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Abstract. Jordan geometries are defined as spaces X equipped with point re-
flections Jxz

a depending on triples of points (x, a, z), exchanging x and z and fixing
a. In a similar way, symmetric spaces have been defined by Loos ([Lo69]) as spaces
equipped with point reflections Sx fixing x, and therefore the theories of Jordan
geometries and of symmetric spaces are closely related to each other – in order
to describe this link, the notion of symmetry actions of torsors and of symmetric
spaces is introduced. Jordan geometries give rise both to symmetry actions of
certain abelian torsors and of certain symmetric spaces, which in a sense are dual
to each other. By using an algebraic differential calculus generalizing the classical
Weil functors, we attach a tangent object to such geometries, namely a Jordan
pair, resp. a Jordan algebra. The present approach works equally well over base
rings in which 2 is not invertible (and in particular over Z), and hence can be
seen as a globalization of quadratic Jordan pairs; it also has a very transparent
relation with the theory of associative geometries developped in [BeKi09a].

Introduction

Symmetries of order two – according to context, called reflections, inversions or
involutions – play a basic rôle in all of geometry, and some parts of geometry can
be entirely reconstructed by using them (cf. the “Aufbau der Geometrie aus dem
Spiegelungsbegriff”, [Ba73]). In the present work, we will use the term “inversion”
since the involutions we use can be interpreted as (generalized) inverses in rings or
algebras: geometrically, the inversion map x 7→ x−1 in a unital associative algebra
behaves like a reflection through a point, with respect to the “isolated” fixed point
1, the unit element of the algebra. This choice of terminology should not lead to
conflict with the common one from Inversive Geometry, where the term “inversion”
refers to reflections with respect to circles or spheres (cf. [Wi81]).

The inversion map of an associative algebra is a “Jordan feature”, i.e., it depends
only on the symmetric part (“Jordan product”) x • z = 1

2
(xz + zx) of the associa-

tive product, and it contains the whole information of the Jordan product. The
approach to Jordan algebras given in the book [Sp73] by T. Springer is based on
this observation. In the present work, we extend this approach to the geometries
corresponding to Jordan algebraic structures. We have defined such geometries,
called generalized projective geometries, in another way in [Be02] – the approach
given there was not based on inversions, but rather on the various actions of a scalar
ring K on the geometry (a point of view already introduced by Loos in [Lo79]); it
relied in a crucial way on midpoints, and thus on the existence of a scalar 1

2
in K.
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The present approach does not have this drawback, and at the same time is sim-
pler and more natural. Another advantage is its close relation with the associative
case: since symmetrization of associative algebras leads to Jordan algebras, there
is a similar link of Jordan geometries with the associative geometries defined and
studied in [BeKi09a, BeKi09b]. Finally, another feature, simplifying the approach
compared to the one of [Be02], is a more conceptual use of “algebraic differential
calculus”, keeping fairly close both to the usual language of differential geometry
and to the use of scalar extensions in algebraic geometry. Let us explain these items
in some more detail.

0.1. Jordan structure map. A Jordan structure map on a space X is given by
a family of bijections of order two, Jxza : X → X , parametrized by certain triples
(x, a, z) of points from X and satisfying the following identities:

(IN) involutivity : Jxza ◦ Jxza = idX
(IP) idempotency : Jabc (c) = c, Jabc (a) = b, Jabc (b) = a

(A) associativity: Jxzc J
uv
c Jabc = J

Jxa
c (v),Jbz

c (u)
c

(D) distributivity: Jxzc ◦ Juvb ◦ Jxzc = J
Jxz
c (u),Jxz

c (v)
Jxz
c (b)

(C) commutativity: Jabc = J bac
(S) symmetry: Jxxa = Jaax
(T) tangent map at fixed point: Ta(J

xz
a ) = (−idTaX ).

These axioms all have a very clear geometric interpretation: the first two axioms
say that triples of points define involutions exchanging two of the points and fixing
the third; axioms (A), (D), (C) mean that the inversions Jxza play a double rôle:

(D): for fixed (x, z), the map (a, b) 7→ Jxza (b) defines a reflection space Uxz, and
(T) says that this reflection space is in fact a symmetric space1,

(A): for fixed a, the map (x, y, z) 7→ Jxza (y) defines a torsor (see below) Ua, and
(C) means that this torsor is commutative.

Moreover, these symmetric spaces, resp. torsors, “act” on X by symmetry actions.
Finally, (S) says that these two points of view are compatible.

0.2. Symmetry actions. By torsor we mean a group of which we forget the origin
by considering the ternary law (xyz) = xy−1z instead of the binary law xz. (Other
terms such as heap, groud, or principal homogeneous space are used in the literature
– see [BeKi09a] for some remarks concerning terminology.) A torsor has not only
the familiar left and right translations, but also middle multiplication operators:

(0.1) `xy(z) = (xyz) = mxz(y) = rzy(x).

For x = z, mxx is “inversion with respect to the origin x”, and then is of order two;
but in general mxz is not of order two (but it is so if G is commutative). One can
write the defining identities of a torsor in terms of the m-operators (Lemma A.2):

(SA) mxy ◦muv ◦mrs = mmxr(v),msy(u),
(IP) mxz(x) = z, mxz(z) = x.

1The concepts of reflection space and of symmetric space, for general smooth spaces, are defined
in Appendix A, following the approach of Loos [Lo67, Lo69] from the real finite-dimensional case.
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The reader may recognize the form of the identities (A) and (IP) given above. In a
second step, just as the properties of left- or right translations give rise to left- or
right actions of a group G, by allowing one argument to be in a set X different from
G, the same can be done for the m-operators, thus leading to the notion of symmetry
action of a torsor (Appendix A). Such symmetry actions are “rich” structures, in
the sense that they contain strictly more information than a simple left- or right
action, and they do appear “in nature”: on the one hand, every torsor has a regular
symmetry representation on itself (in Appendix A we give some arguments why
this point of view could be useful in general Lie theory) and on the other hand,
such actions appear precisely in the context of Jordan geometries and of associative
geometries: for fixed a, the operatormxz = Jxza describes the commutative symmetry
action of the commutative torsor Ua, and for fixed (x, z), the same formula describes
the symmetry action of the (possibly non-abelian) symmetric space Uxz. When
x = z, the identity (S) means that both points of view coincide.

0.3. The main examples. Let us now look briefly at the main examples.

0.3.1. Grassmannians. Let GrasFE(W ) be the Grassmannian of subspaces of a K-
module W , isomorphic to E and having a complement isomorpic to F (in finite
dimension over a field, these are the Grassmannians of p-spaces in Kn), and let
X = GrasFE(W ) ∪GrasEF (W ). Two elements x, a ∈ X are called transversal if their
sum is direct: W = x ⊕ a, and the projection with kernel a and image x is then
denoted by P a

x : W → W . Now, if x and z are transversal to a, define a linear map

(0.2) Jxza := P x
a − P a

z : W → W.

This map acts as identity on a; on x it has the effect of projection onto z along a,
and (because of the relation Jxza = −Jzxa ) similarly for x and z exchanged. From
these observations it follows easily that the family of maps Jxza : X → X defined by
Jxza (y) := Jxza (y) satisfies the axioms listed above.

0.3.2. Lagrangian Grassmannians. The structure described in the preceding exam-
ple can be restricted to fixed point sets of antiautomorphisms – e.g., of orthocom-
plementation maps x 7→ x⊥ (induced by a quadratic or symplectic form), having as
fixed point spaces the Lagrangian Grassmannians (see [BeKi09b]), which thus are
Jordan geometries.

0.3.3. Projective quadrics. Assume X = Q is a projective quadric in the projective
space P(W ) of a vector space W . Two elements of Q are called transversal if the
line joining them in P(W ) is a secant, i.e., not a tangent line of Q. If x = [v] and
z = [w] ∈ Q are transversal to a = [u] ∈ Q, then there exists a unique orthogonal
map Ixza : W → W exchanging [x] and [z], fixing u, and acting as −1 on the
orthogonal complement of Span(u, v, w). We define Jx,za to be the restriction to Q
of the projective map induced by Ix,za . The family of maps thus defined satisfies the
properties given above (and has some more specific properties which we we intend
to investigate in more detail in subsequent work).
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0.3.4. An exceptional geometry. In [BeKi12], we have defined geometrically a family
of Moufang torsors on a Moufang projective plane; this structure can be used to
define a structure map Jabx (work in progress).

0.4. Special Jordan geometries. Let us look again at the example of the Grass-
mannian (see 0.3.1). Given four subspaces a, b, x, z ⊂ W such that x and z are
common complements of a and b, we define a linear operator, similarly as in (0.2),

(0.3) Mxz
ab := P a

x − P z
b : W → W,

inducing a map Mxz
ab : PW → PW . Obviously, the J-operators are obtained from

the M -operators by restriction to the diagonal a = b: Jxza = Mxz
aa . The M -operators

satisfy certain axioms, similar to those of a Jordan structure map J (see Chapter
4), and which – in a slightly different form – have been used in [BeKi09a] to define
associative geometries. In a certain sense, these axioms have an even more sym-
metric form than those of J : the high symmetry of the M -operators is reflected,
among others, by the identity Mxz

ab = Mab
xz = M ba

zx, which implies that restriction to
the diagonal a = b is equivalent to restriction to x = z. Jordan geometries obtained
as subgeometries from associative geometries by restriction to a diagonal are called
special. In this context, the diagonal a = b (Jxza = Maa

xz ) corresponds to the point
of view of commutative torsors, and the diagonal x = z (Jxza = Mxz

aa ) to the point
of view of symmetric spaces. This is the geometric and base point free analog of
restricting the product xz of an associative algebra to the diagonal x = z.

0.5. Unit elements, idempotents, and self-duality. Geometrically, there is an
important difference between associative or Jordan algebras with or without unit
element. In a similar way, there is an important difference between Grassmannians
GrasFE(W ) of the “first kind”, where E and F are isomorphic to each other, and
of “second kind”, where this is not the case: the first are self-dual (equal to their
dual geometry GrasEF (W )), the second are not; and for the first kind, there exist
pairwise transversal triples (a, b, c) of subspaces, for the second kind, this is not the
case. For instance, the projective line GrasKK(K2) is of the first kind, and higher
dimensional projective spaces are not. Whenever we have a pairwise transversal
triple (a, b, c), the inversions Jabc , J bac , Jacb are all defined and generate a permutation
group S3; if we add Jaab to the set of generators, they generate a group which is a
homomorphic image of PGL(2,Z) (Theorem 6.2) and hence the three points a, b, c
generate a subgeometry that is a homomorphic image of the projective line ZP1

with its canonical base triple (o, 1,∞) (Theorem 6.3). Pairwise transversal triples
(a, b, c) in a Jordan geometry correspond to unital Jordan algebras; classification
of such triples in a given geometry is related to the classical Maslov index – the
Jordan algebras associated to a geometry are isotopic to each other, but in general
not isomorphic.

In a geometry of the second kind, there are no transversal triples; a substitute is
given by idempotent quadruples which are defined by relations obtained by “disso-
ciating” the projective line ZP1 into two copies, and leading to a homomorphism
GL(2,Z)→ Aut(X ) (Theorem 6.6). From an algebraic point of view, spaces of the
first kind correspond the situation where Jabc can be interpreted as an inversion of
an algebra with respect to a unit element, whereas spaces of the second kind lead to
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the situation where Jxza can be understood as the (negative of) the quasi-inverse in
a Jordan pair. In order to explain the relation with algebraic structures, we need,
however, to digress on additional structures, such as smoothness and Lie groups,
which are needed to define tangent algebras.

0.6. Algebraic differential calculus. In the second half of this work, our aim is to
attach a tangent object to a geometry. This cannot be done in a completely abstract
setting: we have to assume some regularity of our structure map J : (x, a, z, y) 7→
Jxza (y). Such assumptions can be formulated in various ways; in order to stress
that the theory developed up to know is independent of such assumptions, we have
divided the text into two parts – only the second part depends on the regularity
assumptions. The regularity assumptions used in the present work are simpler than
those used in [Be02, BeKi09a] (at the beginning of Part two we discuss this in
some more detail): essentially, we assume that X is a smooth manifold and that
J is a smooth map. However, since we wish to keep the framework as general as
possible, we have to define “smoothness” in a purely algebraic setting. In [Lo79],
the language of schemes and algebraic groups has been used; here we propose a
more elementary use of “algebraic differential calculus”, motivated by the classical
Weil functors (see [KMS93]) and their generalization in the framework of differential
caculus over topological fields or rings ([BeS11, Be08]). The principles are explained
in Appendix B: one requires that our geometry behaves functorially with respect
to scalar extensions that are Weil algebras A over the base ring K, that is, to our
geometry (X , J) we can attach a “generalized tangent geometry” (TAX , TAJ). For
instance, the Weil algebra TK := K[X]/(X2) = K ⊕ εK (ε2 = 0) of dual numbers
over K gives rise to the “usual” tangent functor T , and the scalar extension by dual
numbers, (TX , TJ), behaves in all respects like a tangent bundle of (X , J). Thus
the “tangent map axiom” (T) mentioned above makes sense in a purely algebraic
way.

This “covariant approach” to differential calculus is well-adapted to Jordan- and
associative geometries since they come with a natural atlas: chart domains and
transition functions are intrinsically defined by the axiomatic algebraic data; it
thus suffices to simply assume that they are “smooth laws”, i.e., that they behave
functorially with respect to Weil algebras. This should be compared to Lie groups
and symmetric spaces: one may define them in a purely algebraic way, but then an
atlas is an additional datum, independent of the algebraic structure – over general
fields or rings, there is no exponential map; thus in general Lie theory there are no
“canonical coordinates”. On the other hand, in Jordan theory there are “canonical
charts” – this fact partially explains why Jordan theory is much better adapted
than Lie theory to infinite dimensional situations.

0.7. The Jordan pair associated to a Jordan geometry. With the framework
just described, we can associate a “tangent algebra” to a Jordan geometry with base
point in a similar way as in [Be02]: the Lie algebra of infinitesimal automorphisms
or derivations of the geometry is a 3-graded Lie algebra g = g1⊕ g0⊕ g−1, and it is
well-known that such a Lie algebra corresponds to a linear Jordan pair (V +, V −) =
(g1, g−1). As already mentioned, our theory works even in case that the scalar 2
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is not invertible in K, and then we need to work with quadratic Jordan pairs as
defined in [Lo75] – we define quadratic maps Q± that contain more information
then the trilinear bracket derived from the Lie algebra; the proof that these maps
satisfy the Jordan identities (JP1) – (JP3) from [Lo75] follows closely the lines of
work by O. Loos ([Lo79]).

0.8. The Jordan geometry associated to a Jordan pair. The Jordan geome-
try can be reconstructed from a Jordan pair – in case 2 is invertible in K, this follows
quite easily from the corresponding result in [Be02], by letting Jxza := (−1)aµ(x,a,z)

(reflection at the midpoint µ(x, a, z) = x+z
2

of x and z in the affine space Ua), see
Theorem 7.3. If 2 is not invertible in K, the definition is less direct (Theorem 10.1).

Summing up, just as in classical Lie theory, we can go back and forth from Jordan
geometries to Jordan pairs and -algebras. We will study this correspondence more
thoroughly in subsequent work.
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We have divided the text into two main parts, taking account of the organization
of the axiomatic structure on four levels:

(1) a rather weak (non-)incidence structure, called transversality,
(2) the general datum of one or several structure maps,
(3) certain identities (associative, Jordan,...) satisfied by the structure maps,
(4) a regularity hypothesis, such as smoothness of structure maps.

The first part deals with the axiomatic structures of levels (1), (2) and (3), and
in the second part, which is more algebraic in nature, the consequences of (4) are
developped. Appendix A belongs to the first part and Appendix B to the second
part; both appendices have more general applications and may be of independent
interest.
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FIRST PART: GEOMETRIES WITH SYMMETRY ACTIONS

1. Transversality relations, splittings, dissociations

1.1. Transversality relations. A transversality relation on a set X is a binary
relation on X , that is, a subset D2 ⊂ (X × X ); we write also x>a if (x, a) ∈ D2,
and this relation is assumed to be

– symmetric : x>a iff a>x,
– irreflexive: x is never transversal to itself.

For the sets of elements transversal to one, resp. to two given elements, we write

(1.1) Ux := x> := {a ∈ X | a>x}, Uab := Ua ∩ Ub.
The relation > is called non-degenerate if Ux = Uy always implies x = y.

Homomorphisms of sets with transversality relation are maps f : X → Y pre-
serving transversality: x>a implies f(x)>f(y).

1.2. Grassmannians. The standard example of transversality is given by the Grass-
mannian Gras(W ) of all submodules of some A-right module W with the relation:
x>a iff V = x ⊕ a (here A may be a possibly non-commutative ring). The Grass-
mannian of type E and co-type F is the space

(1.2) GrasFE(W ) :=
{
x ∈ Gras(W ) | x ∼= E, W/x ∼= F

}
of submodules isomorphic to E and such that W/x is isomorphic to F (as modules),
where W = E ⊕ F is some fixed decomposition. Then the space

(1.3) X = GrasFE(W ) ∪GrasEF (W )

has non-trivial transversality relation. In particular, we get the projective geometries

(1.4) APn ∪ (APn)′ := GrasA
n

A (An+1) ∪GrasAAn(An+1).

If A is a field or skew-field, this is a “usual” projective space together with its dual
space of hyperplanes (and “transversal” means the same as “non-incident”, and the
relation > is non-degenerate); however, if A is a ring, such as A = Z, then these
geometries show some rather unusual features (cf. the article of Veldkamp on Ring
Geometries in [Bue]).

1.3. Transversal chains and connectedness. Let n ∈ N, n > 1. A transversal
chain of length n in X is a sequence (x1, . . . , xn) of elements of X such that xi+1>xi
for i = 1, . . . , n−1 (equivalently, xi ∈ Uxi−1,xi+1

). A transversal chain is called closed
if xn>x1. We denote by

Dn = {(x1, . . . , xn) ∈ X n | ∀i = 1, . . . , n− 1 : xi+1>xi},
D′n = {(x1, . . . , xn) ∈ Dn | xn>x1}(1.5)

the set of transversal chains, resp. of closed transversal chains, of length n in X .
A chain of length two is also called a transversal pair, a chain of length three
is a transversal triple, and a closed transversal chain of length three is a pair-
wise transversal triple. A chain joining two elements x, y ∈ X is a finite chain
(x1, . . . , xn) ∈ Dn such that x1 = x, xn = y. We say that X is connected if, for
each x, y ∈ X , there is a chain joining x and y. We may also define connected
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components: the relation defined by “x ∼ y iff there is a chain joining x and y” is
an equivalence relation; its equivalence classes are the connected components of X .

For instance, Grassmannians X = Gras(V ) are in general not connected; if K is
a field and V = Kn, then its connected components are of the form (1.3).

1.4. Duality: splitting, and antiautomorphisms. Assume > is a transversality
relation on X . A splitting of X is a decomposition into a disjoint union X = X+∪̇X−
such that for all a ∈ X−, we have a> ⊂ X+, and for all x ∈ X+, we have x> ⊂ X−.
Equivalently, chains with odd length end up in the same part (X+ or X−) they
started in, and chains with even length end up in the other. We then say that X+

and X− are dual to each other.

We say that (X+,X−) is connected of stable rank one if for each (x, y) ∈ (X±)2

there is a ∈ X∓ such that x, y ∈ Ua; equivalently, a ∈ Uxy, so Uxy is not empty.

Spaces with splitting (X+,X−) form a category: morphisms g preserve transver-
sality and the given splitting (that is, g(X±) ⊂ Y±), so we have well-defined re-
strictions

g± : X± → Y±.
In presence of a splitting, we may also define anti-homomorphisms: these are pairs
of maps exchanging the components, X± → Y∓, i.e., morphisms from (X+,X−) to
the opposite splitting of Y .

1.5. Self-dual geometries and closed transversal triples. We say that a con-
nected geometry (X ,>) is self-dual if it does not admit any non-trivial splitting.
This is the case if in X there is a closed transversal chain of odd length (at least
three); the converse is true as well. We say that X is strongly self-dual if there is a
closed chain of length three, that is, a pairwise transversal triple (a, b, c).

In the example of a Grassmannian (1.3), the indicated decomposition is a splitting
if E and F are not isomorphic as modules. Typical antiautomorphisms are then
given by orthocomplementation maps. On the other hand, if E ∼= F as modules,
then there exists a pairwise symmetric triple (E,F,D) where D is the diagonal of
E ⊕ F , after some fixed identification of E and F , and hence GrasE(E ⊕ E) does
not admit any splitting (this is the case, in particular, for the projective line AP1).
In this case one may introduce an “artificial splitting”, as follows.

1.6. Duality: dissociation. A dissociation of a space (Y ,>) is the disjoint union
X of two copies X+ and X− of Y , where we define a transversality relation on X
by declaring, for x ∈ X±, the set x> to be the set of elements a in X∓ such that a
and x are transversal in Y . Obviously, this defines a transversality relation on X ,
and X = X+ ∪ X− is a splitting.

2. Jordan structure maps

2.1. Structure maps in general. Assume (X ,>) is a space with transversality
relation, and let n ∈ N. An n+ 1-ary structure map (with domain Dn) is a map

S : Dn → End(X ,>)
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attaching to each chain x = (x1, . . . , xn) a map S(x) : X → X preserving transver-
sality. In the sequel we will mainly consider structure maps such that S(x) is
a bijection, and the case of ternary and quaternary structure maps will be most
important: for a ternary structure map we use also the notation

Sax := S(x, a),

and for a quaternary structure map

Sxza := S(x, a, z).

Sometimes we view S as a map of n+ 1 arguments, defined by

S(x1, . . . , xn, xn+1) := (S(x1, . . . , xn))(xn+1) = Sx1x3...x2x4...
(xn+1)

Structure maps with domain D′n are defined similarly.

Morphisms of spaces with structure map are maps preserving transversality and
commuting with structure maps in the obvious sense. The group of automorphisms
of (X ,>, S) is denoted by Aut(X ), Aut(X , S), or Aut(X ,>, S), according to the
context. Other categorial notions can be defined for spaces with structure maps,
such as subspaces, direct products...

2.1.1. Structure maps and duality. If X = X+∪X− is a splitting of X , then let D±n
be the set of chains of length n starting in X±, so that Dn = D+

n ∪ D−n . Then, by
restriction to D±n , a structure map S gives rise to two parts of S± of the structure
map. Thus one recovers the notation used in [Be02].

2.2. Jordan structure map. A Jordan structure map on a space (X ,>) is a
quaternary structure map

J : D3 → End(X ,>), (x, a, z) 7→ Jxza

such that the following Jordan identities hold:

(IN) involutivity : Jxza ◦ Jxza = idX

(IP) idempotency : Jabc (c) = c, Jabc (a) = b, Jabc (b) = a

(A) associativity: Jxzc J
uv
c Jabc = J

Jxa
c (v),Jbz

c (u)
c

(D) distributivity: Jxzc ◦ Juvb ◦ Jxzc = J
Jxz
c (u),Jxz

c (v)
Jxz
c (b) , that is, Jxzc ∈ Aut(X , J),

(C) commutativity: Jabc = J bac
(S) symmetry: Jxxa = Jaax .

Recall (introduction) that such structures “arise in nature”, among others, for
Grassmannians, Lagrangians, and projective quadrics.

2.3. First properties: torsor and symmetric space actions.

Lemma 2.1 (Torsor action). Given a Jordan structure map, the set Ua with product

(2.1) (xyz)a := Jxza (y).

is a commutative torsor, and the map Ua × Ua → Bij(X ), (x, z) 7→ Jxza is an
inversive symmetry torsor action.
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Proof. If x, y, z>a, then also Jxza (y)>Jxza (a) = a, hence Ua is stable under (xyz)a.
Now the idempotent identity of a torsor is the first identity of (I), and para-
associativity follows from lemma A.2. The properties of an inversive symmetry
torsor action are precisely the axioms (A) and (C). �

As a useful application of the lemma, by Appendix A.5, we have the following
transplantation formula for the symmetries: for all x, o, z>a,

(2.2) Jxza = Jxoa J
oo
a J

zo
a = JJ

xz
a (o),o

a .

Lemma 2.2 (Symmetric space action). For all x ∈ Uab, the restricted maps

Jabx : Ua → Ub, y 7→ Jabx (y), Jabx : Ub → Ua, y 7→ Jabx (y),

are Z-affine (i.e., a homomorphism of abelian torsors), and the set U := Uab is
stable under the map

µ := µab : U × U → U, (x, y) 7→ µ(x, y) := sx(y) := Jabx (y)

which turns it into a reflection space, and this reflection space has a symmetry
action on X given by Sx := Jabx .

Proof. The restricted maps are well-defined: this is shown as in the preceding proof.
As mentioned in the statement of axiom (D), distributivity means that g := Jabx is
an automorphism of J , and since it exchanges a and b, we get

g
(
(uvw)a

)
= (gu gv gw)Ja = (gu gv gw)b

and similarly for a and b exchanged. The same argument shows that Jabx is an
automorphism of µ. Summing up, Uab is a reflections space, and it acts on X by a
symmetry action. �

We say that Uab with product µ = µab is the symmetric space associated to the pair
(a, b) (there is a slight abuse of language: we anticipate implicitly that property (T)
of a symmetric space is also valid; this will be ensured by regularity assumptions
to be introduced later, see Definition 7.1).

Lemma 2.3 (Compatibilty). The symmetric space Uaa is the same as the abelian
group Ua with its usual inversion maps.

Proof. This follows directly from the symmetry property (S): in Uaa the symmetric
element of y with respect to x is sx(y) = Jaax (y), and in Ua it is (xyx)a = Jxxa (y). �

Theorem 2.4 (The polarized symmetric space). The set D2 of transversal pairs
becomes a symmetric space with the law

s(x,a)(y, b) :=
(
Jxxa (y), Jaax (b)

)
.

The same formula defines a symmetry action of the symmetric space D2 on X 2.
The exchange map τ : X 2 → X 2, (x, a) 7→ (a, x) is an automorphism of D2 and of
the action.

Proof. Everything follows easily from the axioms (In), (IP, (D). �

The symmetric space D2 contains flat subspaces for a = b fixed (or x = y fixed),
but it is not flat itself. It corresponds to the twisted polarized symmetric spaces
from [Be00]: it has a local product structure, but not a global one.
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2.4. Some categorial notions. Most categorial notions are defined in an obvious
way – cf. [Be02, BeL08], and we refer to loc. cit. for more details:

2.4.1. Morphisms. It follows directly from the definitions that f : X → Y is a
morphism of Jordan structure maps if, and only if, for all a ∈ X , the restriction
Ua → Uf(a), x 7→ f(x), is a Z-affine map (= morphism of abelian torsors), if, and
only if, for all x, z ∈ X , the restriction Uxz → Uf(x),f(z) is a homomorphism of
symmetric spaces. Therefore, if we denote, for x ∈ X , resp. (x, a) ∈ D2, by

(2.3) Px := {g ∈ Aut(X ) | g(x) = x}, H := Hx,a := Px ∩ Pa
the stabilizer of x, resp. of (x, a), then Pa acts Z-affinely on Ua, and Hx,a acts
Z-linearly on (Ua, x) and on (Ux, a).

2.4.2. Duality: In presence of a splitting, we define structure maps J±, see above.

2.4.3. Direct products: direct product of transversality and of structure maps

2.4.4. Subspaces: subsets stable under structure maps

2.4.5. Intrinsic subspaces (inner ideals): subsets Y ⊂ X such that Jxza (y) ∈ Y
whenever x, y, z ∈ Y and a ∈ X ; this can be interpreted in two ways: Ua ∩ Y is an
affine subspace, for all a ∈ X (point of view taken in [BeL08]), or: Y is an invariant
subspace of the symmetry action of Uxz, for all x, z ∈ Y .

2.4.6. Flat geometries: given by two abelian groups (V1,+), (V−1,+), X = V1 ∪V−1

(disjoint union), a>x iff a ∈ V±1 and x ∈ V∓1, Jxza (y) = x− y + z, Jxza (b) = 2a− b
for x, y, z ∈ V±1, a, b ∈ V∓1.

2.4.7. Congruences and quotient spaces: defined as in [Be02], following [Lo69], III.2.

2.4.8. Polarities. A polarity is an automorphism p ∈ Aut(X ) which is of order two:
p2 = idX , and having non-isotropic elements: there is x such that p(x)>x. In other
words, (x, p(x)) ∈ D2, so the graph of p has non-empty intersection with D2.

Theorem 2.5. Assume p is a polarity of (X ,>, J). Then the set

X (p) = {x ∈ X | p(x)>x},
is stable under the law (x, y) 7→ Jxxp(x)(y), which turns it into a symmetric space.

Proof. Indeed, this space can be realized as subsymmetric space of the polarized
space D2 (Theorem 2.4) fixed under the involution pτ = τp, by the imbedding
x 7→ (x, p(x)). (This is the analog of [Be02], Theorem 4.2). �

The symmetric spaces X (p) are in general not homogeneous under Aut(X ): the
symmetric spaces with base point (X (p), x), (X (p), y) are called isotopic; in general
they are not isomorphic to each other. Note that the space of polarities,

(2.4) Pol(X ) := {p ∈ Aut(X ) | p2 = idX , ∃x ∈ X : (x, p(x)) ∈ D2} ,
is itself a reflection space: it is stable under (p, q) 7→ pqp. If (a, b, c) is a pairwise
transversal triple, then p = Jabc is a polarity, called an inner polarity (cf. [Be03]).
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3. Translations

3.1. Definition of translations. Fix a ∈ X . We have seen that the torsor Ua acts
on X by a symmetry action, and according to Lemma A.4, it acts therefore also by
a left- and by a right action on X ; since the symmetry action is commutative, left-
and right action coincide (Lemma A.4): for all x, z ∈ Va, the map

(3.1) Lxza := Jxua Juza = Juxa Jzua

called (left) a-translation, does not depend on the choice of u ∈ a> (in particular,
we may choose u = x or u = z). We can speak of “the” a-translation group

(3.2) Va := {Lxza | x, z ∈ a>}.
Since Lxza (a) = a, the a-translations form a commutative subgroup of Pa, isomorphic
to (Ua, o), for any origin o ∈ Ua. Note that, if x, y, z ∈ Ua, then we have usual
properties of torsors, such as “Chasles relation”, and the link with the symmetries:

(3.3) Lxya L
yz
a = Lxza , (Lxya )−1 = Lyxa , Lxya (z) = (xyz)a = Jxza (y).

3.2. Base points, quasi-translations, and exact sequence of stabilizers. A
base point is a fixed transversal pair (x, a); we then often write (o, o′) or (o+, o−).
Since Pa acts affinely, and Hx,a linearly on Va, we may decompose Pa into a semidi-
rect product of Ha,x with Va. More formally, this can be stated by saying that Va
is normal in Pa (since g ◦ Lxza ◦ g−1 = Lgx,gzga ), and hence the sequence

(3.4) 0→ Va → Pa → Hx,a → 0, g 7→ Lx,gxa ◦ g
associating to g its “linear part”, is well-defined and splits via the natural inclusion
of Hx,a in Pa. For a fixed base point (o, o′), and following a standard terminology
from Jordan theory, the elements Lao

′
o , are said to act as quasi inverses on V = Vo′ ;

the notation xa := Lao
′

o (x) is often used in Jordan theory.2

3.3. Triple decomposition in G, and denominators. Fix a base point (x, a) =
(o, o′) ∈ D2 and let (V, V ′) = (Uo′ , Uo). The conditions g.o>o′ and g(o) ∈ V are
equivalent. We define the big cell of Aut(X )

(3.5) Ω := Ωo,o′ := {g ∈ Aut(X ) | g(o)>o′}
(then o>g−1(o′), whence (Ωo′,o = (Ωo,o′)−1). For g ∈ Ω, we define the denominator
(with respect to (o, o′)) by

(3.6) D(g) := Do,o′(g) := L
o,g(o)
o′ ◦ g ◦ Lg−1(o′),o′

o ∈ Aut(X ).

The element D(g) stabilizes o and o′: D(g).o = L
o,g(o)
o′ (g(o)) = o, D(g)o′ =

L
o,g(o)
o′ g(g−1(o′)) = o′, and therefore D(g) acts Z-linearly on V and on V ′. (We

will see later that it is a substitute of a “differential of g at o”.) By (3.6), every
element g ∈ Ω admits a triple decomposition into a translation, a Z-linear part, and
a quasi-translation:

(3.7) g = Lt,oo′ hL
t′,o′

o , with t ∈ V, h ∈ Ho,o′ , t
′ ∈ V ′.

2From our point of view, it would seem more appropriate to call Lao′

o (x) a quasi-translation,

and to reserve the term quasi-inverse for Jao′

o (x), which is of order two, as an inverse should be.
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This decomposition is unique: necessarily, t = g(o), t′ = −g−1(o′) and hence h =
D(g). The denominators satisfy the cocyle relation

(3.8) D(gh) = D(gLho,oo′ )D(h)

Indeed, if h = sD(h)s′ and gs = tD(gs)t′, where s = Lho,oo′ , then

gh = gsD(h)s′ = tD(gs)D(h)s′

whence, by uniqueness of the decomposition, D(gh) = D(gs)D(h).

3.4. Transitivity, and generators of G. The projective group PGL(p + q,K)
acts transitively on Grasp(Kp+q), but not on Grasp(Kp+q) ∪ Grasq(Kp+q) (since it
preserves dimension) – unless p = q, in which case the geometry is self-dual. The
following result generalizes these observations:

Theorem 3.1 (Transitivity). Assume (X ,>, J) is connected and fix a base point
(o, o′). If X is self-dual, then the action of G(X ) on D2 and on X is transitive:

D2 = G(X )/Ho,o′ , X = G(X )/Po ∼= G(X )/Po′ ,

and every element g ∈ Aut(X ) has a decomposition

g = Lx1oo′ L
a1o′

o . . . Lxnoo′ L
ano′

o h

with x1, . . . , xn ∈ V = Uo′, a1, . . . , an ∈ V ′ = Uo, and h ∈ Ho,o′. This decomposition
is in general not unique. If X admits a splitting (X+,X−), then the action of G(X )
on D+

2 , on X+ and on X− is transitive:

D+
2 = G(X )/Ho,o′ , X+ = G(X )/Po′ , X− = G(X )/Po,

and every element of Aut(X+,X−) has a decomposition as above.

Proof. Both claims are proved by induction on length of chains joining two points.
Assume that (x, a, y, b) is a chain, so x>a, a>y, y>b. Then the element

(3.9) Λ := Λba
yx := Lbay ◦ Lyxa

has the properties Λ(a) = Lbay (a) = b and Λ(x) = Lbay (y) = y, and hence maps (a, x)
to (b, y). Now the transitivity result follows by induction on the length of chains.
Note, moreover, that Λ may be rewritten in the form

(3.10) Λ = Lbay ◦ Lyxa = Lbay ◦ L
Lab
y y,x

x = Lbay ◦ L
Lab
y y,x

x ◦ Laby ◦ Lbay = L
y,Lba

y (x)

b ◦ Lbay ,

thus (if (y, b) = (o, o′) is the base point) expressing Λ by an element of the desired
form. Again, the general decomposition now follows by induction. �

It follows that, if X is conntected, all involutions Jxxa are conjugate to each other
under Aut(X ). See Remark 5.3 for a sufficient condition that ensures that also all
Jxza are conjugate to each other.

Remark. If (X+,X−) is connected of stable rank one, the decomposition from the
theorem exists with n = 2 and a2 = o′ (so we can write G = V V ′V H; in the case
of Hermitian symmetric spaces this is called “Harish-Chandra decomposition”).
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Remark. In the preceding statements and proofs, we could have replaced the letter
“L” by “J”; for instance, we have

Λab
xy = Labx L

xy
b = Jabx J

bb
x J

xx
b Jxyb = Jabx J

xy
b

= Jabx J
Jab
x (x),y

b = Jx,J
ab
x (y)

a Jabx

= J
aJxy

b (b)
x Jxyb = Jxyb J

Jxy
b (a),b

y .(3.11)

3.5. Bergman operator. A quasi-invertible quadruple is a closed chain of length
four, (a, x, b, y) ∈ D′4. By closedness, we can define the element Λyx

ba = Lyxb L
ba
x ,

having the same effect on (a, x) as the element Λba
yx from the preceding proof. It

follows that (Λyx
ba )−1Λba

yx stabilizes (a, x), i.e., belongs to Hx,a. This leads us to
define, for (a, x, b, y) ∈ D′4, the Bergman operator

Bxa
yb := (Λyx

ba )−1Λba
yx = Labx L

xy
b L

ba
y L

yx
a = Λab

xyΛ
ba
yx ∈ Hxa .(3.12)

According to (3.11), we have also the expression

(3.13) Bxa
yb = Jabx J

xy
b J

ba
y J

yx
a .

Note that

(3.14) (Byb
xa)
−1 = Bby

ax.

Obviously, the fourfold map B is invariant under automorphisms g ∈ Aut(X , J). If
(x, a) = (o, o′) is chosen as base point, we also use the notation from Jordan theory

(3.15) β(y, b) := Bo,o′

yb .

Lemma 3.2. Fix (x, a) =: (o, o′) as base point. Then β(y, b) is a denominator,
namely β(y, b) = D(Lo

′b
o Lyoo′ ). In other terms, we have the relation

Lo
′b
o ◦ L

yo
o′ = L

Lo′b
o (y),o

o′ ◦ β(y, b) ◦ Lo
′,Loy

o′ (b)
o .

In a similar way,

Jo
′b
o ◦ J

yo
o′ = J

Jo′b
o (y),o

o′ ◦ β(y,−b) ◦ Jo
′,Joy

o′ (b)
o .

Proof. As in (3.11), β(y, b) = Lo
′b
o Loyb L

bo′
y Lyoo′ = L

o,Lo′b
o (y)

o′ Lo
′b
o Lyoo′ L

Loy

o′ (b),o
′

o = D(g) for

g = Lo
′b
o Lyoo′ . �

3.6. The canonical atlas. Every Jordan geometry comes with a canonical atlas
(for the general notion of atlas, see subsection B.5). The data of an atlas require a
fixed (and not only: “fixed up to isomorphism”) model space, so we have to fix a
base point (o, o′) ∈ D2. For simplicity, let us assume that X is connected (if not,
decompose X first into connected components). Then we call model space the pair
of abelian groups

(3.16) V := (Uo′ , o), V ′ := (Uo, o
′).

We define the index set to be the group G := G(X ), and for every g ∈ G we define
the chart domains in X by

Ug := g(V ), U ′g := g(V ′).
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Then X is covered by chart domains, in the following sense: if X admits a splitting,
X = X+ ∪ X−, then, by the transitivity result,

X+ =
⋃
g∈G

Ug, X− =
⋃
g∈G

U ′g.

If X does not admit a splitting, then
⋃
g∈G Ug =

⋃
g∈G U

′
g = X . In both cases, define

subsets of V by

Vg,h := V ∩ hg−1V,

let φg : Ug → V , x 7→ g−1(x), and φ′g : U ′g → V ′, x 7→ g−1(x). Then the data

A := (X , Ug, φg)g∈G
form an atlas of X+, with model space V , in the sense of subsection B.5. The
transition functions are

φg,h : Vh,g → Vg,h, v 7→ gh−1(v).

This atlas depends in an inessential way on the choice of (o, o′), since the action of
G is transitive on D2.

3.7. Transvections. For a closed quadruple (x, a, z, b) we define the transvection

(3.17) Qab
xz := Jabx J

ab
z .

This is the transvection Qxz = SxSz associated to the symmetry action of the sym-
metric space Uab on X (see Definition A.11). It maps a to a and b to b, hence
acts affinely both on Ua and on Ub. These operators satisfy the fundamental for-
mula (A.5), and we have (Qab

xz)
−1 = Qab

zx = Qba
zx. For a = b, Qaa

xz is a (square of)
translations for the torsor Ua:

Qaa
xz = Jaax J

aa
z = Jxxa Jxza J

xz
a J

zz
a = (Lxza )2.

Fixing (z, b) = (o, o′) as base point, one may thus think of Qab
xz as a sort of “defor-

mation” of the translation operator (Lx,oo′ )2(y) = 2x+ y.

4. Associative structure maps

4.1. Spaces with associative structure map. An associative structure map on
a set X with transversality relation > is a pentary structure map

M : D′4 → End(X ), (x, a, z, b) 7→Mab
xz

(we write also (xyz)ab := Mab
xz(y)) such that the following identities hold

(1) symmetry: Mab
xz = Mxz

ab = M zx
ba ,

(2) idempotency: Mab
xz(x) = z, Mab

xz(z) = x, Mab
xz(b) = a and Mab

xz(a) = b,

(3) inverse: Mxz
ab ◦M zx

ab = idX ,

(4) associativity: Mxz
abM

uv
abM

rs
ab = M

(xvr)ab,(suz)ab
ab ,

(5) distributivity: Mab
xz ◦M cd

uv ◦ (Mab
xz)
−1 = M

(xcz)ab,(xdz)ab
(xuz)ab,(xvz)ab

(i.e., Mab
xz ∈ Aut(M)).
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From idempotency and associativity, it follows that the set Uab is stable under
the ternary map (x, y, z) 7→ (xyz)ab, and that it forms a torsor with this law; the
symmetry law implies that Uba = Uab as sets, but with torsor structures opposite
to each other. In particular, Ua = Uaa is commutative. Associativity now says that
the map

Uab × Uab → Bij(X ), (x, z) 7→Mab
xz

is a symmetry action of Uab on X , and hence, by Lemma A.4, we have associated
left and right actions of the torsor Uab on X given by

(4.1) Labxy := Mab
xu ◦Mab

uy, Rab
yz := Mab

uy ◦Mab
zu.

Spaces with associative structure map form a category in the obvious way. Many
categorial notions can be defined exactly as in the case of Jordan structure maps,
see 2.4 above. The most important difference is that now, at several places, we
have to distinguish between “left” and “right”: besides the inner ideals (intrinsic
subspaces), we also have left and right ideals, that is, subspaces Y that are invariant
under the left, resp. right actions of the torsors Uab, whenever a, b ∈ Y ; and besides
homomorphisms, we also have antihomomorphisms (see [BeKi09b]).

4.2. Grassmannian geometries. The main example of an associative geometry is
given by Grassmannians: we equip the Grassmannian Gras(W ) with the transver-
sality relation described in section 1.2.

Theorem 4.1. The structure map M defined on the Grassmannian by Equation
(0.3): Mxz

ab (y) = (P a
x − P z

b )(y), is an associative structure map. Here, one may
also consider the Grassmannian of submodules in an a module over a possibly non-
commuative ring.

The (elementary) proof has been given in [BeKi09a].

4.3. Special Jordan geometries.

Lemma 4.2 (The associative-to-Jordan functor). If (X ,>,M) is a geometry with
associative structure map, then (X ,>, J) is a geometry with Jordan structure map,
where

Jabx := Mab
xx,

and the correspondence (X ,M) 7→ (X , J) is functorial.

Proof. Easy check of definitions. �

Note that the functor is defined by restriction to the diagonal x = z, just like the
functor from Lie torsors to symmetric spaces or from associative to Jordan algebras.
A special Jordan structure map is the restriction of the map defined by the lemma to
some subspace Y ⊂ X which is stable under J . For instance, Lagrangian geometries
(cf. Introduction, 0.3.2) are of this form; using Clifford algebras, one can show that
the structure map defined for projective quadrics (cf. 0.3.3) is also special.
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4.4. Self-dual geometries, and link with associative algebras. A geometry
with associative structure map is called (strongly) self-dual if it contains a closed
transversal triple (a, b, c) = (o, o′, e). Then let V := Vo′ , V

′ := Vo and V × := Uoo′ =
V ∩ V ′; this set is a group with origin e and group law

(4.2) xz = (xez)oo′ = M oo′

xz (e) = Loo
′

xe (z) = Roo′

ez (x).

The left translation operator Labxy defined by (4.1) maps a to a and b to b, hence
defines by restriction affine bijections of Ua, resp. of Ub, onto itself, and hence the
group law defined by (4.2) is Z-linear with respect to both arguments x and z. Using
algebraic infinitesimal calculus (under assumption of smoothness), we will show
below (Theorem 9.7) that this group law extends to a bilinear associative algebra
structure on V (and every associative algebra arises in this way, see [BeKi09a]).

5. Scalar action and major dilations

From now on, we will fix a base ring K: this ring is assumed to be commutative
and unital, with unit element denoted by 1.

5.1. Scalar action. Let (X ,>, J) be a geometry with Jordan structure map. A
K-scalar action on these data is given by a compatible K-module structure on the
abelian group (Ua, y), for every pair (y, a) ∈ D2, that is: Ua is a K-module with
origin y and underlying abelian group structure given by x+ z = Jxza (y) = (xyz)a,
and scalar multiplication denoted by

K× Ua → Ua, (r, z) 7→ ray(z),

and which is compatible with J in the sense that, for invertible scalars r, the following
properties connecting addition and multiplication by scalars in a K-module extend
to the whole of X : for every r ∈ K× and (y, a) ∈ D2 there is a bijection ray : X → X ;
in other words, there is a scalar action structure map

(5.1) r : K× ×D2 → Bij(X ), (r; y, a) 7→ ray

which is supposed to satisfy:

(C) compatibility: for x, y ∈ Ua, ray(x) = rx is multiplication by the scalar r in
(Ua, y),

(A) associativity: for y fixed, the map K××X → X , (r, x) 7→ ray(x) is an action:
for all r, s ∈ K×, we have ray ◦ say = (rs)ay and 1ay = idX ,

(Du) duality: (r−1)ay = rya

(Di) distributivity: ray is an automorphism of J : ray ◦ Jxzb ◦ (ray)
−1 = J

rayx,r
a
yz

rayb
, and

similarly, Jxza is an automorphism of r: Jxza ◦ rby ◦ Jxza = r
Jxz
a (b)
Jxz
a (y),

(Tr) link with translations: (−1)ax = Jaax and rax(r
a
y)
−1 = L

x,rayx
a = L

raxy,y
a .

We can change base points in Ua by usual formulas from affine geometry: if o is an
origin in Ua, and rx := rao(x) multiplication by r in the K-module (Ua, o), then

ray(x) = (1− r)y + rx.
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Property (Du) is motivated by the example of projective spaces (cf. introduction,
0.3.1): multiplication by the scalar r in the linear part (Ua, x) in a projective space
Gras1(V ) is given by rax = P a

x + rP x
a , where a is a hyperplane in V and x a line

complementary to a. Multiplying by the scalar r−1 gives the same projective map,
whence rax = r−1P a

x + P x
a = (r−1)xa. (Property (Du) is the “Fundamental Iden-

tity (PG1)” from [Be02]; the identity (PG2) from loc. cit. does not appear in the
axiomatics given here since it concerns possibly non-invertible maps.)

5.2. Major and minor dilations. There are a lot of identies relating the “major”
dilations rax with the “minor” dilations (translations Lyzc ). Most of them, such
as (Tr), just rephrase and globalize relations from usual affine geometry over K
(cf. [Be04]). In the sequel, we will focus on the relation between scalar action
and “usual” translations, on the one hand, and “quasi-translations”, on the other
hand: fix a base point (o, o′) ∈ D2; then the usual scalar action in the linear
space (V, o) = (Uo′ , o) is given by rv = ro

′
o (v), and the one in the linear space

(V ′, o′) = (Uo, o
′) by ra = roo′(a). For v ∈ V we have by (Di)

(5.2) ro
′

o ◦ Lvoo′ ◦ (ro
′

o )−1 = Lrv,oo′ ,

which coresponds to the semidirect product structure of the usual affine group of
V . For a ∈ V ′ we have, again by (Di),

(5.3) ro
′

o ◦ Lao
′

o ◦ (ro
′

o )−1 = Lr
−1a,o′

o ,

which means that the “quasi-translation” xa := Lao
′

o (x) for x ∈ V , a ∈ V ′ satisfies
the homogeneity relation (rx)a = rxra.

5.3. Remark on midpoints. Assuming that 2 is invertible in K, midpoints

(5.4) µ(y, a, x) := (2ay)
−1(x) =

x+ y

2

in the affine space Ua have been extensively used in [Be02]: relation (Tr) implies

2ax(2
a
y)
−1 = L

x,2ay(x)
a = Lx,2x−ya = Lyxa ,

Jµ(x,a,z),µ(x,a,z)
a = (2ax)

−1Jzza (2ax) = (2ax)
−12aJzz

a (x)J
zz
a = Lx,za Jzza = Jxza ,(5.5)

so translations and inversions Jxza can be expressed by major dilations. Moreover,
by (5.5), Jxza = Jaaµ(x,a,z), thus every inversion is of the form Jaav for some (a, v) ∈ D2;

it follows that (if X is connected) all inversions Jxza are conjugate to each other
under Aut(X ). In the present approach, we avoid using midpoints, and we consider
the map J as a primary object and r as secondary.

5.4. Remark on the base ring Z. A geometry with Jordan structure map J
always carries a Z-scalar action: indeed, an abelian group (Ua, y) is automatically
a Z-module, and since Z× = {±1}, the scalar action structure map can be defined
by letting 1ay = idX and (−1)ax = Jaax . It is easily checked that this satisfies the
properties (C) – (Tr). Moreover, by (Tr), any Z-scalar action is necessarily given
by these formulae. Thus a geometry with Jordan structure map is the same as one
with compatible Z-action.
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6. Idempotents and the modular group

Let X be a geometry with Jordan structure map J . By a configuration of points
in X we just mean a subset P ⊂ X . In this chapter, we study some simple config-
urations:

(1) P = {x, a}, with (a, x) ∈ D2 (transversal pair),
(2) P = {o, a, z}, with (o, a, z) ∈ D3 (transversal triple), but not closed,
(3) P = {a, b, c}, where (a, b, c) ∈ D′3 (pairwise transversal triple),
(4) P = {a, x, b, y}, where (a, x, b, y) is an idempotent quadruple.

For any configuration, consider the “group generated by inversions from P”

(6.1) G(P ) :=
〈
Jxza | x, a, z ∈ P, x>a, z>a

〉
⊂ Aut(X )

and the smallest subgeometry 〈P 〉 ⊂ X containing P . For configuration (1), G(P ) =
{Jaax , id} is isomorphic to Z/2Z; for configuration (2), G(P ) contains a subgroup
that is a quotient of Z, generated by Lzoa = Jzoa ◦ Jooa , and the whole group G(P ) is
a quotient of ZnZ/2Z. Then 〈P 〉 is a flat geometry (see 2.4.6). Configuration (3)
is more interesting:

Theorem 6.1. Assume (a, b, c) is a pairwise transversal triple. Then

(6.2)
{

idX , J
ab
c , J

ac
b , J

cb
a , J

ab
c ◦ Jacb , Jacb ◦ Jabc

}
⊂ Aut(X ,>, J)

is a group, isomorphic to the permutation group S3.

Proof. We claim that the following correspondences are group homomorphisms,
where we list first the elements of S3, then the corresponding element of (6.2), a
corresponding element of PGL(2,Z), and the fractional linear transformation (in
the variable z) corresponding to the element from the precedig line:

(1) (12) (23) (13) (123) = (12)(23) (132) = (23)(12)

idX Jabc J bca Jacb Cabc := Jabc ◦ J bca Cbac = J bca ◦ Jabc

1

(
0 1
1 0

) (
1 0
1 −1

) (
−1 1
0 1

) (
1 −1
1 0

) (
0 1
−1 1

)
z z−1 (1− z−1)−1 1− z 1− z−1 (1− z)−1

Indeed, it is checked by direct computation that all of these correspondences are
group homomorphisms: since the elements Jabc , J

ac
b , J

cb
a are of order two, it suffices

to show that the composition of two of them is a 3-cycle, e.g., that (Jabc ◦Jacb )3 = idX :

(6.3) (Jabc ◦ Jacb )3 =
(
Jabc J

ac
b J

ab
c

)(
Jacb J

ab
c J

ac
b

)
= J bca J

bc
a = idX

by using (IN), (IP), (D), and (C). �

Remark. The action of matrices from GL(2,Z) defined by this and the following
tables corresponds to its “usual” action by fractional linear transformations on a
Jordan algebra with unit 1, as indicated. See Section 9.5 for more on this.
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Theorem 6.2. Assume (a, b, c) is a pairwise transversal triple and P = {a, b, c}.
Then G(P ) is a quotient of PGL(2,Z). More precisely, define the matrices

(6.4) S :=

(
0 1
−1 0

)
, T :=

(
1 1
0 1

)
, F :=

(
0 1
1 0

)
, I :=

(
1 0
0 −1

)
∈ GL(2,Z) ,

and by [S], etc., denote the corresponding element in PGL(2,Z). Then there is a
unique group epimorphism

φ : PGL(2,Z)→ G(P ) ⊂ Aut(X ),

defined by the correspondences [S] 7→ J bba J
ab
c and [T ] 7→ Lcab = J cab J

aa
b and [I] 7→ J bba .

Moreover, we then have the following correspondences (notation as above):

Jaab J bbc J cca Lbac = J bac J
aa
c Lcab = J cab J

aa
b Lbca = J bba J

bc
a(

−1 0
0 1

) (
−1 2
0 1

) (
−1 0
−2 1

) (
1 −1
1 0

) (
1 1
0 1

) (
1 0
−1 1

)
−z 2− z (2− z−1)−1 (z−1 − 1)−1 z + 1 (1− z−1)−1

Proof. Recall that the modular group Γ := PSL(2,Z) is presented by generators
and relations

(6.5) Γ =
〈

[S], [T ] | [S]2 = 1, [ST ]3 = 1
〉
.

We prove the relation corresponding to [S]2 = 1, that is, (J bba J
ab
c )2 = id:

(J bba J
ab
c )2 = J bba (Jabc J

bb
a J

ab
c ) = J bba J

aa
b = (J bba )2 = id.

Next, we prove the relation corresponding to [ST ]3 = 1: note that J bba J
ab
c J

ca
b J

aa
b =

J bba J
ab
c J

ca
b J

bb
a = Jabc J

cb
a , and according to (6.3), this is a 3-cycle. According to

the presentation (6.5), this defines a homomorphism PSL(2,Z) → G(X ). The
remaining correspondences are checked by similar computations, and they establish
a homomorphism PGL(2,Z)→ G(P ) which is obviously surjective. �

Theorem 6.3. Recall that the geometry ZP1 = Gras1
1(Z2) has been defined in 0.3.1

and in 1.2. We denote its canonical pairwise transversal triple by o = [e1],∞ = [e2],
e = [e1 +e2]. Assume (a, b, c) is a pairwise transversal triple in X and P = {a, b, c}.
Then the geometry 〈P 〉 is a quotient of ZP1. More precisely, there is a unique
morphism of geometries

Φ : ZP1 → X
which preserves the pairwise transversal triples: Φ(o) = a, Φ(∞) = b, Φ(e) = c.
This map is equivariant with respect to the homomorphism φ from the preceding
theorem in the sense that Φ(g.x) = φ(g)Φ(x) for all g ∈ PGL(2,Z).

Proof. The projective line ZP1 is homogeneous under the group PGL(2,Z). As
base point in the set D2(ZP1) of transversal pairs we take (o,∞) = ([e2], [e1]). The
stabilizer H of this pair in GL(2,Z) is the group of diagonal matrices. Since φ(I) =
J bba , and J bba preserves the pair (a, b), the map φ from the theorem induces a well-
defined and base point preserving map Φ2 : D2(ZP1)→ D2(X ). Let pr1 : (x, a) 7→ x
the projections from D2 to ZP1 and to X , respectively. Since the group GL(2,Z)
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and its image group under φ preserve the respective transversality relations, there
is a well-defined map Φ : ZP1 → X such that pr2 ◦ Φ2 = Φ ◦ pr2. It maps o to
a, and by equivariance, it maps then ∞ to b and e to c. This map is a morphism

of geometries, i.e., we have Φ(Juvw (y)) = J
Φ(u)Φ(v)
Φ(w) Φ(y) whenever this makes sense.

Indeed, for {u, v, w} ⊂ {a, b, c}, this follows from the equivariance property, and for
general u, v, w and then follows by induction on “word length”. �

Remark. Of the many relations that are valid in the setting of the preceding theo-
rems, let us just mention the following: the involution J cab has, besides b, another
fixed point given by Jaac (b):

(6.6) J cab (Jaac (b)) = Jaac (b).

Indeed, J cab J
aa
c (b) = J cab J

aa
c J

ca
b (b) = J cca (b) = Jaac (b). Another non-trivial relation is

(6.7) Jacb = JacJaa
c (b),

coming from Jaac J
ac
b J

aa
c J

ac
b = 1. In order to get a visual image of such and other

relations, the best realization of ZP1 is not a “line” but rather a tessalation of
the hyperbolic plane of type (2, 3,∞); such images can be found on the inter-
net, see e.g., http://upload.wikimedia.org/wikipedia/commons/thumb/0/04/

H2checkers_23i.png/1024px-H2checkers_23i.png. In this image, the points
a, b, c may be chosen as points on the boundary circle such that the triangle (a, b, c)
contains as its “center” a point of rotational symmetry with order 3. The sym-
metries Jabc are then easily visible, but the orbit of a, b, c (the set 〈P 〉) will be on
the boundary circle; thus this visualisation gives only a partial image, but at least
it may give an idea of how complicated the corresponding geometry really is. In
particular, the orbits of the translations groups defined by a, b, resp. c correspond
to limits of Z-points of horocycles touching the boundary circle at a, b, resp. c.

The projective line ZP1 and its quotients are the most elementary building blocks
for analyzing the structure of a general geometry. It is important that ZP1 appears
not only in the context of a self-dual geometry, where pairwise transversal triples
exist, but also for certain geometries “of the second kind”, namely those having
idempotents. The following definition arises when retaining the properties of the
quadruple (a, b, c, a), where (a, b, c) is pairwise transversal, but then allowing some
pairs to be not necessarily transversal:

Definition 6.4. We say that (a, x, b, y) ∈ D4 is an idempotent if it satisfies

(6.8) Jaax (y) = y, Jxyb J
aa
x (b) = Jaax (b), Jaax J

xy
b (a) = Jxyb (a), Jxyb J

ab
x (y) = Jabx (y)

(6.9) J bby (a) = a, Jabx J
yy
b (x) = Jyyb (x), Jyyb J

ab
x (y) = Jabx (y), Jabx J

xy
b (a) = Jxyb (a).

A strong idempotent is an idempotent (a, x, b, y) such that, moreover,

(6.10) JyxJaa
x (b) = J

a,Jxy
b (a)

Jab
x (y)

.

Lemma 6.5. If (a, b, c) is a pairwise transversal triple, then (a, x, b, y) := (a, c, b, a)
is a strong idempotent.

Proof. Easy check – cf. (6.6); the “strong” relation (6.10) boils down to (6.7). �

http://upload.wikimedia.org/wikipedia/commons/thumb/0/04/H2checkers_23i.png/1024px-H2checkers_23i.png
http://upload.wikimedia.org/wikipedia/commons/thumb/0/04/H2checkers_23i.png/1024px-H2checkers_23i.png
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Conditions (6.8) and (6.9) are dual to each other in the sense that they imply that
(a, x, b, y) is an idempotent if and only if so is (y, b, x, a). Another way to formulate
this definition is to define 4 new points

(6.11) c := Jaax (b), z := Jyyb (x), d := Jxyb (a), w := Jabx (y),

(thinking of (x, y, z, w) and (a, b, c, d) as two harmonic quadruples on two “dissoci-
ated” projective lines `, `′, in the sense of 1.6) and to require that

(6.12) Jaax (y) = y, Jxyb (c) = c, Jaax (d) = d, Jxyb (w) = w ,

(6.13) J bby (a) = a, Jabx (z) = z, Jyyb (w) = w, Jabx (d) = d .

Geometrically, this means that certain fixed points of our involutions on the lines
`, `′ are determined in a definite way. Fixed points of J bbx are then given by

(6.14) J bbx (w) = J bbx J
ab
x (y) = Jabx J

aa
x (y) = w, Jxxb (d) = d.

Theorem 6.6. Assume (a, x, b, y) ∈ D4 is a strong idempotent. Then there is a
homomorphism GL(2,Z)→ Aut(X ) defined by the following correspondences:

J bbx Jxyb Lyxb J bby Labx Jabx(
−1 0
0 1

) (
−1 1
0 1

) (
1 1
0 1

) (
−1 2
0 1

) (
1 0
1 1

) (
−1 0
−1 1

)
Jaax Λab

xy = Labx L
xy
b (Λab

xy)
3 W xy

ab = Labx L
xy
b L

ab
x Jxyb J

aa
x (Jxyb J

aa
x )2(

−1 0
−2 1

) (
1 −1
1 0

) (
−1 0
0 −1

) (
0 −1
1 0

) (
−1 1
−2 1

) (
−1 0
0 −1

)
If (a, x, b, y) is an idempotent (not necessarily strong), then a similar statement still

holds, but GL(2,Z) has to be replaced by the universal central extension ˜GL(2,Z)
(that is, by an extended braid group).

Proof. Let P = {a, x, y, b} and G := G(P ). The group G is clearly generated by
the three elements A := Labx , B := Lxyb and J := J bbx . We show that these elements
satisfy the following relations defining GL(2,Z)

(ABA)4 = 1, ABA = BAB, J2 = 1, (JA)2 = 1 = (JB)2.

Indeed, the proof of the last three relations is immediate. In order to prove the first
relation, we start by proving that the following element Z is central in G:

(6.15) Z := (Jxyb J
aa
x )2 = Jxyb J

aa
x J

xy
b J

aa
x = Jxyb J

x,Jaa
x (y)

Jaa
x (b) = Jxyb J

xy
Jaa
x (b) .

It is obvious that Z(x) = x and Z(y) = y; using (6.8), it follows that also Z(a) = a
and Z(b) = b. Therefore Z commutes with all generators Juvw of G: ZJuvw Z−1 =

JZu,ZvZw = Juvw , and hence is central in G. Moreover, Z is of order 2, since

Jxyb J
xy
Jaa
x (b)J

xy
b = Jxy

Jxy
b Jaa

x (b)
= JxyJaa

x (b),

and hence Z is a product of two commuting involutions. Now consider the “Weyl-
element” (cf. [Lo95], 6.1) W := W xy

ab = ABA = Labx L
xy
b L

ab
x = Jabx Jxyb J

aa
x Jabx . The
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last expression shows that it is conjugate to Jxyb J
aa
x , and hence W 2 is conjugate to

(Jxyb J
aa
x )2 = Z. Since Z is central, it follows that W 2 = Z, and so W 4 = Z2 = idX .

Next, we prove that Z ′ := (AB)3 is a central element of order 2. Indeed, the
proof is very similar to the one given above: we have

(6.16) Z ′ = Jabx J
xy
b J

ab
x J

xy
b J

ab
x J

xy
b = Jabx J

y,Jab
x (y)

Jxy
b (a)

As above, it is checked that Z ′ fixes a, x, b, y, and hence is central; it is a product
of two commuting involutions, hence of order 2 (and hence (AB)6 = 1).

Since Z = W 2 = ABAABA and Z ′ = ABABAB, the relation ABA = BAB is
equivalent to Z = Z ′ or to ZZ ′ = 1. But, by an easy computation,

(6.17) ZZ ′ = JyxJaa
x (b) J

a,Jxy
b (a)

Jab
x (y)

so ZZ ′ = 1 is equivalent to (6.10). This proves the claim for a strong idempotent.
If the idempotent is not strong, then, as we have seen, all relations from GL(2,Z)
a satisfied, possibly up to central elements. Therefore the homomorphism may be
defined on the level of the universal central extension. �

Remark. It is not true that the homomorphism always factorizes via PGL(2,Z): the
central element Z (or Z ′) acts trivially on the G-orbit of x, a, b, z, but in general it
will act non-trivially on the whole of X (cf. the following example) – this action is
precisely described by the Peirce-decomposition associated to the idempotent. In a
similar way, the geometry 〈P 〉 is not always a quotient of ZP1, but rather of the
dissociation of ZP1.

Example. Let X = Gras(W ) be the Grassmannian geometry a K-module W (see
0.3.1) with a direct sum decomposition W = E ⊕F ⊕H, and (non-zero) subspaces
u, v, w ⊂ F such that u ⊕ v = F = u ⊕ w = v ⊕ w (so (u, v, w) is a pairwise
transversal triple in Gras(F )). Let

(6.18) a := w ⊕H, x := E ⊕ u, b := H ⊕ v, y := E ⊕ w.
Then (a, x, b, y) is a chain in X , but a ∩ y = w, so a and y are not transversal.
It can be shown that (a, x, b, y) is a (strong) idempotent in Gras(W ). Instead of
checking the defining properties, it is easier to exhibit directly the corresponding
realization of GL(2,Z) in Aut(X ) = PGL(W ): we decompose W = E ⊕ u⊕ v⊕H,
and write elements of GL(W ) accordingly as 4 × 4-matrices. Then, considering w
as diagonal in u ⊕ v, all four middle blocks are square matrices, so that a matrix(
a b
c d

)
∈ GL(2,Z) may be identified with the class of the matrix

1 0 0 0
0 a b 0
0 c d 0
0 0 0 1

 in PGL(W ) .
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SECOND PART: TANGENT ALGEBRAS

Our aim in this part is to associate to a Jordan- or associative structure map,
at a given base point (o, o′), a “tangent object”, namely a Jordan pair or -algebra,
resp. an associative pair or -algebra. Doing this amounts to “extend” our structure
maps to more singular situations, and it requires additional assumptions. There
are two different ways to formulate such assumptions:

(A) For associative geometries ([BeKi09a]), regularity assumptions are introduced
by extending Mab

xz(y), in some canonical way, to “all” 5-tuples (x, a, y, b, z); however,
the existence of such an extension is a highly non-trivial fact, and, for the time being,
we do not know how this could carry over to the Jordan setting.

(B) In the present work, we follow a more “classical” approach, by introducing
an algebraic formulation of smoothness and infinitesimal calculus (Appendix B)
which is fairly close to the approach to “usual” differential calculus via so-called
Weil functors (see [KMS93] for the classical theory, and [BeS11] for its extension
to general differential calculus over topological fields or rings).

The strategy used in [Be02], although closer to (B) than to (A), remains some-
what in between: from an algebraic point of view, (A) requires to work (as in [Be02])
with non-invertible operators: on their extended domain of definition, the opera-
tors Mab

xz and Jxza (and the “middle multiplication operators” from [Be02]) are no
longer invertible operators , and hence cannot be automorphisms; but they still are
endomorphisms, in the category having structural transformations as morphisms
(not in the “usual” category), see [Be02, BeKi09a]. Moreover, the extended maps
M and J will no longer be smooth on the largest domain of extension: they have
very “strong” singularities, in the sense that the singular values are “at very far
infinity”, outside of the connected component. Therefore the theory can no longer
be formulated in terms of the connected geometry only. One may expect that these
singularities contain a lot of information on the geometry – this aspect should be
very interesting; to our knowledge, it has never been studied so far.

7. Smooth geometries

7.1. Jordan geometries over K. If we have a Jordan geometry with scalar action
by a ring K, then the canonical atlas from subsection 3.6 is an atlas modelled on
a pair of K-modules (V, V ′). As explained in Appendix B.5, it makes thus sense to
speak of a smooth atlas in a purely algebraic way, by requiring that the transition
functions are smooth laws – essentially, this means that, by scalar extension with
Weil algebras, they admit “tangent maps”: we say that our geometry (X ,>, J, r)
is smooth over K (or, more precisely, a smooth Jordan geometry law over K) if

(1) the canonical atlas (subsection 3.6) of the Jordan geometry is smooth in the
sense of B.5, and

(2) the Jordan structure map J and the scalar action structure map r are given
by smooth laws J and r in the sense of B.5.

In the same way, smoothness of associative structure maps is defined (where the
underlying atlas is the same as the one of the corresponding Jordan geometry).
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Definition 7.1. A Jordan geometry over K is a K-smooth geometry (X ,>) with
smooth Jordan structure law J and smooth scalar action law r satisfying the follow-
ing symmetric space axiom (or tangent space axiom):

(T) for all (a, x, b) ∈ D3, the tangent map of Jabx at its fixed point x is −idTxX :

Tx(J
ab
x ) = −idTxX

Thus each Uab is a symmetric space in the sense of B.6. Morphisms of Jordan
geometries over K are smooth laws f : X → Y such that TAf : XA → YA is
a homomorphism of geometries over A, for each Weil algebra A. A polarity of a
Jordan geometry X is an automorphism p such that there exists x ∈ X with p(x)>x,
and a polar Jordan geometry is a Jordan geometry together with a fixed polarity.

Existence of large classes of Jordan geometries is ensured by the following two
constructions:

7.2. Associative geometries. An associative geometry over K, (X ,>, r,M), is a
geometry such that the scalar action r and the associative structure map M are
smooth laws over K. The symmetric space axiom is a consequence of these:

Theorem 7.2. If (X ,>,M) is an associative geometry over K, then (X ,>, J),
with Jabx defined as in lemma 4.2, is a Jordan geometry over K.

Proof. In view of the preceding remarks, it only remains to show that the tangent
map of Jabx at x is minus identity on TxX . But, in the associative setting, (Uab, x)
is a Lie group, and as usual for Lie groups, it is shown that the tangent map of
inversion is minus identity on the tangent space of the origin (Theorem B.3). �

A special Jordan geometry is a subgeometry of (X ,>, J), where J comes from an
associative structure map as in the preceding theorem. For instance, Grassmann
geometries are smooth (the scalar extensions exist for all commutative K-algebras
A, not only for Weil algebras, by tensoring everything with A over K), and therefore
its Jordan-subgeometries, such as Lagrangians, are Jordan geometries over K.

7.3. Generalized projective geometries. These geometries have been defined
in [Be02], based solely on properties of the scalar action map r, by assuming that
2 is invertible in K. We refer to loc. cit. for the precise formulation of the axioms.
Any such geometry is a Jordan geometry over K:

Theorem 7.3. Assume 2 is invertible in K. If (X ,>) is a generalized projective
geometry, with scalar action denoted by rax for r ∈ K×, x>a, then (X ,>, J, r) is a
Jordan geometry over K, where J is defined by Jaax := (−1)ax and

Jxza := (−1)aµ(x,a,z) = Jaaµ(x,a,z)

and µ(x, a, z) := (2ax)
−1z is the midpoint of x and z in the affine space Ua.

Proof. In the theorem, and in the proof, we suppress the superscripts ± used in
[Be02] (formally, this can be justified by working in the “dissociation” of the ge-
ometry (X+,X−)). Using this notation, we check the defining identities of J : In-
volutivity follows from (−1)2 = 1, commutativity from the fact that µ(x, a, z) =
µ(z, a, x), symmetry from the “fundamental identity” (rax)

−1 = rxa (which implies
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(−1)ax = (−1)xa), distributivity holds since all maps sax for s ∈ K× are automor-
phisms of the scalar action map r, and idempotency follows from the following
computation in the affine space Ua:

Jxza (y) = (−1)ax+z
2

(y) = 2
x+ z

2
− y = x− y + z.

Associativity is proved by establishing first that, in a generalized projective geom-
etry, for all x, y, z>a, with the usual torsor structure x− y + z on Ua,

(−1)xa ◦ (−1)ya ◦ (−1)za = (−1)x−y+z
a .

This identity is not among the defining identities given in [Be02], but it follows by
combining the “translation identity” (T) from loc. cit. with the properties of scalar
actions. Using this, associativity follows in a straightforward way:

Jxza J
uv
a Jpqa = (−1)µ(x,a,z)

a ◦ (−1)µ(u,a,v)
a ◦ (−1)µ(p,a,q)

a = (−1)
x+z
2
−u+v

2
+ p+q

2
a

= (−1)
(x−v+p)+(z−u+q)

2
a = JJ

xp
a (v),Jzq

a (u)
a .

The regularity assumption on the geometry is satisfied: as shown in [Be02], every
generalized projective geometry is associated to a Jordan pair; the scalar extension
of a Jordan pair by A is a Jordan pair over A, and as shown in [Be02] this implies
that the structure maps of a generalized projective geometry admit scalar extensions
from K to A. Finally, the symmetric space axiom (T) holds since Jxza = (−1)aµ =
(−1)µa acts by multiplication by −1 in the K-module Vµ with origin a (where µ =
µ(x, a, z)). �

Combined with the existence theorem for generalized projective geometries ([Be02],
Th. 10.1), this implies an existence result for Jordan geometries over rings in which
2 is invertible (cf. Theorem 10.1 below).

8. Tangent geometries and infinitesimal automorphisms

8.1. Tangent geometries. Every smooth manifold law M admits tangent bundles
TAM , for each Weil algebra A (see Theorem B.1). This construction is compatible
with additional structure, such as Lie groups, or Jordan geometries (Theorem B.2).

Theorem 8.1 (A-tangent bundles). Assume (X ,>, J, r) is a smooth Jordan geom-
etry over K, modelled on (V , V ′). Then, for any K-Weil algebra A, we obtain a
Jordan geometry over A, modelled on (V ⊗K A, V ′ ⊗K A) and called the A-tangent
geometry of X , by applying the Weil functor TA to these data. This correspondence
is functorial. The canonical projection and the zero section,

π : TAX → X , z : X → TAX ,
are homomorphisms. Analogous statements hold for associative geometries.

Proof. The arguments are the same as those proving the corresponding theorem on
Lie groups and symmetric spaces (Theorem B.2): the transversality relation in XA is
given by applying TA to the one of X , that is, DA

2 = TA(D2), or quivalently, u>w iff
π(u)>π(w). All defining identities of Jordan structure maps and of structure maps
of scalar multiplications can be expressed by commutative diagrams; applying the
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functor TA to such diagrams yields diagrams of the same form, over A, and hence
the space (XA,>A, JA,A) satisfies the same identies over A, so it is again a Jordan
geometry. �

For A = TK = K[ε] we get the tangent geometry TX = TK[ε]X . Recall that TK
is a vector algebra: the nilpotent ideal carries the zero product. For such algebras,
the fibers of π (tangent spaces) carry a canonical K-module structure (see B.7).

Theorem 8.2 (Tangent spaces as intrinsic subspaces). Assume (X , J) is a Jordan
geometry over K and let x ∈ X . Then, for all a>x, the natural K-module structure
in the tangent space TxX (defined in B.7) coincides with its K-module structure as
a submodule of (Ua, x) in the geometry TX (and hence is independent of the choice
of a ∈ x>).

Proof. By definition, the linear structure in T (Ua) = {v ∈ TX | v>a} is given by
the structure maps of TX (and hence depends on a). On the other hand, for given
x, chart changes in the geometry TX are given by tangent maps of those in X ,
which are linear in fibers; therefore the linear structure in the fiber over x, induced
by a, does not depend on the choice of a. �

Lemma 8.3 (Linear isotropy). The translation group Va belongs to the kernel of
the linear isotropy representation Pa → GL(TaX ), g 7→ Tag, i.e., the tangent map
of Lxza at the fixed point a is the identity:

Ta(L
xz
a ) = idTaX .

Proof. Using the symmetric space axiom (S),
Ta(L

xz
a ) = Ta(J

xx
a Jxza ) = Ta(J

xx
a ) ◦ Ta(Jxza ) = (−idTaX )2 = idTaX . �

Note that the lemma furnishes an interpretation of the split exact sequence (3.4) in
terms of the linear isotropy representation.

8.2. Infinitesimal automorphisms. Let (X , J, r) be a Jordan geometry over K.
An infinitesimal Jordan automorphism of TX is an automorphism ξ of TX over
TK such that π ◦ ξ = π, i.e., ξ preserves tangent spaces.

Theorem 8.4. There is a canonical bijection between infinitesimal Jordan auto-
morphisms ξ and derivations X : X → TX , i.e., morphisms X → TX such that
π ◦X = idX . This bijection is given by

X := Xξ := ξ ◦ z : X → TX , ξ := ξX := Φ ◦ TX : TX → TX ,
where z : X → TX is the zero section and Φ : TTX → TX the natural map induced
by TTK→ TK, (x, a, b, c) 7→ (x, a+b) (see B.7). The infinitesimal Jordan automor-
phisms form a subgroup of Aut(TX ), denoted by g(X ), and under the isomorphism
with Der(X ) the group structure of g(X ) corresponds to pointwise addition of vector
fields (derivations).

Proof. The bijection between vector fields and infinitesimal automorphisms follows
from the general theory of Weil functors (see B.9). This bijection is compatible
with additional structure (Lie groups, symmetric spaces, Jordan- or associative
geometries). �
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We call X = Xξ also the associated vector field of ξ. By the theorem, g(X ) acts by
translations in each fiber:

ξ(v) = v +X(π(v)),

therefore its group law of g(X ) will be written additively. Since Der(X ) is a K-
module, so is g(X ), by transport of structure. Over V , and writing TV = V ⊕ εV ,
an infinitesimal automorphism ξ has the chart representation

(8.1) ξ(x+ εv) = x+ ε(v +X(x))

where X|V : V → εV ∼= V is the chart representation of a vector field. The group
g(X ) is normal in AutTK(TX ), and the group Aut(X ) acts on g(X ) by conjugation
(“adjoint representation”)

(8.2) Aut(X )× g(X )→ g(X ), (g, ξ) 7→ g.ξ := Tg ◦ ξ ◦ Tg−1.

Lemma 8.5. Assume v, w ∈ TpX and p>a. Then the following are infinitesimal
automorphisms:

(1) the vertical translation Lvwa ,
(2) the Euler field (1 + ε)ap.

Proof. For the vertical translation: π(Lvwa x) = L
π(v),π(w)
π(a) π(x) = Lp,pa (π(x)) = π(x),

whence π ◦ Lvwa = π. Concerning the Euler field, note first that from functoriality
of the law r we get

π ◦ rax = (πr)πaπx ◦ π
for all scalars r ∈ TK×. Apply this to the invertible scalar r = 1 + ε (whose inverse
is 1− ε): since π(1 + ε) = 1, we get π ◦ (1 + ε)ap = 1πaπp ◦ π = π. �

Since (1− ε)ax(1 + ε)ay = L
(1−ε)axy,y
a , one could deduce (1) also from (2).

8.3. Triple decomposition, and chart representation. Let us fix a base point
(o, o′) ∈ D2 and the model space (V, V ′) = (Uo′ , Uo). By identifying o and o′ with
their images under the zero section, we consider (o, o′) also as base point in TD2.

Lemma 8.6. Fix a transversal pair (o, o′) ∈ D2 and define subgroups of g = g(X )

g0 := g ∩Ho,o′ = {ξ ∈ g | ξ(x) = x, ξ(o′) = o′},
g−1 := g ∩ LTV,oo′ = {Lvoo′ | v ∈ ToX},
g1 := g ∩ LTV ′,oo = {Lwo′o | w ∈ To′X}.

Then we have a direct sum decomposition of the K-module g

g = g−1 ⊕ g0 ⊕ g1.

The group K× = {ro′o | r ∈ K×} acts, via the adjoint representation, on these spaces
diagonally with eigenvalues r, 1, r−1.

Proof. Let ξ be an infinitesimal automorphism, then ξ(o) lies in the fiber over o,
hence is also transversal to o′, so we can decompose

ξ = L
ξ(o),o
o′ ◦D(ξ) ◦ L−ξ(o′),o′o = L

ξ(o),o
o′ +D(ξ) + L−ξ(o

′),o′

o

which is simply the decomposition (3.7), written additively (where we note that each
factor is fiber preserving, i.e., belongs to g). To prove the claim on the eigenvalues
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of the scalar action, just read equations (5.2) and (5.3) for infinitesimal arguments
εv and εa. �

Theorem 8.7. For all ξ ∈ g(X ), the vector field X|V : V → V representing ξ, is a
quadratic polynomial. More precisely, this polynomial is constant if ξ ∈ g−1, linear
if ξ ∈ g0, and homogeneous of degree 2 if ξ ∈ g1. Thus g is represented over V by
the Lie algebra of quadratic polynomials{

X : V → V | X(x) = v +Hx+Q(x)a, v ∈ V,H ∈ go, a ∈ V ′
}
,

where the polynomial

(8.3) Q : V × V ′ → V, (x, a) 7→ Q(x)a,

quadratic in x and linear in a, is defined by

(8.4) Lεa,o
′

o (x+ εv) = x+ ε(v +Q(x)a).

Similarly, g is also represented by quadratic polynomial vector fields over V ′.

Proof. If ξ ∈ g−1, then ξ = Lεv,oo′ for some v ∈ V , hence ξ(x) = x + εv, and the
corresponding vector field is X(x) = v, which is a constant function. If ξ ∈ g0,
then ξ acts linearly on V (and on V ′). It remains to show that X is homogeneous
quadratic polynomial if ξ ∈ g1.

In the chart formula, the adjoint action (8.2) is described as follows: using (8.1)
together with Tg(x+ εv) = g(x) + εdf(x)v, we get, whenever g−1.x ∈ V ,

(8.5) (g.ξ)(x) = dg(g−1.x) ·X(g−1.x).

If g = Lv,oo′ is a translation with v ∈ V , (8.5) gives

(8.6) (Lv,oo′ .ξ)(x) = X(x− v),

and for a major dilation g = ro
′
o it gives

(8.7) (ro
′

o .ξ)(x) = rX(r−1x) .

Specializing (8.7) to vector fields X from the three parts gi, i = −1, 0, 1, we get that
X : V → V is homogeneous of degree 0, 1 or 2, respectively, since ξ is eigenvector
for the K×-action for the eigenvalues r, 1, r−1, respectively, by the preceding lemma.

Now let ξ = Lo
′,εa
o ∈ g1 (a ∈ V ′) and X its associated vector field. In order to

show that X(x) is quadratic polynomial, it remains to show that the map

Xv : V → V, x 7→ Xv(x) = X(x− v)−X(x),

is affine, for all v ∈ V . (Equivalently, that x 7→ X(x+ v)−X(x)−X(v) is linear.)
According to (8.6), the field X(x − v) represents the infinitesimal automorphism
Tg ◦ ξ ◦Tg−1 where g = Lv,oo′ is translation by v, and −X(x) represents ξ−1, whence
Xv represents the infinitesimal automorphism Tg◦ξ◦Tg−1◦ξ−1, that is, it represents

ξv := Lv,oo′ L
o′,εa
o Lo,vo′ − L

o′,εa
o = Lv,oo′ L

o′,εa
o Lo,vo′ L

εa,o′

o .

Saying that Xv is affine amounts to saying that ξv fixes o′. Now,

ξv(o
′) = (Lv,oo′ L

o′,εa
o Lo,vo′ − L

o′,εa
o )o′ = Lv,oo′ L

o′,εa
o − (−εa) = Lv,oo′ (−εa)− (−εa)

But Lv,oo′ (−εa) = To′(L
v,o
o′ )(−εa) is the tangent map of Lv,oo′ at its fixed point o′,

applied to −εa. According to Lemma 8.3, this tangent map is the identity, and
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hence it follows that ξv(o
′) = o′, hence ξv is affine for all v ∈ V and thus ξ is

quadratic. The map Q(x)a is defined by Q(x)a = X(x) for ξ as above, and hence
is homogeneous quadratic in x. It is linear in a since the map a 7→ Lεa,o

′
o is a linear

isomorphism from V ′ to g1. �

8.4. The quadratic map. With respect to a fixed origin (o, o′) and model space
(V, V ′), we define a map Q : V → Hom(V ′, V ) as above. The map

(8.8) Q(x, v)a := D(x, a)v := Q(x+ v)a−Q(x)a−Q(v)a

is bilinear symmetric in (x, v) linear in a. The maps Q′ : V ′ × V ′ → Hom(V, V ′)
and D′ : V ′ × V → End(V ′) are defined dually.

8.5. Numerators and denominators. We fix an origin (o, o′) and denote by

(8.9) v := XLεv,o

o′
, v(x) = v, E := X(1+ε)o′o

, E(x) = x,

the “constant vector fields” v : V → V , resp. the Euler field, associated to (o, o′).
Let g ∈ Aut(X ). Recall that g acts on g by the adjoint representation, and in the
chart V this action is described by (8.5), when g−1.x ∈ V . By the preceding theo-
rem, the vector field corresponding to g.ξ is again quadratic; in particular, applying
this to constant fields v, it follows that there is a unique quadratic polynomial
δg : V × V → V , (x, v) 7→ δg(x)v, linear in v, called denominator of g, such that

(8.10) (g.v)(x) = δg(x)v,

and, according to (8.5), if g−1.x ∈ V ,

(8.11) δg(x)v = dg(g−1x)v = (dg−1(x))−1v, whence (δg(x))−1 = dg−1(x).

The same argument, applied to the Euler field E, shows that there is a unique
quadratic polynomial νg : V → V , called the numerator of g, such that

(8.12) (g.E)(x) = νg(x).

According to (8.5), if g−1.x ∈ V ,

(8.13) νg(x) = dg(g−1x)E(g−1x) = dg(g−1x) (g−1x) = δg(x)(g−1x).

According to (8.11), if g−1x ∈ V , the endomorphism δg(x) : V → V is invertible,
and hence we can multiply the last equality by its inverse. This proves:

Theorem 8.8 (Automorphisms as quadratic fractional maps). Fix a base point
(o, o′) and let g ∈ Aut(X ) and x ∈ V such that g−1(x) ∈ V . Then the endomorphism
δg(x) : V → V is invertible, and using the differential dg−1(x), the value g−1(x) is
given by

g−1(x) = (δg(x))−1νg(x) = dg−1(x)νg(x).

Moreover, we have δg(0) = D(g−1)−1 where D(g) is defined by equation (3.6).

Proof. Only the link with the triple decomposition (3.6) g = tD(g)t̃ remains to be
proved: indeed, using that d(t̃)(0) = idV ,

(g−1.v)(0) = (t̃−1D(g)−1t−1.v)(0) = (t̃−1D(g)−1v)(0) = D(g)−1v.

Replacing g by g−1 gives the claim. �
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Remark. Reconstructing the geometry from a Jordan pair, it can be shown ([BeNe04])
that the condition that δg(x) is invertible is also sufficient to ensure that g−1x ∈ V .

9. From Jordan geometries to Jordan pairs and Jordan algebras

9.1. Double tangent bundle and Lie bracket. The Lie bracket of vector fields
(or of infinitesimal automorphisms) is defined in theorem B.3 by taking a commu-
tator in the group of infinitesimal automorphisms of TTX over X . Equipped with
this bracket, the vector fields form a Lie algebra (or, more formally, a Lie algebra
law over K).

Theorem 9.1 (The 3-graded Lie algebra). The space g = g(X ) of derivations of
the Jordan geometry (X , J, r) is a Lie-subalgebra of the algebra of all vector fields.
The decomposition g = g−1 ⊕ g0 ⊕ g1 with respect to a given base point (o, o′) is a
3-grading of the Lie algebra g, that is, [gi, gj] ⊂ gi+j. In particular, the bracket of a
constant field v(x) = v (v ∈ V ) and a homogeneous quadratic field ξa(x) = Q(x)a
(a ∈ V ′) is given by the linear operator D(v, a)x = Q(v, x)a:

[v, ξa] = D(v, a).

Proof. Since the translation groups are abelian, their group commutators are trivial,
and hence [g1, g1] = 0 = [g−1, g−1]. A standard computation in the semidirect
product Po, resp. Po′ , shows that [g0, g±1] ⊂ g±1.

Let us now show that [g1, g−1] ⊂ g0. The computation in the proof of theorem 8.7
shows that the group commutator of Lv,oo′ and Lεa,o

′
o in Aut(TX ) is the infinitesimal

automorphism given by the affine vector field

[Lv,oo′ , L
εa,o′

o ](x) = ε(Q(x− v)a−Q(x)a) = ε(Q(v)a−Q(x, v)a) .

We apply this relation with v replaced by ε2v, and use that Q(ε2v) = ε2
2Q(v) = 0

[Lε2v,oo′ , Lε1a,o
′

o ](x) = −ε1ε2Q(x, v)a = −ε1ε2D(v, a)x .

This vector field is linear in x, and hence belongs to g0; moreover, we have proved
that this linear field is given by the linear operator −D(v, a) : V → V . �

Remark. If K× contains scalars different from ±1, then another proof is obtained by
noticing that the automorphisms g := ro

′
o , r ∈ K×, act diagonally on g by automor-

phisms with eigenvalue ri on gi, and that the eigenspaces Eλ satisfy [Eλ, Eµ] ⊂ Eλµ.

9.2. Linear Jordan pairs and 3-graded Lie algebras. For every 3-graded Lie
algebra g = g1⊕g0⊕g−1, the pair of K-modules V ± := g±1 becomes a linear Jordan
pair with trilinear maps

(9.1) V ± × V ∓ × V ± → V ±, (x, a, z) 7→ {xaz} := [[x, a], z] ,

i.e., the trilinear map satisfies the identities

(1) {xaz} = {zax}
(2) {uv{xyz}} = {{uvx}yz} − {x{vuy}z}+ {xy{uvz}}

Combining this with the preceding theorem gives immediatly:
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Theorem 9.2 (The linear Jordan pair of a Jordan geometry). Assume X is a
Jordan geometry over K with base point (o, o′) ∈ D2. Then the pair of K-modules
(V +, V −) = (Uo′ , Uo) becomes a linear Jordan pair with respect to {xaz} = Q(x, z)a,
where Q is the quadratic map defined by (8.8). The quadratic map, and hence the
Jordan pair, depend functorially on the geometry with base point.

9.3. Quadratic Jordan pairs. A quadratic Jordan pair is a pair (V +, V −) of K-
modules together with quadratic maps Q± : V ± → Hom(V ∓, V ∓) such that the
following identities hold in all scalar extensions (see [Lo75]; superscripts ± are
omitted)3

(JP1) D(x, y)Q(x) = Q(x)D(y, x)
(JP2) D(Q(x)y, y) = D(x,Q(y)x)
(JP3) Q(Q(x)y) = Q(x)Q(y)Q(x)

Here, {xyz} = D(x, y)z = Q(x, z)y = Q(x + z)y − Q(x)y − Q(z)y, so {xyx} =
2Q(x)y. It is shown in loc. cit. that every quadratic Jordan pair is linear, and that
the converse is true if V has no 6-torsion.

Theorem 9.3 (The quadratic Jordan pair of a Jordan geometry). Assume X is a
Jordan geometry over K with base point (o, o′) ∈ D2. Then the pair of K-modules
(V +, V −) = (Uo′ , Uo) becomes a quadratic Jordan pair with respect to the maps
Q+ = Q and Q− = Q′ defined by (8.4). The quadratic map, and hence the Jordan
pair, depend functorially on the geometry with base point.

Proof. If V has no 6-torsion, by the preceding remarks, the Jordan pair is linear,
and hence the claim follows from Theorem 9.2. In the general case, one can adapt
to our framework the arguments given in the proof of [Lo79], Th. 4.1; however,
since the computations are fairly long and involved, we will not reproduce them
here in full detail. The main ingredients used in loc. cit. are the relations between
“usual” translations and quasi-translations (in our framework: Lemma 3.2), and
the behavior of (quasi-) translations with respect to scalars ((5.2), (5.3)); these
relations furnish a description of the elementary projective group by generators
and relations, from which the Jordan pair identities are deduced by using algebraic
differential calculus in the setting of algebraic geometry ([Lo79], page 40). All of
these arguments carry over to our setting; we only have to replace the argument of
Zariski-density used repeatedly in loc. cit. by the following more general argument,
which in turn is a geometric version of “Koecher’s principle on identitities” saying
that a Jordan polynomial which vanishes in all quasi-invertible Jordan pairs is zero
(see [Lo95], p. 97, for this formulation).

Lemma 9.4 (“Koecher’s principle”). A Jordan polynomial which vanishes on all
quasi-invertible quadruples of Jordan geometries is zero. More formally, this means:
assume P = PX is a smooth law, depending functorially on Jordan geometries X ,
such that PX is defined for quadruples (a, o, o′, x) ∈ D4(X ) and is polynomial in
(a, x) for all fixed base points (o, o′) ∈ D2(X ); if P vanishes for all quasi-invertible
quadruples (a, o, o′, x) ∈ D′4(X ) in all Jordan geometries X , then P = 0.

3As Loos remarks in loc. cit., p.1.3, it suffices to consider scalar extensions that are free and
finite dimensional over K; in particular, it suffices to consider Weil algebras.
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Proof of the lemma. Considering (o, o′) as fixed, we suppress it in the notation.
Let P (a, x) = 0 be a polynomial identity of degree k, valid for all quasi-inverible
quadruples (a, o, o′, x) ∈ D′4 in Jordan geometries X . Let JkX be the scalar exten-
sion of X by the jet ring JkK := K[X]/(Xk+1) = K[δ] (see (B.2)). Just as in case
k = 1 (tangent bundle), JkX is a bundle over X , alled the k-th order jet bundle of
X : in every chart of the canonical atlas, it has a product structure, and likewise,
the set D′4(JkX ) is a bundle over D′4(X ). Fixing (o, o′) as base point, all elements
(δa, δx) with (x, a) ∈ V + × V − are hence quasi-invertible (i.e., (δa, o, o′, δx), ly-
ing in the fiber over (o′, o, o′, o), belongs to D′4(JkX )). By assumption, we thus
have P (δx, δa) = 0. Expanding this polynomial and ordering according to powers
δ, δ2, . . . , δk, shows that all homogeoneous parts of the polynomial P vanish, and
hence P = 0. This proves the lemma and the theorem. �

The proof of the lemma takes up the idea that, geometrically, “modules” of Jordan
pairs should correspond to bundles in the category of Jordan geometries. Vector
bundles then correspond to representations in the sense of [Lo75], 2.3; they are
scalar extensions by vector algebras (cf. B.7). In this context, the proof of the
lemma leads to a geometric version of the permanence principle [Lo75], 2.8.

9.4. Jordan geometries with polarities and Jordan triple systems.

Theorem 9.5 (The Jordan triple system of a Jordan geometry with polarity).
Assume X is a Jordan geometry over K with polarity p : X → X and base point
(o, o′) ∈ D2 such that o′ = p(o). Then the K-module V = Uo′ becomes a quadratic
Jordan triple system with respect to the map Q(x)y = pQ±(x)p(y).

Proof. The polarity p defines an involution of the Jordan pair (V +, V −) from the
preceding theorem, and a Jordan pair with involution is the same as a Jordan triple
system (cf. [Lo75]). �

9.5. Unital Jordan and associative algebras. Assume (a, b, c) = (o, o′, e) is a
pairwise transversal triple. According to Lemma 2.2, the set U = Uoo′ is a symmetric
space with product sx(y) = Joo

′
x (y). Since Joo

′
x exchanges o and o′, it induces a Z-

linear bijection of V = Uo′ onto V ′ = Uo. Fix the point e as base point in U , and
define, for x ∈ U , a linear map

(9.2) Qx := Qoo′

xe = Joo
′

x ◦ Joo
′

e |V : V → V.

Since Qx(Qy)
−1y = Joo

′
x Joo

′
e Joo

′
e Joo

′
y y = Joo

′
x (y) = sx(y), the structure of U can be

entirely described in terms of the map U × V → V , (x, y) 7→ Qx(y).

Theorem 9.6 (The Jordan algebra of a Jordan geometry with pairwise transversal
triple). Assume (X , J) is a Jordan geometry over K with pairwise transversal triple
(a, b, c). Choose (a, b) =: (o, o′) ∈ D2 as base point. Then the K-module V = Uo′
becomes a quadratic Jordan algebra with quadratic map Ux(y) = Q(x)Q(e)−1y and
with unit element e = c. The set V × of invertible elements agrees with the symmetric
space U = V ∩ V ′, and the quadratic map Q(x) agrees with Qx defined by (9.2).

Proof. We have to show that the Jordan pair (V, V ′) associated to the base point
(o, o′) has invertible elements (cf. [Lo75]); more precisely, we show that every ele-
ment x from U = Uoo′ is invertible. Indeed, this follows from the fact that j := Joo

′
e
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is an automorphism of g exchanging o and o′, hence exchanging also g1 and g−1:
using numerators and denominators, it is shown exactly as in [BeNe04], Section 5.1,
that, for all x ∈ V ×, we have the formula

j(y) = Q(e)Q(y)−1Q(e)y.

In particular, since j(e) = e, it follows that e is an invertible element, thus (V, e) is
a quadratic Jordan algebra with Jordan inversion j ([Lo75]). From this it follows
is in [BeNe04] that Q(x) = Qx and that V × = U . �

Theorem 9.7 (The associative algebra of an associative geometry with transversal
triple). Assume (o, o′, e) is a closed transversal triple in an associative geometry
(X ,M). Then the group law of Uoo′ extends to an associative algebra structure on
V = Uo′, with bilinear product induced by the second tangent law TTUoo′.

Proof. Let V := Vo′ , V
′ := Vo and V × := Uoo′ = V ∩ V ′. From the properties of an

associative geometry, it follows that (V ×, e) is a Lie group with group law

xz = (xez)oo′ = M oo′

xz (e) = Loo
′

xe (z) = Roo′

ez (x),

which is bilinear for the linear structure (V, o). Let m : U × U → U be the group
law of the Lie group U = V ×; then the group law of TTU is given by TTm which
is scalar extension of m by the ring TTK = K[ε1, ε2]. The map

ε1V × ε2V → ε1ε2V, (ε1u, ε2v) 7→ (ε1u)(ε2v) = TTm(ε1u, εv)

is bilinear, since, for one of the arguments fixed, the remaining map is a tangent
map. Thus a bilinear product uv on V is defined by requiring

ε1ε2(uv) := (ε1u)(ε2v).

The group law T 3m on T 3U is associative, thus, in particular, ε1u(ε2v · ε3w) =
(ε1u · ε1v)ε3w, which, by definition of the product, yields u(vw) = (uv)w. Thus V
with product uv is an associative algebra. Moreover, if u, v ∈ U , then left and right
multiplications Lu : V → V and Rv : V → V , are linear maps, hence agree with
their tangent maps, implying that the products uv taken in U and in V agree. �

Remark. If the geometry is not self-dual, then, for a fixed base point (o, o′) ∈ D2,
the pair (V, V ′) becomes an associative pair (see [BeKi09a] for relevant definitions).

9.6. Explicit Jordan theoretic formulas for the Jordan structure map. We
give Jordan theoretic formulae expressing Jxza (y) and Jxza (b) in terms of the Jordan
pair (V +, V −) associated to a fixed base point (o, o′). Notation for Jordan pairs is
as in subsection 9.3; in order to simplify formulas, we suppress subscripts ±, by
assuming always that o, v, x, y, z ∈ V ± and o′, a, b, c ∈ V ∓. We use the following
standard definitions from Jordan pair theory (cf. [Lo75]):

(1) the Bergman operator is defined by B(y, b)x := x−D(y, b)x+Q(y)Q(b)x,
(2) (x, a) is called quasi-invertible if B(x, a) is invertible, and then one defines

xa := B(x, a)−1
(
x−Q(x)a

)
,

and then the inner automorphism defined by (x, b) is given by

β(x, a) :=
(
B(x, a), B(a, x)−1

)
.
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In order to obtain the general formulae for Jxza , we proceed in three steps:

Step 1: two of the points are base points (case (z, a) = (o, o′), Lemma 9.8)
Step 2: one point among x, z is the base point o (Lemma 9.9)
Step 3: general case – all three points different from base points (Theorem 9.10).

Lemma 9.8. For x, v ∈ V + = Uo′ and a ∈ V − = Uo, the following holds: the
affine space structure of V + (and dually of V −) is described by the translations:
Lvoo′ (x) = v + x and the major dilations: ro

′
x (y) = (1 − r)x + ry, and in particular,

Jooo′ (x) = −x = (−1)o
′
o (x). The Jordan theoretic Bergman operator coincides with

the “geometric Bergman operator” defined in (3.12) : β(x, a) = Bo,o′
xa , and x>a if,

and only if, (x, a) is quasi-invertible, and then

Lao
′

o (x) = xa = B(x, a)−1
(
x−Q(x)a

)
.

If (−v, a) is quasi-invertible, then

Jao
′

o (v) = Lao
′

o (−v) = (−v)a = −B(−v, a)−1
(
Q(v)a+ v

)
,

Proof. The statement on the action of La,oo and Jao
′

o by (quasi-)inverses is proved
in [Lo79], Lemma 4.7 (the framework in loc. cit. is slightly different from ours, but
the proof carries over by using Lemma 9.4; see also [BeNe04], Section 3 for another
proof in a different setting). �

Lemma 9.9. If (−v, a) ∈ V + × V − is quasi-invertible, then

Jao
′

o (v) = Lao
′

o (−v) = (−v)a = −B(−v, a)−1
(
Q(v)a+ v

)
,

and, with v′ := Jvoa (o′) = 2a+Q(a)v, we have the triple decomposition (3.7)

Jvoa = Lv,oo′ ◦ (−β(v−a, a)) ◦ Lo′,v′o = Lv,oo′ ◦ (−β(−v, a))−1 ◦ Lo′,v′o .

Proof. To compute Jvoa , note that

Jv,oa = Jao
′

o J
Jao′
o v,o

o′ Jao
′

o = Jao
′

o Jw,oo′ J
ao′

o

with w = Jao
′

o v = (−v)a. Now use the “commutation relation” from Lemma 3.2

Jao
′

o Jwoo′ = J
Jo′a
o (w),o

o′ β(w,−a) J
o′,Jow

o′ (a)
o

to get the triple decomposition

Jv,oa = Jao
′

o Jw,oo′ J
ao′

o = J
Jo′a
o (w),o

o′ β(w,−a) J
o′,Jow

o′ (a)
o Jao

′

o

= L
Jo′a
o (w),o
o′

(
−β(w,−a)

)
L
Jow
o′ (a),a
o

= Lv,oo′
(
−β((−v)a,−a)

)
Lo
′,v′

o

= Lv,oo′
(
−β(−v, a)

)−1
Lo
′,v′

o

where v′ = a−Jowo′ (a); note also that β((−v)a,−a)) = β(v−a, a) = β(v,−a)−1 (iden-
tity JP 35 from [Lo75]). We give another expression for v′ by using the symmetry
principle xy = x+Q(x)yx ([Lo75], Prop. 3.3)

v′ = a− Jowo′ (a) = a− (−a)w = a+ a−w

= 2a+Q(a)(−w)a = 2a+Q(a)v .
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This proves the triple decomposition for Jvoa given in the claim. �

By uniqueness of the triple decomposition, it follows that

(9.3) Jv,oa (o′) = 2a+Q(a)v.

The formula for Jvoa has also been given, in another framework, in [Be08], Th. 2.2.

Theorem 9.10. For x, y, z ∈ V + and a, b, c ∈ V −, the following holds: if (x,−a)
and (z,Q(a)z) are quasi-invertible, then we have the triple decomposition (3.7)

Jxza = Lvoo′ ◦ h ◦ Lo
′v′

o ,

where

v = Jxza (o) = (xoz)a = (x−a + z−a)a = x+B(x,−a)zQ(a)x ,

v′ = Jxza (o′) = 2a+Q(a)x+Q(a)B(x,−a)z(Q(a)x)

= 2a+Q(a)x+B(a,−x)(Q(a)z))x,

h = D(Jxza ) = −β
(
(−v)a,−a

)
= −β

(
(−x)a + (−z)a,−a

)
.

Using this notation, the action of Jxza on V +, resp. on V −, is given by

Jxza (y) = v − β(v−a, a)y−v
′

= x+B(x,−a)zQ(a)x −B
(
x−a + z−a,−a

)
y(−2a−Q(a)x−B(a,−x)(Q(a)z)x)

Jxza (b) = v′ − β(v−a, a)−1b−v = v′ − β(v, a)b−v = v′ −B(a, v)−1b−v

= 2a+Q(a)x+B(a,−x)(Q(a)z))x−
B
(
a, x+B(x,−a)zQ(a)z

)
· b(−2a−Q(a)x−B(a,−x)(Q(a)z))x)

If, moreover, (y,−a) is quasi-invertible, we have also

Jxza (y) = (x−a − y−a + z−a)a.

Proof. Using the “transplantation formula (2.2), Jxza = J
Jxz
a (o),o

a = Jv,oa , we have to
compute the value v = Jxza (o), and then apply the preceding theorem to get the
expressions from the claim. To compute Jxza (o), start by observing that

Jxzo′ (y) = (xyz)o′ = x− y + z

whence, using that Lao
′

o (o′) = a and, by the preceding theorem, Lo
′a
o (y) = y−a,

Jxza (y) = Jxz
Lao′
o (o′)

(y) = Lao
′

o J
Lo′a
o x,Lo′a

o z
o′ Lo

′a
o (y) = (x−a − y−a + z−a)a ,

proving the last formula from the claim, which for y = o gives Jxza (o) = (x−a+z−a)a.
By using [Lo75], Th. 3.7: (x+ z)y = xy + B(x, y)−1.z(yx) and xy+z = (xy)z, as well
as (JP35) B(x, y)−1 = B(xy,−y) and the “symmetry principle” xy = x + Q(x)yx,
we get the following Jordan theoretic formula

v = (x−a + z−a)a = (x−a)a +B(x−a, a)−1(z−a)(a(x
−a))

= x+B(x,−a)z(a(x
−a)−a)

= x+B(x,−a)z(Q(a)x) .
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It follows that

Jxza (o′) = v′ = 2a+Q(a)v

= 2a+Q(a)x+Q(a)B(x,−a)z(Q(a)x) .

Now replace v and v′ by these expressions in the triple decomposition from the
preceding theorem, and writing its action on V + and (using that (Jxza = (Jxza )−1)
on V −, we get the explicit formulae from the claim. �

10. From Jordan pairs to Jordan geometries

The aim of this chapter is to construct a Jordan geometry starting from a Jordan
pair (V +, V −), or from a Jordan algebra:

Theorem 10.1. For every Jordan pair (V +, V −) over K, there is a Jordan geom-
etry, having (V +, V −) as associated Jordan pair. More precisely, there is a functor
from the category of Jordan pairs over K to Jordan geometries over K with base
point. Under this functor, unital Jordan algebras correspond to Jordan geometries
with a pairwise transversal triple.

Proof. If 2 is invertible in K, then, as shown in [Be02], Th. 10.1, there is a generalized
projective geometry with base point having (V +, V −) as associated Jordan pair; by
Theorem 7.3, this geometry is a Jordan geometry, and thus the theorem is proved
in this case.

If 2 is not invertible in K, we cannot use midpoints in order to define the inversions
Jxza , and hence we have to modify the construction: the set X and inversions of
the type Jxxa = (−1)ax = (−1)xa are defined by the same methods as in [Be02], but
inversions of the type Jxza for x 6= z have to be defined in a different way: we define
first the translation operators Lxza , essentially by using a “Jordan version” of the
exponential map for a Kantor-Koecher-Tits algebra, and then let

(10.1) Jxza := Lxza J
zz
a .

To be more specific, recall from [Be02] or [BeNe04] that a transversal pair (x, a) ∈ D2

corresponds to an Euler operator, i.e., to a 3-grading of the associated “Kantor-
Koecher-Tits algebra” g of the Jordan pair. The base point (o, o′) corresponds
to the 3-grading g = V + ⊕ h ⊕ V −, coming directly with the construction of g.
Thus, given a transversal pair (x, a), we may assume without loss of generality
that (x, a) = (o, o′) is the base point; then Ua is naturally identified with V +,
and hence the condition z ∈ Ua means that z ∈ V +. Defining the “exponential”
exp(z) ∈ Aut(g) as in [Lo95], we then let

(10.2) Lxza := exp(z)

(this depends on (x, a) since exp(z) is defined with respect to a fixed 3-grading),
and define Jxza by (10.1). Now one has to prove that the Jordan structure map thus
defined satisfies our axioms – this proof is quite lengthy, and essentially amounts to
reverse the computations leading to the “explicit formulae” given in the preceding
section; details are similar to the proof of [Be02], Th. 10.1, and will be omitted. �
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Appendix A. Symmetry actions

In this appendix, we recall the definition of some algebraic structures (torsors,
reflection spaces, symmetric spaces), and we define their “actions” on a set. Since a
group is defined by a binary law, there are just two kinds of actions (left and right
actions); a torsor is defined by a ternary law, and therefore we have three kinds of
actions: left, right and symmetry torsor actions.

A.1. Torsors.

Definition A.1. A torsor is a set G with a map G3 → G, (x, y, z) 7→ (xyz)
satisfying the following algebraic identities:

(PA) para-associative identity: ((xuv)wz) = (x(wuv)z) = (xu(vwz))).
(IP) idempotency identity (xxy) = y = (yxx).

The opposite torsor is G with (xyz)opp = (zyx), and a torsor is called commutative
if G = Gopp, i.e., it satisfies the identity

(C) (xyz) = (zyx).

Categorial notions are defined in the obvious way. In every torsor, left-, right- and
middle multiplication operators are the maps G→ G defined by equation (0.1).

Every group (G, e, ·) becomes a torsor by letting (xyz) = xy−1z, and every torsor
is obtained in this way: thus torsors are “groups with origin forgotten”.

Lemma A.2. In every torsor, the middle multiplication operators satisfy

(SA) mxy ◦muv ◦mrs = mmxr(v),msy(u),
(IP) mxz(x) = z, mxz(z) = x.

Conversely, a set G with a map m : G×G→ Bij(G), (x, z) 7→ mxz satisfying (SA)
and (IP), becomes a torsor by letting (xyz) := mxz(y). The operator mxz is then
invertible with inverse operator mzx.

Proof. Applied to an element z, (SA) reads: (x(u(rzs)v)y) = ((xvr)z(suy)). By
direct check, it is seen that this holds in any torsor. Conversely, using (SA) and
invoking (IP) twice, we get back (PA):
(xy(uvw)) = mx,muw(v)(y) = mmxy(y),muw(v)(y) = mxwmvymyu(y) = (x(vuy)w). �

Letting u = y and v = r in (SA), we get by (IP) the “Chasles relation”

(SA’) mxy ◦myv ◦mvs = mxs.

It can be shown that, conversely, (SA’) and (IP) imply (SA).

A.2. Symmetry torsor actions.

Definition A.3. Let (G, (− − −)) be a torsor and X a set. A symmetry torsor
action on X is a map of G×G into the set of bijections of X

G×G→ Bij(X), (x, z) 7→Mxz

such that the following identities hold

(STA1) Mxz ◦Mzx = idX
(STA2) Mxz ◦Muv ◦Mab = M(xva),(buz)

The symmetry torsor action is called commutative, or: an inversive action if
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(CTA) Mxz = Mzx

(equivalently, if all Mxz are of order two). According to the preceding lemma, every
torsor has a natural symmetry action on itself, given by Mxz = mxz, which we call
the regular symmetry action (of G on itself). Spaces with G-symmetry action form
a category in the obvious way, and subspaces and direct products can be defined in
this category.

As above, letting z = u and v = a in (STA2), we get a middle Chasles relation

(A.1) Mxz ◦Mza ◦Mab = Mxb.

However, it is not true that (A.1) and (STA1) imply (STA2).

Remark. These axioms have the following categorial interpretation: with the usual
torsor structure (fgh) = fg−1h on Bij(X), (STA2) can be rewritten in the form(

MxzMvuMab

)
= M(xva),(buz)

which means that M can be interpreted as a torsor homomorphism

M : G×Gopp → Bij(X), (x, z) 7→Mxz .

Remark. It is not true that a symmetry action of a commutative torsor is always
inversive. For instance, consider the following situation: if H is a subgroup of a
group G, then the regular action of G on itself induces a symmetry action H×H →
Bij(G) given by Mh,h′(g) = hg−1h′. This action is in general not commutative, even
if H as a group is commutative. Indeed, (Mxz)

2(u) = xz−1ux−1z may be a non-
trivial map on G, although it is trivial on H.

Remark. Assume, in the preceding situation, that G is a compact Lie group and H
a maximal torus. Then the elements Mx,x−1 with x2 ∈ Z(G) (in particular, those
with x2 = e) are involutive. On the other hand, when x normalizes H, they stabilize
H, and when x centralizes H, they act trivially on H. Taken together, we get the
following interpretation of the Weyl group, together with its set of generators of
order two: it is the torsor of middle multiplications stabilizing H and e, generated
by its involutive elements.

A.3. Left- and right torsor actions.

Lemma A.4 (Left- and right action). For a symmetry torsor action, the left trans-
lation Lxv ∈ Bij(X) defined by

Lxv := Mxz ◦Mzv

depends only on x, v ∈ G, but not on the choice of z. We have the identities

(LTA1) Lxx = idX ,
(LTA2) LxvLuw = L(xvu),w = Lx,(wuv).

Similarly, the right translation Rvx := Mzv ◦Mxz does not depend on z. Moreover,
for any symmetry torsor action, left and right translations commute:

Lxv ◦Ryw = Ryw ◦ Lxv,
and if the symmetry action is inversive, then left- and right action agree: Lxv = Rxv.
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Proof. All claims are checked by direct computations. We show that Lxv is well-
defined: indeed, the equality MxzMzv = MxwMwv is a direct consequence of (A.1)
and (STA1). In order to show that Lxv and Rwu commute, we may first reduce to
the case x = w, by observing that (LTA2) gives us the left Chasles relation

(A.2) Lxv ◦ Lvw = Lxw.

The relation LxvRxw = RxwLxv is now proved by making appropriate choices when
expressing the L- and R-operators by two M -operators. Finally, assuming that the
action is inversive, we get Lxv ◦Rvx = MxxMxvMxvMxx = idX . �

Corollary A.5 (Transplantation formula). Given a commutative symmetry torsor
action, we have, for all x, o, z ∈ G,

Mxz = MxoMooMzo = M(xoz),o = Mmxz(o),o.

Proof. MxoMooMzo = LxoMzo = LxoMoz = Mxz �

There are some other algebraic identities valid for every symmetry torsor action,
such as the intertwining relation between left and right actions

(A.3) Mxx ◦ Lvx ◦Mxx = R(xvx),x

which can also be written, for x = e and Mee(g) = j(g) = g−1, and Lg := Lg,e,

(A.4) j ◦ Lg = Rg−1 ◦ j.
Note also that identities for R-operators correspond to identities for L-operators,
with reversed composition in Bij(X) and reversed order of indices.

Definition A.6. A left torsor action of a torsor G on a set X is a map

G×G→ Bij(X), (x, y) 7→ Lxy

(if there is risk of confusion we write also Lx,y instead of Lxy) such that the identities
(LTA1) and (LTA2) from the preceding lemma hold. Right actions are defined
similarly. The regular left (right) action of G on itself is defined by the lemma.

Lemma A.7. Let G be a group with neutral element e and its usual torsor structure
(xyz) = xy−1z. Then we have an equivalence of categories between left group actions
of G and left torsor actions of G.

Proof. Given a left group action G×X → X, (g, x) 7→ Lg(x), we let

Lx,y := Lx(Ly)
−1.

Conversely, given a left torsor action, let Lg := Lg,e, and the claim follows by a
straightforward check of definitions. �

A.4. On the structure of symmetry actions. The preceding two lemmas say
that left- and right actions of torsors are nothing new, compared to usual group
actions, whereas symmetry actions are commutig left- and right actions together
with some operator j satisfying the intertwining relation (A.4). One may check
that, conversely, if we have commuting left and right actions of a group G on a set
X, together with a map of order two j : X → X satisfying the intertwining relation,
we can reconstruct a symmetry torsor action.
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Motivated by this obervation, one will look at the behaviour of G × G-orbits O
under j. If j(O) ∩ O is empty, then j is equivalent to the exchange map between
two copies of this orbit, exchanging “left” and “right”. In the other case, one will
have to distinguish whether j has a fixed point in O, or not. If there is a fixed point
p, the stabilizer H of p must be a normal subgroup, and we get a version of the
regular symmetry action on the quotient group G/H. The remaining case, where j
has no fixed point in O, seems to be more difficult to analyze.

A.5. Reflection spaces and symmetric spaces.

Definition A.8. A reflection space is a set together with a map s : M → Bij(M),
x 7→ sx such that the following identities hold:

(R1) (idempotency) sx(x) = x,
(R2) (inversivity) sx ◦ sx = idM ,
(R3) (distributivity) sxszsx = ssx(z).

Reflection spaces form a category. The subgroup G(M) of Aut(M,µ) generated by
all sxsy with (x, y) ∈ M2 is called the transvection group of M . If, moreover, M
is a smooth manifold (in the usual sense, or in the general algebraic framework of
Appendix B), then M is called a symmetric space if

(T) for every x ∈ M , the tangent map Tx(ss) of sx at its fixed point x is equal
to −idTxM .

Remark. Every torsor with sx(y) := mxx(y) = (xyx) becomes a reflection space,
and every Lie torsor with this law becomes a symmetric space (Theorem B.2).

A.6. Symmetry action of a reflection space.

Definition A.9. Let M be a reflection space and X a set. A symmetry action of
M on X is a map M → Bij(X), x 7→ Sx such that

(S1) Sx ◦ Sx = idX ,
(S2) SxSySx = Ssx(y).

For X = M , we have a symmetry action of M on itself given by Sx = sx, which we
call the regular symmetry action (of M on itself). As above, categorial notions are
defined.

Lemma A.10. If (x, z) 7→Mxz is a symmetry action of a torsor G, then we get a
symmetry action of G, seen as reflection space, by G→ Bij(X), x 7→ Sx := Mxx.

Proof. SxSySx = MxxMyyMxx = M(xyx),(xyx) = Msx(y),xx(y) = Ssx(y) �

In general, left or right actions of G do not give rise to symmetry actions of
the symmetric space G; and in general, symmetry actions of reflection spaces do
not give rise to actions of the group G(M) (cf. remarks in [Be00]: already on the
infinitesimal level this does not hold since the standard imbedding of a Lie triple
system is in general not functorial).

Definition A.11. Given a symmetry action M → Bij(X), x 7→ Sx, we define the
transvection operators by Qxy := SxSy ∈ Bij(X).
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These operators share some properties with the translation operators of left or
right torsor actions: we have an analog of the Chasles relation (A.2) QxyQyz = Qxz,
and Qxx = idX , whence (Qxy)

−1 = Qyx, but in contrast to left and right translations,
the composition of two transvections is in general no longer a transvection. Instead,
we have the fundamental formula

(A.5) QxyQzyQxy = SxSySzSySxSy = SSxSy(z)Sy = QQxy ,y .

Appendix B. Differential geometry of smooth laws

In this appendix, a commutative base ring K with unit 1 is fixed. The following
purely algebraic approach to differential geometry will be developed in full detail
in [BeS13]. Methods and proof strategies follow the patterns developped in [Be08,
BeS11], the difference being that here we do not assume that K carries a topology.

B.1. Weil algebras. A K-Weil algebra is an associative and commutative algebra

(B.1) A = K⊕ Å

where Å is a nilpotent ideal of A which is free and finite-dimensional as a K-
module. Weil algebras form a category K-Walg, where morphisms are algebra
homomorphisms preserving the decomposition. Note that projection A → K and
injection K→ A are morphisms. Main examples are the k-th order jet rings

(B.2) JkK := K[X]/(Xk+1) = K[δ], (δk+1 = 0),

and for k = 1 we get the tangent ring of K (or: ring of dual numbers)

(B.3) TK := J1K = K[X]/(X2) = K⊕ εK (ε2 = 0).

Given two Weil algebras A = K⊕ Å, B = K⊕ B̊, their tensor product and Whitney
sum are again Weil algebras:

(B.4) A⊗K A = K⊕ (Å⊕ B̊⊕ Å⊗ B̊), A⊕K B := K⊕ (Å⊕ B̊).

B.2. Extended domains. For any K-module V and Weil algebra A, the scalar
extension VA = V ⊗KA has a canonical decomposition VA = V ⊗VÅ, with projection
π : VA → V and injection V → VA. Therefore, for any set U ⊂ V , we may define
the extended domain

(B.5) TAU := UA := π−1(U) = U × VÅ ⊂ VA.

In this way every set U ⊂ V gives rise to a functor

(B.6) U : K-Walg→ set, A 7→ U(A) := UA .

B.3. Smooth laws. A K-smooth law between a set U ⊂ V and U ′ ⊂ W is a
morphism (= natural transformation) of functors

f : U → U ′.

In other words, for any K-Weil algebra A, we have a map

fA : UA → U ′A,
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varying functorially with A, in the sense that, if φ : B → A is a morphism of Weil
algebras, then the diagram

UA → U ′A
↑ ↑
UB → U ′B

commutes. For instance, every polynomial defines a smooth law: if f : V → W
is a polynomial, then its algebraic extensions fA : VA → WA (which exist for any
K-algebra, not only for Weil algebras) define a family satisfying the requirements
above. If f is K-linear, then fA is simply its A-linear extension.

B.4. A-differentials. Given a smooth law f , by functoriality we get from the pro-

jection A→ K that fA is fibered over f = fK, that is, for all (x, v) ∈ TAU ,

(B.7) fA(x, v) =
(
f(x), dAf(x)v),

with a map dAf(x) : VÅ → VÅ, called the A-differential of f at x. In general, this
map is not linear; it is linear if A = TK, and in this case we just write df(x), called
“the” differential of f at x (see below, B.7).

B.5. Smooth K-manifolds and A-tangent bundle. Let M be a set and V a
K-module, called the model space. An atlas of M , with model space V , is a collection

A = (φi, Ui)i∈I ,

where I is an index set, (Ui)i∈I a covering of M by subsets Ui ⊂ M , and φi : Ui →
Vi ⊂ V a bijection of Ui onto some subset Vi of V . The bijections

φi,j := φi ◦ φ−1
j : Vji → Vij

where Vij = φi(Uj ∩Ui), are called transition functions. The data M := (M,A) are
called a smooth manifold over K, if all transition functions are smooth laws over K.
Morphisms are again called smooth laws, f : M → N , defined to be given locally,
in each chart, by smooth laws in the above sense.

Theorem B.1. Assume (M,A) is a smooth manifold over K and modelled on V .
Then the data TAA = ((φi)A, (Ui)A)i∈I define an atlas, modelled on VA, of a set MA,
such that (MA, T

AA) is a smooth manifold over A. It depends functorially on A.

Proof. See [Be13], Theorem 3.2 and its proof (where only the formal properties are
used, and the smooth setting serves to define the framework): the main point is
that all data are local, and the set M can be recovered from the local data as the
quotient M = S/ ∼ where S = {(i, x) ∈ I × V | x ∈ Vi} with equivalence relation
(i, x) ∼ (j, y) iff y = φij(x). Applying TA to these local data gives local data of the
same kind, but defined over A. �

We call TAM := MA the A-tangent bundle of M , and the functor M : A 7→ TAM
a smooth manifold law. Smooth laws f than have well-defined tangent maps TAf :

TAM → TAN . The term “bundle” is justified by the fact that projection A → K
and injection K→ A induce maps

(B.8) π : TAM →M, z : M → TAM,

and tangent maps are fiber preserving: π ◦ TAf = f ◦ π.
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B.6. Lie groups and symmetric spaces. As usual, Lie groups are defined as
groups in the category of smooth manifold laws, and symmetric spaces are smooth
reflection space laws satisfying Axiom (T) from Definition A.8.

Theorem B.2. Every Lie group G becomes a symmetric space when equipped with
the law ss(y) = xy−1x. The Weil bundle TAG of a Lie group is a Lie group, and
the Weil bundle TAM of a symmetric space M is again a symmetric space.

Proof. One shows as usual that the tangent map of group multiplication at the
origin e is vector addition, and hence the tangent map of inversion at the origin
is −idTeG, and it follows that G satisfies the axioms of a symmetric space. Since
the axioms of a group or of a reflection space can be expressed by commutative
diagrams involving only the structure maps and natural maps such as the diagonal
imbedding (cf. [Lo69] for the case of symmetric spaces), applying the functor TA

yields structures of the same type, over A. Therefore TAG is a Lie group over A,
and we get in fact a Lie group law G : A 7→ TAG; similarly for reflection spaces.
The same argument applies also if we write the fourth axiom (T) of a symmetric
space in the form of the “commutative diagram”

Tπ(u)(sπ(u))u = (−1)TM(u),

where (−1)TM : TM → TM is action by the scalar −1 in tangent spaces; this
map is induced by the automorphism TK → TK, a + εb 7→ a − εb. We then
have a natural identification TA(−1)TM = (−1)T (TAM), induced by the isomorphism

TTAK = TK ⊗K A = A ⊗K TK = TATK. (The proof given in [Be08], Proposition
5.6, is different, relying again on “midpoints”, since in loc. cit. we had not yet the
full functioriality of Weil functors at disposition.) �

The same principle applies to other kinds of “smooth geometries”.

B.7. Vector algebras and vector bundles. A Weil algebra is called a vector
algebra if Å carries the zero product (as in the example of the tangent ring TK =
K[ε]). A direct check shows that in this (and only in this) case the map

(B.9) φ : A⊕K A→ A, (x, a, b) 7→ (x, a+ b)

is an algebra homomomorphism. For every K-module V , it induces a map Φ :
VA⊕KA → VA, given by the same kind of formula. Note that VA⊕KA = V ⊕ VÅ ⊕ VÅ,
and

UA⊕KA = U × VÅ × VÅ.
Any smooth law defined on U ⊂ V is fiber preserving (see above, B.4), and from
functoriality Φ ◦ fA⊕KA = fA ◦ Φ, we get additivity of the fiber map:

dAf(x)(v + w) = dAf(x)v + dAf(x)w.

In a similar way, using the algebra endomorphism A → A, (x, a) 7→ (x, ra) for
r ∈ K, we see that the fiber map is fiberwise homogeneous of degree 1. Summing
up, if A is a vector algebra, then TAM carries a well-defined vector bundle structure
over M , and the tangent map TAf : TAU → TAU ′ is fiberwise linear. Locally, in a
bundle chart, the linear structure is given by the linear structure of VÅ. Moreover,
these arguments imply that TA⊕KAM is the Whitney sum of vector bundles TAM×M
TAM . For A = TK = K[ε], we get the tangent bundle.
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B.8. Second and higher order tangent bundles. The iterated tangent rings are
defined by induction: T kK = T (T k−1K); they are Weil algebras, giving rise to the
iterated tangent bundles T kM . We use notation similar as in [Be08], in particular

(B.10) TTK = (K[ε1])[ε2] = K⊕ ε1K⊕ ε2K⊕ ε1ε2K .

There is a natural action of the permutation group Sk by automorphisms on T kK,
and by functoriality also on T kM . For k = 2, the action of the transposition (12)
defines the canonical flip of TTM . The vertical ideal ε1ε2K is the kernel of the
homomorphism TTK → TK ⊕K TK, and the vertical bundle is the corresponding
subbundle of TTM denoted by ε1ε2TM ; it is canonically isomorphic to TM .

B.9. Vector fields and infinitesimal automorphisms. There is a one-to-one
correspondence between A-vector fields on M (smooth laws X : M → TAM such
that π◦X = id) and infinitesimal automorphisms of M (A-smooth laws ξ : TAM →
TAM such that π◦ξ = π). The proof is essentially the same as in [Be08], Chapter 28:

given ξ : TAM → TAM , we obtain a vector field ξ ◦ z : M → TAM , and conversely,
given X : M → TAM , consider TAX : TAM → TA(TAM) = TA⊗AM ; we compose
with the canonical map TA⊗AM → TAM induced by the ring homomorphism

A⊗ A→ A, (x, u)⊗ (y, v) 7→ (xy, xv + uy + uv)

to get a map X̃ : TAM → TAM . If A = TK, then this map is described in a chart
domain by (x, u) 7→ (x, u + X(x)) (in the general case an explicit description is
much more complicated – see [Be08], Thm. 28.3 for the case A = T kK), and in this
case the group law of addition on the space X(M) of vector fields (that is, pointwise
addition) corresponds to composition of infinitesimal automorphisms.

Theorem B.3 (Lie bracket of vector fields). There is a canonical structure of K-Lie
algebra on the space of vector fields X(M); the Lie bracket [X, Y ]alg of two vector
fields X, Y ∈ X(M) can be defined in two equivalent ways: in a conceptual way,
it can be described as a group commutator [g, h]group = ghg−1h−1 in the group of
infinitesimal automorphisms of TTM over M :

(B.11) [T ε̃1X,T ε̃2Y ]group = ε1ε2[X, Y ]alg

Here, one extends X : M → Tε1M to an infinitesimal automorphism of Tε1M and
then take its tangent map with respect to ε2; similarly for Y , but with exchanged rôles
of ε1, ε2; then take their group commutator; this gives in infinitesimal automorphism
of TTM which stabilizes the vertical bundle ε1ε2TM and acts there by translation
by a vector field Z which is the Lie bracket [X, Y ]alg of X and Y . Less conceptually,
the bracket may be defined by the following chart description in any chart of M :

(B.12) [X, Y ](x) = dX(x)Y (x)− dY (x)X(x).

Proof. [Be08], Thm. 14.4; see also Chapter 24 of [Be08]. �

References

[Ba73] F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer Grundlehren
Band 96, Springer, Berlin 1973.

[Be00] W. Bertram, The geometry of Jordan- and Lie structures, Springer LNM 1754, Springer,
Berlin 2000.



46 WOLFGANG BERTRAM

[Be02] W. Bertram, Generalized projective geometries: general theory and equivalence with
Jordan structures, Adv. Geom. 2 (2002), 329–369 (electronic version: preprint 90 on Jor-
dan preprint server http://molle.fernuni-hagen.de/~loos/jordan/index.html).

[Be03] W. Bertram, The geometry of null systems, Jordan algebras and von Staudt’s Theorem,
Ann. Inst. Fourier 53 (2003) fasc. 1, 193–225 (preprint 113, Jordan server).

[Be04] W. Bertram, From linear algebra via affine algebra to projective algebra, Linear Algebra
and its Applications 378 (2004), 109–134 (preprint 89, Jordan server).

[Be08] W. Bertram, Differential Geometry, Lie Groups and Symmetric Spaces over General
Base Fields and Rings. Mem. AMS 192, no.900 (2008), arXiv http://arxiv.org/abs/

math/0502168.
[Be08b] W. Bertram, Homotopes and conformal deformations of symmetric spaces. J. Lie Theory

18 (2008), 301–333; arXiv http://arxiv.org/abs/math.RA/0606449.
[Be13] W. Bertram, Simplicial differential calculus, divided differences, and construction of

Weil functors. Forum Mathematicum 25 (1) (2013), 19-47. arxiv http://arxiv.org/

abs/1009.2354.
[BeKi09a] W. Bertram and M. Kinyon, Associative Geometries. I: Torsors, Linear Relations and

Grassmannians, J. Lie Theory 20 (2) (2010), 215-252. arXiv http://arxiv.org/abs/

0903.5441.
[BeKi09b] W. Bertram and M. Kinyon, Associative Geometries. II: Involutions and classical

groups, J. Lie Theory 20 (2) (2010), 253-282. arXiv http://arxiv.org/abs/0909.

4438.
[BeKi12] W. Bertram and M. Kinyon, Torsors and ternary Moufang loops arising in projective

geometry, arxiv http://arxiv.org/abs/math/1206.2222.
[BeL08] W. Bertram and H. Loewe, Inner ideals and intrinsic subspaces, Adv. in Geometry 8

(2008), 53–85; arXiv http://arxiv.org/abs/math/0606448.
[BeNe04] W. Bertram and K.-H. Neeb, Projective completions of Jordan pairs. Part I: The gener-

alized projective geometry of a Lie algebra, J. of Algebra 227 , 2 (2004), 474–519; arXiv
http://arxiv.org/abs/math/0306272.

[BeNe05] W. Bertram and K.-H. Neeb, Projective completions of Jordan pairs. II: Manifold
structures and symmetric spaces, Geom. Dedicata 112 (2005), 73 – 113; arXiv http:

//arxiv.org/abs/math/0401236.
[BeS11] W. Bertram and A. Souvay, A general approach to Weil functors, arxiv http://arxiv.

org/abs/1111.2463.
[BeS13] W. Bertram and A. Souvay, Smooth laws, in preparation.
[Bue] Buekenhout, F. (ed.), Hanbook of Incidence Geometry – Buildings and Foundations,

Elsevier, 1995.
[KMS93] I. Kolar, P. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer

1993.
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