . . . , µn) ∈ Kn, t′i = ti + µ, s′i = si + µ,

(2) of scaling type if ϕ∗ is the tensor product of morphisms of scaling type,
parametrized by λ = (λ1, . . . , λn) ∈ Kn, t′i = λitt, s

′
i = λisi.

Remark 2.8. When defined, the composition of morphisms of affine type is again
of affine type. In more elaborated language, we get a small category which is the
action category associated to the affine monoid.

On the most basic level of the theory, it would be enough to consider only anchor-
preserving morphisms of affine type. However, certain other anchor-compatible
morphisms will soon become relevant, which are the higher order analogs of the
indirect morphisms defined for n = 1.

Definition 2.29. We denote by Bn the hyperoctahedral group, which is defined as
follows: it is the group acting on P(n) generated by

(1) the symmetric group Sn acting on P(n) in the natural way by σ.A = σ(A),
(2) the action of the abelian group (P(n),∆) ∼= (Z/(2))n by translations on itself:

B.A = A∆B (symmetric difference).

Remark 2.9. The group Bn is a semidirect product of Sn with the normal subgroup
(P(n),∆), whence is of cardinal n!2n. It is a Coxeter group of type Bn. It has a
non-trivial center: the element n acts by the complement map A 7→ n∆A = Ac,
which belongs to the center of Bn.

Definition 2.30. We call admissible automorphism of KP(n) the algebra automor-
phisms induced by elements of τ ∈ Bn, via Ψ(EA) = Eτ(A). In particular,

(1) Ψ is of σ-permutation type if τ = σ belongs to the subgroup Sn of Bn (in
particular, we say Ψ is a flip if τ is a transposition),

(2) Ψ is of B-inversion type if τ(A) = B∆A belongs to the subgroup (P(n,∆))
of Bn. In particular, we say that Ψ is an elementary inversion if B is a
singleton, B = {i}, and Ψ is the central inversion, if B = n.

https://en.wikipedia.org/wiki/Hyperoctahedral_group
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We use the same terminology for the corresponding pairs of anchor-compatible mor-
phisms, having the corresponding type as base-map Ψ.

Lemma 2.31. The action of the hyperoctahedral group on KP(n) lifts to an action by
anchor compatible isomorphisms on the objects of the category of anchored n-th or-
der tangent algebras. More precisely, for every B ∈ P(n), there is an automorphism
of B-inversion type Φ : Kn

(t,s) → Kn
(t,s), namely

κB := ⊗n
k=1κ

|B∩{k}|
k

(tensor product of inversions for each k ∈ B), and for every σ ∈ Sn, there is a
morphism of σ-permutation type (with t′ = σ(t), s′ = σ(s)), namely

Pσ : Kn
(t′,s′) → Kn

(t,s), eA 7→ eσ(A).

Proof. Concerning inversions, this follows by taking tensor products of the first
order inversions, as in the definition of κB.

The symmetric group Sn acts canonically on K[X1, . . . , Xn]. This action passes
to the quotient and defines morphisms

K[X1, . . . , Xn]/(Xi − tσ(i))(Xi − sσ(i)) → K[X1, . . . , Xn]/(Xi − ti)(Xi − si). □

Definition 2.32. Morphisms of the category of anchored n-th order K-tangent
algebras are all morphisms of affine type (direct), as well as their compositions with
all morphisms coming from the action of the hyperoctahedral group, along with the
canonical injection of the trivial anchor morphism, given by the canonical maps
Φ : K → K(t,s), x 7→ x1, Φ′ : K → K2, x 7→ x1. In particular, the central inversion
belongs to the central element of Bn (exchanging ai and bi for all i, and acting by
the complement map on KP(n)).

The higher order analog of Proposition 2.15 holds: morphisms of scaling and
translation type induce maps that are compatible with tangent maps fn

(t,s):

Proposition 2.33. Let V be a K-module and ϕ : Kn
(t′,s′) → Kn

(t,s) be a morphism
of affine type, or permutation type, or of inversion type. Then, for all open subsets
U ⊂ V , the (linear) map Φ = id ⊗ ϕ : U(t′,s′) → U(t,s) is well-defined, and if
f : U → U ′ is of class CK,n, then

Φ ◦ fn
(t′,s′) = fn

(t,s) ◦ Φ.

Proof. Concerning morphisms of affine type, and of inversion type, this follows by
iteration from Proposition 2.15. Concerning morphisms of permutation type, for
n = 2 and ϕ the “flip” map corresponding to the transposition (12), the claim
amounts to “Schwarz’s Theorem”, which holds in topological calculus (see [BGN04,
Be11]). By induction, the claim then follows for all morphisms of permutation
type. □

Remark 2.10. Let us call diagonal case the case where ti = t and si = s for all
i = 1, . . . , n. In this case, the permutation group Sn acts by automorphisms on
Kn

(t,s). This is in particular the case for t = 0 = s, giving the canonical action of

Sn on higher order tangent bundles, extensively used in [Be08].
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3. Good functor categories

In this section, K is an abstract (i.e., without topology) unital commutative ring.

3.1. The category talgK of anchored K-tangent algebras. So far, we have
defined for each n ∈ N a category of n-th order anchored tangent algebras. Now, we
shall put them together to define a category comprising all of them. The following
diagram may help to “visualize” the objects of the category:

0
↙ ↘

talgAna
K −→ talgSyn

K

On the left, we have the “analytic leg” (algebras of type Kn
(t,s)), on the right, the

“synthetic leg” (algebras of type KP(n)), and the arrow from left to right represents
the anchor. The left hand side takes account of the “analytic” (local, chart depen-
dent) aspects of calculus, and the right of “synthetic” aspects (independent of the
language of charts and local affinizations).

Definition 3.1. Objects of the category talgK are all objects of talgK,n, as n ranges
over N. Morphisms of talgK are:

(1) for fixed n, all morphisms of talgK,n,
(2) for two objects ΥA : A → A′, ΥB : B → B′, the natural morphism to ΥA⊗ΥB,

A → A⊗ B, x 7→ x⊗ 1, A′ → A′ ⊗ B′, z 7→ z ⊗ 1.

Remark 3.1. The category talgK is stable under taking tensor products: if Υn
(t,s)

and Υk
(t′,s′) are objects, then Υn

(t,s) ⊗ Υk
(t′,s′) is naturally identified with the anchor

at order n+ k given by parameters (t, t′; s, s′) ∈ K2(n+k).

3.2. The good functor category. Recall from Appendix C definition and some
basic facts on functor categories.

Definition 3.2. The functor category Fn(talgK,n,Sets
2) is called the category of

(K, n)-space laws: its objects are called (K, n)-space laws M , and its morphisms
f are called (K, n)-mapping laws. A (K,∞)-space law (or just: K-space law) is

a functor in Fn(talgK,Sets
2), and a (K,∞)-mapping law is a morphism in this

category.

We demand explicitly that the category of locally linear sets together with their
(restrictions) of linear maps be considered as subcategory of this functor category in
the way given by the following Example 3.1.

Example 3.1 (Locally linear sets). Let (U, V ) be a locally linear set, and Υ : A → A′

an object of talgK. We define VA := V ⊗K A (algebraic scalar extension), and

(1) for A = Kn
(t,s), the set UA := Un

(t,s) is defined as in Definition 1.4,

(2) for A′ = KP(n), we let UKP(n) := ×A∈P(n)U ⊂ VKP(n) ,

(3) the anchor Υn
(t,s) : U

n
(t,s) → UKP(n)

then is defined by the algebraic formula
from Theorem 2.24.
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We have seen in Subsection 2.8 that morphisms of tangent algebras induce maps
on the level of sets. For a K-linear map f : V → V ′ we define fA = f ⊗ idA to be
its algebraic scalar extension, restricted to UA. In this way, in virtue of Proposition
2.15, we get a functor U from talgK to Sets2, and a natural transformation f from

U to U ′.

Remark 3.2. Note that the preceding example cannot be generalized to “arbitrary”
functor categories from K-algebras to sets, since for general algebras A there is no
good definition of domain UA. Already for K = R and A = C this fails, in general
(the “complexification” of a real set cannot be defined in a purely algebraic way).

Remark 3.3 (Category of extensions of a given domain). For any locally linear set
(U, V ), the collection

Υn
(t,s) : U

n
(t,s) → UKP(n)

of all scalar extensions (for n ∈ N, (t, s) ∈ K2n), is a category (image of the functor
U), with morphisms idU ⊗Ψ where Ψ is a morphism of talgK. Call it the category
of tangent extensions of U .

Example 3.2 (The scaloid). In the preceding remark, take (U, V ) = (0, 0) =: 0, the
zero set in the zero-module. The category of tangent extensions of 0 is called the
scaloid and denoted by scalK: since 0⊗K Υ = 0, the underlying map of each object
is a trivial map on a trivial K-module 0; however, each of these maps and sets 0 still
carries a label – for instance, Kn

(t,s)⊗0 = 0 as set, but still keeping its label (n; t, s).
Therefore the scaloid scalK is the small category of labels belonging to objects and
morphisms of talgK, and the functor 0 can be seen as the forgetful functor

∗ : talgK → scalK

associating to each object Υn
(t,s) from talgK its label (t, s;n), and to each morphism

a label characterizing it. Note also that 0 is a terminal object in the category of
CK,∞-laws: every law M admits a unique morphism f : M → 0, attaching to MA
the label of A.

Example 3.3 (The line). Next, consider the case U = K (the line). Then, since
A⊗K = A, id⊗Υ = Υ, the category of tangent extensions of K gives us back the
category talgK. Since K carries an associative bilinear product, so do the objects
of talgK.

Example 3.4 (Scalar function laws). A scalar law is a natural transformation f :
M → K. Such laws can be turned into a ring OM by letting

(f + g)A := fA + gA, (f · g)A := fA · gA.

Thus M gives rise to a functor OM : A 7→ (OM)A, which is contravariant, that is, a

functor from (talgK)
opp to Sets2 (and to Ring2, the category of anchored rings).

3.3. Full imbedding of topological calculus into functor categories. Let’s
return to the topological case, and recall from Definition 1.11 the category LlinK,n
of locally linear sets with CK,n-maps as morphisms.
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Theorem 3.3. Let K be a good topological ring. There is an imbedding of the cate-
gory LlinK,n into the functor categories Fn(talgK,n,Sets

2), resp. Fn(talgK,Sets
2),

given by associating to an object (U, V ) the functor U defined in Example 3.1, and
to a CK,n-map f : U → U ′ the natural transformation

f : fK = f, fKP(n) = fP(n), fKn
(t,s)

= fn
(t,s).

This imbedding has the following properties:

(1) functors U respect direct products,
(2) for locally linear spaces and linear maps, functors are given by algebraic

scalar extension, as in Example 3.1,
(3) functors take values in topological spaces, morphisms are continuous and

jointly continuous with respect to parameters.

Proof. First of all, U is indeed a functor: all morphisms between tangent algebras
belonging to our explicit list do indeed induce set-maps, in a functorial way. Next,
CK,n-maps indeed induce natural transformations (for this issue, it was necessary
to limit morphisms between algebras to an explicit list: there is no general theo-
rem ensuring that these natural transformations commute with maps induced by
“arbitrary” algebra morphisms). Finally, the underlying functor gives us back the
original objects and morphisms, UK = U, fK = f , so we have indeed an imbed-
ding. Properties (1), (2), (3), which we re-state formally in the following definition,
are clearly satisfied by the constructions that have been described in the preceding
sections. □

Definition 3.4. Let K be a good topological ring. A functor category Fn(cK,Sets
2)

may have (or not) the following properties:

(1) it respects direct products (cf. Definition C.3),
(2) it satisfies the axiom of algebraic scalar extension stated in (2) above,
(3) it is a continuous functor category: the scaloid scalK (cf. example 3.2) is a

topological space, functors M take values in topological spaces, morphisms
f take values in continuous set-maps fA that are jointly continuous in the
scaloid, i.e.: for all locally linear sets (U, V ) and morphisms f , the following

map is continuous (where V n
(t,s)

∼= V 2n via the e-basis, and likewise for W 2n):

K2n × V 2n ⊃ {(t, s;v) | v ∈ Un
(t,s)} → W 2n , (t, s;v) 7→ fKn

(t,s)
(v).

We denote by a superscript “top” the functor categories satisfying (3).

Theorem 3.5. The imbedding from Theorem 3.3 defines a full imbedding of the
category LlinK,n into Fntop(talgK,n,Sets

2) and a full imbedding of the category

LlinK,∞ into Fntop(talgK,Sets
2).

Proof. Let f : U → U ′ be a continuous morphism of laws. We have to show that
f is induced by a map of class CK,n; more precisely, we show that the underlying
map f = fK : UK = U → U ′ = (U ′)K is of class CK,n, and that it induces f . By

definition of the functor category, the anchor Υ : Kn
(t,s) → KP(n) induces a map

ΥU : UKn
(t,s)

→ UKP(n) . This anchor map is indeed the same as the one considered in



26 WOLFGANG BERTRAM, JÉRÉMY HAUT

the preceding chapters, since ΥU is the restriction to UKn
(t,s)

of idV ⊗ΥK. Since f is

a natural transformation, it commutes with the anchor in the sense that

Υ ◦ fKn
(t,s)

= fKP(n) ◦Υ.

By the continuity property (3) from Definition 3.4, these maps are continuous and
jointly continuous also in (t, s), whence satisfy the condition from Theorem 1.7,
showing that the base map f = fK is of class CK,n, with the components of f given
the construction from topological differential calculus; thus fK induces the natural
transformation f . □

Remark 3.4 (Manifold laws). As already mentioned (Remark 1.6), one can define
CK,n-manifolds over a good topological ring K (n ∈ N ∪ {∞}). Then every such
manifold defines a (K, n)-space law M , and every CK,n-map f : M → M ′ a (K, n)-
law f , such that properties (1), (2), (3) from Definition 3.4 are satisfied (where (3)
applies, by definition, only to locally linear sets, that is, to chart domains of the
manifold). Then the preceding arguments apply on each chart domain, showing
that morphisms between manifold laws are induced by smooth maps, and hence we
get a full imbedding of the category of CK,n-manifolds into Fntop(talgK,n,Sets

2).

Remark 3.5 (Infinitesimal vs. local and global). A remark on comparison with the
case of Weil laws as defined in [Be14] is in order here. Taking for cK the category
of Weil algebras, we get a formally quite similar theory, leading to an imbedding
of topological differential calculus into the category of Weil spaces and their mor-
phisms, which, essentially, is the so-called the Dubuc topos, [Du79]. As shown
by Dubuc, loc. cit., the Dubuc topos contains morphisms that are not induced
by smooth maps. Roughly speaking, the reason for this is that Weil algebras are
by nature infinitesimal objects (because of the nilpotency condition), and the link
with the local and global theory is not encoded on the algebra side, whereas in
our approach it is. To ensure fullness, this link has to be encoded in some way –
either by using more sophisticated topoi (see [MR91]), or (as done here) by taking
account of anchors and allowing regular parameters (t, s), thus taking account of
non-infinitesimal mathematics.

4. Towards higher (super) algebra

With Theorem 3.5, we have shown that the functor category Fn(talgK,Sets
2)

can be considered as a “well adapted model” for general differential calculus. In
subsequent work, we will develop the theory further: on the one hand, comparing
with SDG, we will investigate categorical questions, on the other hand, by enriching
the structure of our category of algebras, the theory naturally offers links with higher
algebra and with super-calculus. Let us briefly describe some basic ingredients.

4.1. Groupoids, and higher algebra. In topological calculus, the extended do-
mains Un

(t,s) carry a natural structure of n-fold groupoid (see [Be15a, Be15b, Be17],

for the case of target calculus). Indeed, this follows by iteration from

https://ncatlab.org/nlab/show/Dubuc+topos
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Lemma 4.1. Let (U, V ) be a linear set and (t, s) ∈ K2. Then U
{1}
(t,s) is a groupoid,

with target and source projections

α : U
{1}
(t,s) → U, (v0, v1) 7→ v0 + sv1,

β : U
{1}
(t,s) → U, (v0, v1) 7→ v0 + tv1,

unit section 1(v0) = (v0, 0) = v01, inversion κ, and groupoid multiplication

∀(u,w) ∈ U
{1}
(t,s) ×α,β U

{1}
(t,s) : u ∗ w = u− α(u)1 + w.

Proof. The defining properties of a groupoid are checked by direct computation (cf.
loc. cit.). □
In order to implement this aspect in functorial calculus, we observe that the

structure maps of this groupoid are induced by algebra morphisms:

Theorem 4.2. (K(t,s), α, β,K, ∗) is a groupoid object in the category of algebras,
i.e., the groupoid structure from the preceding lemma is given by algebras and algebra
morphisms: source and target projections and unit section are algebra morphisms,
the subset

K(t,s) ×α,β K(t,s) = {(u, v) ∈ K(t,s) ×K(t,s) | α(u) = β(v)}
is a subalgebra of the direct product algebra K(t,s) ×K(t,s), the groupoid law

∗ : K(t,s) ×α,β K(t,s) → K(t,s), (u, v) 7→ u ∗ v = u− α(u) + v

is a morphism of algebras, and inversion J is an algebra automorphism.

Proof. Source α and target β are algebra morphisms, hence the subset K(t,s) ×α,β

K(t,s) of K(t,s) ×K(t,s) is stable under addition + and product ·, and it contains the
unit (1, 1), so it is a (unital) subalgebra. To see that ∗ is a morphism, we use the
“fundamental relation”: for all v, w ∈ K(t,s),

0 = (v − α(v))(w − β(w)) = vw − α(v)w − β(w)v + α(v)β(w).

Thus if α(x) = β(z) and α(x′) = β(z′),

(x ∗ z) · (x′ ∗ z′) = (x− α(x) + z) · (x′ − α(x′) + z′)

= ((x− α(x)) + z) · (x′ + (z′ − β(z′))

= xx′ − α(x)x′ + zx′ + zz′ − zβ(z′)

= xx′ − α(x)α(x′) + zz′ + (zx′ − β(z)x′ + α(x)α(x′)− zα(x′))

= (xx′) ∗ (zz′) + (z − β(z))x′ + (β(z)− z)α(x′)

= (xx′) ∗ (zz′) + (z − β(z)) · (x′ − α(x′))

= (xx′) ∗ (zz′).
Finally, we have already seen that κ is an algebra automorphism (Theorem 2.5). □
We will discuss in subsequent work how to implement this groupoid aspect into

a functorial calculus. In this context, it will be important to have an analog of the
sequence TTM → TM ×M TM → TM playing an important rôle for second and
higher order tangent bundles (see [Be08, Be14]). This analog reads as follows:
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Theorem 4.3. The product map

µ : K(t,s) ⊗K(t,s) → K((t,s), u⊗ v 7→ uv

is an algebra morphism, which factorizes over the groupoid law from the preceding
theorem via µ = ∗ ◦ ψ, where ψ is the morphism

ψ = id⊗ β + α⊗ id : K(t,s) ⊗K(t,s) → K(t,s) ⊕α,β K(t,s),

u⊗ v 7→ (β(v)u, α(u)v).

Proof. For any commutative algebra A, the product map A⊗A → A is a morphism.
Since α(u · β(v)) = α(u)β(v) = β(v · α(u)), the morphism id ⊗ β + α ⊗ id takes
indeed values in K(t,s) ⊕α,β K(t,s). Let u, v ∈ K(t,s). Then

∗ ◦ (α⊗ id + id⊗ β)(u⊗ v) = α(u)v ∗ β(v)u
= α(u)v − α(u)β(v)1 + β(v)u = u · v

by the “fundamental relation” from Theorem 2.5. □

Iterating these morphisms and constructions, higher algebra naturally enters into
the picture (cf. loc. cit).

4.2. Functorial supercalculus. A main motivation to develop the present func-
torial approach is that it is perfectly in keeping with known functorial approaches
to super-calculus. For this purpose, it was necessary to introduce the source param-
eter s into differential calculus: the transition from usual to graded calculus is most
natural in case t = −s (symmetric calculus), since only in this case the groupoid
inversion κ (which becomes the grading automorphism of superalgebras) is given
by the simple formula κ(v0 + ev1) = v0 − ev1 (cf. Theorem 2.5). In this context,
tensor products have to be replaced by graded tensor products.

4.3. Coalgebras, and duality. The reader may have noticed that our algebras
carry more structure than has been used so far: they are coalgebras, and this struc-
ture should play a significant rôle in the theory, related to duality aspects, and,
possibly, to the preceding item.

4.4. Full iteration, and simplicial calculus. As mentioned in Remark 1.3, full
iteration leads to higher order “tangent maps” f {1,...,n} having a very complicated
structure. In principle, this structure can also be interpreted in terms of higher
groupoids (see [Be15b]). In this setting, the analog of the tangent algebra cate-
gory talgK will be some small higher order category, whose structure remains to be
understood yet. However, restricting again variables to certain subspaces, one can
obtain a suffiently simple calculus, called simplicial in [Be13], and corresponding to
the classical concept of divided differences. It is certainly possible to put this sim-
plicial calculus into a categorical form, essentially as done in this work for restricted
iteration. The advantage should be a better compatibility of calculus with algebra
in positive characteristic, but the drawback is that the close link with the tensor
product, featured in the present approach, gets lost: iteration is no longer given by
subsequent tensor products.
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Appendix A. Algebraic scalar extensions

For convenience, we recall some basic facts concerning linear algebra over rings
(cf. e.g., [Bou], see also on the n-lab, or here or there.)

Definition A.1. Let K be a commutative ring, A an associative unital K-algebra,
and V a K-module. Then we denote by VA the K-module V ⊗K A, together with its
right A-module structure given by

(v ⊗ λ).µ = v ⊗ λµ.

If f : V → W is a K-linear map, we define the A-linear map

fA := f ⊗ idA : VA → WA, v ⊗ λ 7→ f(v)⊗ λ,

and if ϕ : A → B is an algebra morphism, we define the K-linear map

Vϕ := idV ⊗ ϕ : VA → VB, v ⊗ λ 7→ v ⊗ ϕ(λ).

Clearly, fB ◦ Vϕ = Wϕ ◦ fA : VA → WB. This relation can be interpreted in terms
of functor categories, see Appendix C: V is a functor from AlgK to Sets, and linear
maps define natural transformations between such functors.

Remark A.1. More precisely, VA is in fact an A-bimodule: it is also a left A-module,
with left action given by µ.(v ⊗ λ) = v ⊗ µλ, such that left and right A-actions
commute. Then fA is a morphism of A-bimodules.

For all K-modules V , there is a canonical K-linear map

(A.1) ιV : V → VA, v 7→ v ⊗ 1,

and for all A-(right) modules V , there is also a canonical A-linear map

(A.2) pV : VA → V, v ⊗ λ 7→ vλ.

If V is an A-module, then we write VK = V as set and abelian group, but with
scalar action by K only (“scalar restriction”). The following lemma formalizes that
scalar restriction and scalar extension are adjoint functors:

Lemma A.2. Assume V is a right A-module and W a K-module. Then the fol-
lowing two maps are mutually inverse K-linear isomorphisms:

HomK(W,VK) → HomA(WA, V ), f 7→ F = pV ◦ fA,
HomA(WA, V ) → HomK(W,VK), F 7→ f = F ◦ ιW .

Replacing V by VA for some K-module V , we get a canonical isomorphism

HomK(W, (VA)K) = HomA(WA, VA) .

Proof. We have (pV ◦ fA) ◦ ιW (w) = f(w)1 = f(w). Concerning the other direction,

pV ◦ (F ◦ ιW )A = pV ◦ ((F ◦ ιW )⊗ idA),

whence, for w ⊗ λ ∈ WA, and using A-linearity of F ,

pV ◦ (F ◦ ιW )A(w ⊗ λ) = pV (F (ιW (w))⊗ λ)

= F (w ⊗ 1) · λ = F ((w ⊗ 1)λ) = F (w ⊗ λ),

whence pV ◦ (F ◦ ιW )A = F , as claimed. □

https://ncatlab.org/nlab/show/extension+of+scalars
https://en.wikipedia.org/wiki/Tensor_product_of_modules#Extension_of_scalars
https://en.wikipedia.org/wiki/Change_of_rings#Relation_between_the_extension_of_scalars_and_the_restriction_of_scalars
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Corollary A.3. Let V,W be K-modules, and let XA := HomA(WA, VA) for a K-
algebra A. Then A 7→ XA is functorial in the sense that, for every algebra morphism
ϕ : A → B, there is a canonical morphism Xϕ : XA → XB.

Proof. Identifying HomK(W, (VA)K) = HomA(WA, VA), we let Xϕ(h) := Vϕ ◦ h =
(idV ⊗ ϕ) ◦ h. Then Xψϕ(h) = Vψϕ ◦ h = Vψ ◦ Vϕ ◦ h = Xψ(Xϕ(h)). □

Proposition A.4. Assume A is commutative. Then, for all K-modules V,W , we
have a canonical isomorphism

(V ⊗K W )A = VA ⊗A WA,

and likewise for iterated finite tensor products ((⊗K)
m
i=1Vi)A = (⊗A)

m
i=1(Vi)A.

Proof. In one direction, the morphism is given by

(v ⊗ w)⊗ λ 7→ ((v ⊗ 1)⊗ (w ⊗ 1)) · λ = (v ⊗ λ)⊗ (w ⊗ 1) = (v ⊗ 1)⊗ (v ⊗ λ),

in the other, using commutativity of A,

(v ⊗ λ)⊗ (w ⊗ µ) 7→ (v ⊗ w)⊗ (λµ).

Clearly, both are inverse to each other. □

Concerning polynomials and forms, see Appendix A of [BGN04]. Polynomials do
admit scalar extensions (see also [Ro63, Lo75]):

Definition A.5. Let V,W be K-modules and m ≥ 1. A polynomial (with domain
V and codomain W ) is given a an m-times multilinear map B : V m → W , giving
rise to a map f(x) := B(x, . . . , x). By definition, a polynomial of degree 0 is a
non-zero constant c ∈ W . The zero constant polynomial has degree −∞.

Since B is not required to be symmetric, f is not uniquely determined by B.

Theorem A.6. Let B as in the preceding definition, of degree m, and A a commu-
tative K-algebra. Then B admits a scalar extension BA.

Proof. For m = 0, let fA(x) = f(x)⊗ 1 (constant map). For m = 1, take the scalar
extension of the linear map f . Consider the casem = 2. Then B : V ×V → W gives
rise to aK-linearB : V⊗KV → W , and this gives an A-linearBA : (V⊗KV )A → WA.
By the preceding proposition, this map can be considered as A-linear

BA : VA ⊗A VA → WA,

which is a polynomial over A extending B. For general m, the claim follows by
induction. □

Remark A.2. We may define, as usual: a polynomial map between V and W is
a finite sum of homogeneous polynomial maps. Then the theorem can be stated
for polynomial maps; however, we have to mention explicitly the degrees of the
components, and require that the functor B 7→ BA be applied in each degree.
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Appendix B. Hypercubic linear algebra

In this appendix, “linear spaces” are modules over a commutative ring K.

Definition B.1. A hypercubic K-linear space, based on P(N), is a free K-module
V together with a basis (EA)A∈P(N) indexed by the hypercube P(N) (power set of N ,
where N ⊂ N is a set, supposed to be finite in this appendix, and of cardinality n.
If necessary, we write EN

A instead of EA.) In other words, V ∼= KP(N) together with
its canonical basis. When N = n = {1, . . . , n}, then we just speak of a n-hypercubic
space, or of a 2n-space. For n = 1, N = {k}, the two basis elements are also
denoted by (E∅, Ei) or (Ei

∅, E
i
i).

Remark B.1. A hypercubic space carries several algebra structures: for instance, it
is a Clifford algebra, or an exterior algebra, or a commutative algebra, in rather
canonical ways. However, in this appendix, we forget about such algebra structures.
Therefore, everything will apply to the underlying K-module of any such algebra.

Lemma B.2. When N and M are disjoint finite subsets of N, then there is a
canonical isomorphism of hypercubic spaces,

KP(N) ⊗KP(M) → KP(N⊔M), En
A ⊗ EM

B 7→ EN⊔M
A⊔B .

In particular, when N = {k1, . . . , kn}, then there is a canonical isomorphism
n⊗
i=1

KP({ki}) → KP(N), ⊗n
i=1E

{ki}
{ki}∩A 7→ EN

A .

Proof. See proof of Lemma 2.22. □
When f : V → W is linear, for bases (bj)j∈J in V and (ci)i∈I in W , we denote

by fi,j := c∗i (f(bj)) its matrix coefficients (where (c∗i )i∈I is the dual basis of c). We
write also (ϕ⊗ v)(x) = ϕ(x) · v. Then

f =
∑

(i,j)∈I×J

fi,j b
∗
j ⊗ ci, f(bk) =

∑
i

fi,kck.

Writing a matrix in the usual way as rectangular number array, we use the natural
total order on the index set – that is, the lexicographic order; for instance,

P({1, 2}) = (∅, {1}, {2}, {1, 2}).
In the following, for an n-tuple a = (ai)i∈N ∈ Kn, we use the notation aN :=∏

i∈N ai, in the same way as we do for t, s ∈ Kn in the main text. When N is
considered to be fixed, and A ⊂ N , we denote by Ac = N \ A its complement.

Theorem B.3. Let N = {k1, . . . , kn} and fi : KP({ki}) → KP({ki}) linear, with
matrix

fi =

(
ai bi
ci di

)
: Ei

∅ 7→ aiE
i
∅ + ciE

i
i , Ei

i 7→ biE
i
∅ + diE

i
i .

Then the matrix of the linear map f := ⊗n
i=1fi : KP(N) → KP(N) is given by the

matrix coefficients, for (A,B) ∈ P(N)2,

fA,B = E∗
A

(
f(EB)

)
= aAc∩Bc · bAc∩B · cA∩Bc · dA∩B.
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In other terms, f(EN
B ) =

∑
A∈P(N) aAc∩Bc · bAc∩B · cA∩Bc · dA∩B EN

A , or

f =
∑

(A,B)∈P(N)2

aAc∩Bc · bAc∩B · cA∩Bc · dA∩B (EN
B )

∗ ⊗ EN
A .

Proof. When the cardinality n of N is equal to one, then the claim is true, directly
by definition of the matrix coefficients. For n = 2, the matrix of f1 ⊗ f2 is

(
a1 b1
c1 d1

)
⊗
(
a2 b2
c2 d2

)
=


a1a2 b1a2 a1b2 b1b2
c1a2 d1a2 c1b2 d1b2
a1c2 b1c2 a1d2 b1d2
c1c2 d1c2 c1d2 d1d2


(“Kronecker product”). For instance, when B = ∅, so Bc = {1, 2},

f(E
{12}
∅ ) = a12E∅ + c1a2E1 + a1c2E2 + c12E12,

in keeping with the claim. In the general case, we expand the expression

f = ⊗ifi = ⊗i

(
ai(E

i
∅)

∗ ⊗ Ei
∅ + bi(E

i
∅)

∗ ⊗ Ei
i + ci(E

i
i)

∗ ⊗ Ei
∅ + di(E

i
i)

∗ ⊗ Ei
i

)
by distributivity: we get a sum of 4n terms, which correspond exactly to the 4n terms
in the last formula of the claim. (E.g., for n = 2, there are 16 terms, corresponding
to expanding the product (a1+b1+c1+d1)(a2+b2+c2+d2) by distributivity, giving
the 16 matrix coefficients shown above. The first column contains the 4 terms from
expanding (a1 + c1)(a2 + c2), etc.) □
To memorise the formula: for 2× 2-matrices and indices, the correspondence is(

a b
c d

)
:

(
Ac ∩Bc Ac ∩B
A ∩Bc A ∩B

)
.

Next, we give a formula for the inverse of f , when its determinant is invertible.
From well-known properties of the Kronecker product it follows that

det(f) = det(⊗n
i=1fi) = (

n∏
i=1

det(fi))
2n−1

,

whence the first statement of the following theorem:

Theorem B.4. Let N and f = ⊗n
i=1fi be as in the preceding theorem. Then f is

invertible if, and only if, all fi are invertible, and then its inverse is given by the
matrix coeffients, for (A,B) ∈ P(N)2 (recall A∆B is the symmetric difference)

(f−1)A,B =
(−1)|A∆B|∏n
i=1 det(fi)

fBc,Ac =
(−1)|A∆B|∏n
i=1 det(fi)

aA∩B · bA∩Bc · cAc∩B · dAc∩Bc .

Proof. Assume each fi is invertible. For n = 1, N = {k}, the inverse is

(B.1)

(
ak bk
ck dk

)−1

=
1

(akdk − bkck)

(
dk −bk
−ck ak

)
.

For n = 2, the matrix of the inverse is the Kronecker product of the inverses

1

det(f1) det(f2)

(
d1 −b1
−c1 a1

)
⊗
(
d2 −b2
−c2 a2

)
=

https://en.wikipedia.org/wiki/Kronecker_product#Relations_to_other_matrix_operations
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1

det(f1) det(f2)


d1d2 −b1d2 −d1b2 b1b2
−c1d2 a1d2 c1b2 −a1b2
−d1c2 b1c2 d1a2 −b1a2
c1c2 −a1c2 −c1a2 a1a2


which is in keeping with the formula announced in the claim. To put this computa-
tion into a conceptual framework, note that the inverse in (B.1) is obtained by first
taking the adjugate matrix, and then dividing by the determinant. The adjugate
X♯ of a 2× 2-matrix X, in turn, is given by

X♯ = JX⊤J−1,

where X⊤ is the transposed matrix, (X⊤)(A,B) = X(B,A), and

(B.2) I :=

(
1 0
0 −1

)
, J :=

(
0 1
−1 0

)
, K :=

(
0 1
1 0

)
,

i.e., J sends E∅ 7→ E1, E1 7→ −E∅ (so X♯ is the adjoint of X with respect to the
canonical symplectic form on K2; call it “symplectic adjoint”). For each 2×2-matrix
M let

Mn = ⊗n
i=1M : KP(n) → KP(n).

Then, for the matrices I, J,K defined by (B.2), the effect on EA is

(B.3) In(EA) = (−1)|A|EA, Kn(EA) = EAc , Jn(EA) = (−1)|A
c|EAc ,

The inverse of Jn is J−1
n (EA) = KnIn(EA) = (−1)|A|EAc = (−1)nJn(EA). Using

this, we compute

f ♯(EA) = Jn ◦ f⊤ ◦ J−1
n (EA) = (−1)|A|Jn ◦ f⊤(EAc)

= (−1)|A|Jn
∑
B

f⊤
Ac,BEB

= (−1)|A|
∑
B

fB,Ac(−1)|B
c|EBc = (−1)|A|

∑
B

fBc,Ac(−1)|B|EB

=
∑
B

(−1)|A|(−1)|B|aA∩B · bA∩Bc · cAc∩B · dAc∩BcEB

which together with |A| + |B| ≡ |A∆B| mod (2), so (−1)|A|(−1)|B| = (−1)|A∆B|,
gives us the adjugate and the claim. □

Remark B.2. In the same way, it follows that, even if f is not invertible, we have

f ◦ Jn ◦ f⊤ ◦ J−1
n =

n∏
i=1

det(fi) · id.

Appendix C. Functor categories

C.1. Categories of anchored sets or algebras. A category C is a pair (Cobj , Cmor)
of collections of objects and of morphisms, together with certain structure opera-
tions, see [CWM, MM92].
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Definition C.1. We denote by Sets the (large) category of sets and set-maps, and
(following notation from [MM92], p. 25) by Sets2 the (large) category of anchored
sets, that is, objects (M,Υ,M ′) are maps Υ :M →M ′ (we call Υ the anchor map,
and often denote, by abuse of notation, the triple just by Υ or by M , according
to context), and morphisms are anchor-compatible pairs of maps Φ : M → N ,
Φ′ :M ′ → N ′, i.e., they commute with anchors:

ΥN ◦ Φ = Φ′ ◦ΥM .

We fix once and for all a commutative unital ring K, and denote by AlgK the
(large) category of all (associative, unital) K-algebras, and by Alg2

K the category all
anchored (associative, unital) K-algebras, that is, objects (A,Υ,A′) are algebra mor-
phisms Υ : A → A′ (called anchor), and morphisms are pairs of anchor-compatible
algebra morphisms. The identity morphism idK : K → K is called the trivial anchor.
It is an initial object in Alg2

K.
We denote by suitable supercripts certain subcategories of AlgK such as: all com-

mutative associative algebras; in particular, we denote by Algfin
K the subcategory

of all K-algebras that are commutative, free and finite-dimensional as K-modules.
The corresponding subcategories of anchored algebras are then defined in the obvious
way.

C.2. Functor categories. A functor F from a category C to a category D is
a pair (F obj , Fmor) of arrows (Cobj → Dobj , Cmor → Dmor), all of this satisfying
the usual axioms (see [CWM, MM92]). A natural transformation τ between two
functors S, T : C → B is an arrow τ : Cobj → Bmor , again satisfying the usual
axioms. Functors from a category C to a category B, together with their natural
transformations, form a functor category Fn(C,B) = BC (see e.g. [CWM], II.4, or
[MM92]). Specifically, for the case of categories we are interested in:

Definition C.2. Let cK be some (small) subcategory of Alg2
K (containing at least

the trivial anchor as object, and the unique morphism of the trivial anchor to any
other object as morphism). A cK-space law is a functor

M : cK → Sets2,

from cK to the category Sets2 of anchored sets: for very object Υ : A → A′ of cK, we
have sets MA and MA′ and a set-map MΥ :MA →MA′, and for every cK-morphism
(ϕ : A → B, ϕ′ : A′ → B′), we have a pair of maps (Mϕ : MA → MB,Mϕ′ : MA′ →
MB′) commuting with anchors and satisfying the functorial rules Mid = idMA and
Mϕ◦ψ =Mϕ ◦Mψ, Mϕ′◦ψ′ =Mϕ′ ◦Mψ′. The trivial anchor idK shall give rise to the
“trivial anchored set” id :MK →MK, called the underlying set of M .

A morphism between cK-space laws M and N , also called cK-mapping law, is a
natural transformation f :M → N , i.e., for each object Υ : A → A′ of cK, there is
an anchor-compatible pair

fA :MA → NA, fA′ :MA′ → NA′

varying functorially with Υ: for any cK-morphism (ϕ : A → B, ϕ′ : A′ → B′)
and space laws M,N , there are maps Mϕ, Nϕ such that Nϕ ◦ fA = fB ◦Mϕ and
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Nϕ′ ◦ fA′ = fB′ ◦Mϕ′

MA
fA−→ NA

Mϕ ↓ ↓ Nϕ,

MB
fB−→ NB

MA′
fA′−→ NA′

Mϕ′ ↓ ↓ Nϕ′ .

MB′
fB′−→ NB′

The map fK :MK → NK is called the underlying set-map of f . The functor category
of cK-space laws and their morphisms, denoted by

Fn(cK,Sets
2)

is the (large) category whose objects are functors M and morphisms natural trans-
formations f , which are composed “pointwise”, i.e., for two laws f : M → N ,
g : N → P and all Υ : A → A′ ∈ cK, we have (g ◦ f)A := gA ◦ fA : MA → PA, and
(g ◦ f)A′ := gA′ ◦ fA′ :MA′ → PA′.

Remark C.1. By definition, for each object Υ : A → A′ of cK, evaluation at level Υ,

evΥ :M 7→ (MΥ :MA →MA′), f 7→ (fA, fA′),

is a functor from Fn(cK,Sets
2) to Sets2. The natural morphism ιA : K → A

induces a map MιA :MK →MA.

Remark C.2. One can define the direct product of cK-space laws M i, i ∈ I, by

(×i∈IM i)A := ×i∈I((Mi)A), (×i∈IM i)ϕ := ×i∈I((Mi)ϕ).

Definition C.3. An algebraic K-space law is a functor M from the whole category
Alg2

K to Sets2.

Example C.1 (Linear sets). Every K-module V gives rise to a functor V from Alg2
K

to Sets2 (algebraic space law), via algebraic scalar extension (Appendix A)

VA = V ⊗K A, VΥ = idV ⊗Υ : VA → V ′
A.

Natural transformations are given, e.g. by linear maps f : V → W : letting fA =
f ⊗ idA : VA → WA, we get a morphism f : V → W . We get other natural
transformations if we restrict our functors to categories of commutative algebras:
then every m-multilinear map f : V m → W gives rise to a natural transformation
fA (Theorem A.6). Thus multilinear maps give rise to polynomial laws in the sense

of Roby [Ro63] (cf. Appendix of [Lo75]).

Example C.2. For every m ∈ N, there is an algebraic space law M = Gl(m,K), by
letting MA = Gl(m,A), MΥ = id ⊗ Υ. For instance, one can define its “tangent
group” by TM := MK[ε] = Gl(m,K[ε]), and use this to develop a kind of algebraic
differential calculus – this approach is used in [DG], see also [Be08, Be14].

The following is an “axiom” which is characteristic to our setting, compared with
the general theory of functor categories. It rules out that “model spaces” give rise
to trivial functors (like the functor sending every algebra to a point), and will force
that all constructions from functorial differential calculus reduce to familiar linear
algebra constructions, when applied to linear spaces and linear maps.
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Definition C.4. By definition, the cK-law V of a K-module V shall be given by
algebraic scalar extension (as in Example C.1), and likewise for the mapping law
corresponding to a K-linear map. In other words, the category of K-linear spaces
shall be imbedded into the functor category Fn(cK,Sets

2) in the natural way.

C.3. Further properties. It is not our aim here to develop the general theory of
the functor categories in question. In practice, the categories cK will have further
properties; in particular, the most interesting additional property is the one of a
(strict) monoidal categories with respect to the tensor product of algebras.

Definition C.5. We say that some subcategory C of Alg2
K is

(1) closed under direct products if it contains, along with objects ΥA,ΥB, also
the object

ΥA ⊕ΥB : A× B → A′ × B′

(we write also A ⊕ B for the direct product algebra A × B, with product
(a, a′) · (b, b′) = (ab, a′b′)), and likewise for morphisms;

(2) closed under tensor products if it contains, along with objects ΥA,ΥB, also
their tensor product

ΥA ⊗ΥB : A⊗ B → A′ ⊗ B′

(recall the tensor product algebra A⊗B has product (a⊗b)·(a′⊗b′) = aa′⊗bb′),
and likewise for morphisms;

When M = V is a K-module, then, by linear algebra,

VA⊕B = VA × VB, VA⊗B = (VA)B,

and likewise VΥA⊕ΥB = VΥA × VΥB , VΥA⊗ΥB = (VΥA)ΥB . These rules should serve as
model, when generalizing functor categories beyond the realm of linear algebra.

References

[Be08] Bertram, W., Differential Geometry, Lie Groups and Symmetric Spaces over General
Base Fields and Rings, Memoirs of the AMS 192, no. 900 (2008). https://arxiv.org/
abs/math/0502168
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