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Introduction

Let us compare two aspects of the vast mathematical topic “links between ge-
ometry and algebra”: on the one hand, the Lie functor establishes a close rela-
tion between Lie groups (geometric side) and Lie algebras (algebraic side); this
is generalized by a correspondence between symmetric spaces and Lie triple
systems (see [Lo69]). On the other hand, the philosophy of Non-Commutative
Geometry generalizes the relation between usual, geometric point-spaces M
(e.g., manifolds) and the commutative and associative algebra Reg(M, K) of
“regular” (e.g., bounded, smooth, algebraic,..., according to the context) K-
valued functions on M , where K = R or C, by replacing the algebra Reg(M, K)
by more general, possibly non-commutative algebras A. The interaction be-
tween these two aspects seems to be rather weak; indeed, in some sense they
are “orthogonal” to each other: first, the classical setting of Lie’s third the-
orem is finite-dimensional, whereas the algebras A of commutative or non-
commutative geometry are typically infinite dimensional; second, and more
importantly, taking a commutative and associative algebra as input, we ob-
tain as Lie bracket [x, y] = xy−yx = 0, and hence (if we forget the associative
structure and retain only the Lie bracket) we are left with constructing a Lie
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group with zero Lie bracket. But this is not very interesting: it does not even
capture the specific information encoded in “commutative geometries”.1

This remark suggests that, if one looks for a link between the two aspects
just mentioned, it should be interesting to ask for an analog of the Lie func-
tor for a class of algebras that contains faithfully the class of commutative
associative algebras, but rather sacrifices associativity than commutativity.
At this point let us note that the algebras A of non-commutative geometry
are of course always supposed to be associative, so that the term “associative
geometry” might be more appropriate than “non-commutative geometry”.
Indeed, behind the garden of associative algebras starts the realm of general
algebras, generically neither associative nor commutative, and, for the time
being, nobody has an idea of what their “geometric interpretation” might
be. Fortunately, two offsprings of associative algebras grow not too far away
behind the garden walls: Lie algebras right on the other side (the branches
reach over the wall so abundantly that some people even consider them as
still belonging to the garden), and Jordan algebras a bit further. Let us just
recall that the former are typically obtained by skew-symmetrizing an asso-
ciative algebra, [x, y] = xy − yx, whereas the latter are typically obtained by
symmetrizing them, x • y = 1

2 (xy + yx) (the factor 1
2 being conventional, in

order to obtain the same powers xk as in the associative algebra).

So let us look at Jordan algebras – their advantage being that the class of
commutative associative algebras is faithfully embedded. In this survey paper
we will explain their geometric interpretation via certain generalized projec-
tive geometries, emphasizing that this interpretation really combines both
aspects mentioned above. Of course, it is then important to include the case
of infinite-dimensional algebras, and to treat them in essentially the same way
as finite-dimensional ones. This is best done in a purely algebraic framework,
leaving aside all questions of topologizing our algebras and geometric spaces.
Of course, such questions form an interesting topic for the further development
of the theory: in a very general setting (topological algebraic structures over
general topological fields or rings) basic results are given in [BeNe05], and cer-
tainly many results from the more specific setting of Jordan operator algebras
(Banach-Jordan structures over K = R or C; see [HOS84]) admit interesting
geometric interpretations in our framework. Beyond the Banach-setting, it
should be interesting to develop a theory of locally convex topological Jordan
structures and their geometries, taking up the associative theory (cf. [Bil04]).

The general construction for Jordan algebras (and for other members of the
family of Jordan algebraic structures, namely Jordan pairs and Jordan triple
systems, which in some sense are easier to understand than Jordan algebras;
cf. Section 1) being explained in the main text (Section 2 and Section 3), let us

1 Of course, this does not exclude that other ways of associating Lie groups to
function algebras are interesting, for example by looking at their derivations and
automorphisms; but our point is precisely that such constructions need more
input than the trivial Lie bracket on the algebra of functions.
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here just look at the special case of “commutative geometry”, i.e., the case of
the commutative and associative algebra A = Reg(M, K) of “regular K-valued
functions” on a geometric space M (here, K is a commutative field with unit 1;
in the main text we will allow also commutative rings with 1). Looking at A as
a Jordan algebra, we associate to it the space X := Reg(M, KP1) of “regular
functions from M into the projective line KP1”. Of course, X is no longer
an algebra or a vector space; however, we can recover all these structures
if we want: we call two functions f, g ∈ X “transversal”, and write f>g, if
f(p) 6= g(p) for all points p ∈ M . Now choose three functions f0, f1, f∞ ∈ X
that are mutually transversal. For each point p ∈ M , the value f∞(p) singles
out an “affine gauge” (by taking f∞(p) as point at infinity in the projective
line KP1 and looking at the affine line KP1 \ {f∞(p)}); then f0(p) singles
out a “linear gauge” (origin in the affine line) and f1(p) a “unit gauge” (unit
element in the vector line). Obviously, any such choice of f0, f1, f∞ leads to
an identification of the set (f∞)> of all functions that are transversal to f∞
with the usual algebra A of regular functions on M . In other words, A and
(X ; f0, f1, f∞) carry the same information, and thus we see that the encoding
via A depends on various choices, from which we are freed by looking instead
at the “geometric space” X . It thus becomes evident that A really is a sort of
“tangent algebra” of the geometric (“non-flat”) space X at the point f0, in a
similar way as the Lie algebra of a Lie group reflects its tangent structure at
the origin.

This way of looking at ordinary “commutative geometry” leads to gener-
alizations that are different from non-commutative geometry (in the sense of
A. Connes) but still have much in common with it. For instance, both the-
ories have concepts of “states”, i.e., a notion that, in the commutative case,
amounts to recover the point space M from the algebra of regular functions.
Whereas in case of non-commutative geometry this concept relies heavily on
positivity (and hence on the ordered structure of the base field R), the cor-
responding concept for generalized projective geometries is purely geometric
and closely related to the notion of inner ideals in Jordan theory (Section
4). There are many interesting open problems related to these items, some of
them mentioned in Section 4.

Summing up, it seems that the topic of geometrizing Jordan structures,
incorporating both ideas from classical Lie theory and basic ideas from as-
sociative geometry, is well suited for opening the problem of “general non-
associative geometry”, i.e., the problem of finding geometries corresponding
to more general non-associative algebraic structures.

Acknowledgements. This paper is partly based on notes of a series of lec-
tures given at the university of Metz in April 2007, and I would like to thank
Said Benayadi for inviting me at this occasion.

Notation: Throughout, K is a commutative base ring with unit 1 and such
that 2 and 3 are invertible in K.
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1 Jordan pairs and graded Lie algebras

1.1 Z/(2)-graded Lie algebras and Lie triple systems

Let (Γ, +) be an abelian group. A Lie algebra g over K is called Γ -graded if
it is of the form

g =
⊕

n∈Γ

gn, with [gm, gn] ⊂ gn+m.

Let us consider the example Γ = Z/(2). Here, g = g0 ⊕ g1, with a subalgebra
g0 and a subspace g1 which is stable under g0 and such that [g1, g1] ⊂ g0.
It is then easily seen that the linear map σ : g → g which is 1 on g0 and
−1 on g1 is an involution of g (automorphism of order 2). Conversely, every
involution gives rise to Z/(2)-grading of g, and hence such gradings correspond
bijectively to symmetric Lie algebras (g, σ), i.e., to Lie algebras g together
with an automorphism σ of order 2. Then g1 (the −1-eigenspace of σ) is
stable under taking triple Lie brackets [[x, y], z]. This leads to the notion of
Lie triple system:

Definition 1.1. A Lie triple system (LTS) is a K-module q together with a
trilinear map

q × q × q → q, (X, Y, Z) 7→ [X, Y, Z],

or, equivalently, with a bilinear map

R : q × q → End(q), (X, Y ) 7→ R(X, Y ) =: [X, Y, ·],

such that

(LT1) R(X, X) = 0
(LT2) R(X, Y )Z + R(Y, Z)X + R(Z, Z)Y = 0 (the Jacobi identity)
(LT3) the endomorphism D := R(X, Y ) is a derivation of the trilinear prod-

uct, i.e.,

D[U, V, W ] = [DU, V, W ] + [U, DV, W ] + [U, V, DW ].

If g is a Z/(2)-graded Lie algebra, then g1 with [X, Y, Z] := [[X, Y ], Z] becomes
an LTS, and every LTS arises in this way since one may reconstruct a Lie
algebra from an LTS via the standard imbedding (see [Lo69]): let h ⊂ Der(q)
the subalgebra of derivations of the LTS q spanned by all operators R(X, Y ),
X, Y ∈ q, and define a bracket on g := q ⊕ h by

[(X, D), (Y, E)] :=
(

DY − EX, [D, E] − R(X, Y )
)

.

One readily checks that g is a Z/(2)-graded Lie algebra. As a side remark,
one may note that this construction (the standard imbedding) is in general not
functorial – see [Sm05] for a discussion of this topic.
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1.2 3-graded Lie algebras and Jordan pairs

A Lie algebra is called 2n + 1-graded if it is Z-graded, with gj = 0 if j /∈
{−n,−n + 1, . . . , n}. The linear map D : g → g with Dx = jx for x ∈ gj is
then a derivation of g; if it is an inner derivation, D = ad(E), the element
E ∈ g is called an Euler element.

To any Z-graded algebra one may associate a Z/(2)-grading g = geven ⊕
godd, by putting together all homogeneous parts with even, resp. odd index.
In the sequel we are mainly interested in 3-graded and 5-graded Lie algebras;
in both cases, godd = g1 ⊕ g−1. We then let V ± := g±1 and define trilinear
maps by

T± : V ± × V ∓ × V ± → V ±, (x, y, z) 7→ [[x, y], z].

The maps T± satisfy the identity

(LJP2) T±(u, v, T±(x, y, z)) = T±(T±(u, v, x), y, z)−T±(x, T∓(v, u, y), z)+
T±(x, y, T±(u, v, z))

Indeed, this is just another version of the identity (LT3), reflecting the fact
that ad[u, v] is a derivation of g respecting the grading since [u, v] ∈ g0. In the
3-graded case, we have moreover, for all x, z ∈ V ±, y ∈ V ∓:

(LJP1) T±(x, y, z) = T±(z, y, x)

This follows from the fact that g1 and g−1 are abelian, and so by the Jacobi
identity [[x, y], z] − [[z, y], x] = [[z, x], y] = 0.

Definition 1.2. A pair of K-modules (V +, V −) together with trilinear maps
T± : V ± × V ∓ × V ± → V ± is called a (linear) Jordan pair if (LJP1) and
(LJP2) hold. (The term “linear” refers to the fact that the identities (LJP1)
and (LJP2) are linear in each of their variables, whereas the definition given
in [Lo75], which is valid also in case that 2 or 3 are not invertible in K, is
based on identities that are quadratic in some of their variables.)

Every linear Jordan pair arises by the construction just described: if
(V +, V −) is a linear Jordan pair, let q := V + ⊕ V − and define a trilinear
map T̃ : q3 → q via

T̃
(

(x, x′), (y, y′), (z, z′)
)

:=
(

T +(x, y′, z), T−(x′, y, z′)
)

.

Then the map T̃ satisfies the same identities as (T +, T−), with T + and T−

both replaced by T̃ (in other words, (q, T̃ ) is a Jordan triple system, see below).
Now we define a trilinear bracket q3 → q by

[

(x, x′), (y, y′), (z, z′)
]

:= T̃ ((x, x′), (y, y′), (z, z′)) − T̃ ((y, y′), (x, x′), (z, z′)).
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By a direct calculation (cf. Lemma 1.4 below), one checks that q with this
bracket is a Lie triple system, and its standard imbedding g = q ⊕ h with
g±1 = V ± and g0 = h, is a 3-graded Lie algebra. Without loss of generality
we may assume that g contains an Euler element E: in fact, the endomorphism
E : q → q which is 1 on V + and −1 on V −, is a derivation of q commuting
with h, and hence we may replace h by h + KE in the construction of the
standard embedding.

For 5-graded Lie algebras, the identity (LJP1) has to be replaced by an-
other, more complicated identity, which leads to the notion of Kantor pair,
see [AF99]. As for Jordan pairs, Kantor pairs give rise to Lie triple systems
of the form q = V + ⊕ V −, where now the standard imbedding leads back to
a 5-graded Lie algebra.

1.3 Involutive Z-graded Lie algebras

An involution of a Z-graded Lie algebra is an automorphism θ of order 2 such
that θ(gj) = g−j for j ∈ Z. If g is 3- or 5-graded, we let V := g1 and define

T : V × V × V → V, (X, Y, Z) 7→ [[X, θY ], Z].

Then T satisfies the identity (LJT2) obtained from (LJP2) by omitting the
indices ±, and if g is 3-graded, we have moreover the analog of (LJP1).

Definition 1.3. A K-module together V with a trilinear map T : V 3 → V
satisfying the identities (JP1) and (JP2) obtained from (LJP1) and (LJP2)
by omitting indices is called a (linear) Jordan triple system (JTS).

Every linear Jordan triple system arises by the construction just described:
just let V + := V − := V and T± := T ; then (V +, V −) is a Jordan pair carrying
an involution (=isomorphism τ from (V +, V −) onto the Jordan pair (V −, V +),
namely τ(x, x′) = (x′, x)). Let g be the 3-graded Lie algebra associated to this
Jordan pair; then the involution τ of the Jordan pair induces an involution θ
of g. By the way, these arguments show that Jordan triple systems are nothing
but Jordan pairs with involution (cf. [Lo75]). For any JTS (V, T ), the Jordan
pair (V +, V −) = (V, V ) with T± = T is called the underlying Jordan pair.

The Lie algebra g now carries two automorphisms of order 2, namely θ
and the automorphism σ corresponding to the Z/(2)-grading g = geven⊕godd.
These two automorphisms commute. In particular, σ restricts to the θ-fixed
subalgebra gθ, with −1-eigenspace being {X + θ(X)|X ∈ g1}. The LTS-
structure of this space is described by the following lemma.

Lemma 1.4. (The Jordan-Lie functor.) If T is a JTS on V , then

[X, Y, Z] = T (X, Y, Z)− T (Y, X, Z)

defines a LTS on V .



Jordan structures and non-associative geometry 7

Proof. The proof of (LT1) is trivial, and (LT2) follows easily from the sym-
metry of T in the outer variables. In order to prove (LT3), we define the
endomorphism R(X, Y ) := T (X, Y, ·) − T (Y, X, ·) of V . Then R(X, Y ) is a
derivation of the trilinear map T , as follows from the second defining identity
(JT2). But every derivation of T is also a derivation of R, since R is simply
defined by skew-symmetrization of T in the first two variables.

The lemma defines a functor from the category of JTS to the category of
LTS over K, which we call the Jordan-Lie functor. In general, it is neither
injective nor surjective; all the more surprising is the fact that, in the real,
simple and finite-dimensional case, the Jordan-Lie functor is not too far from
setting up a one-to-one correspondence (classification results due to E. Neher,
cf. tables given in [Be00]).

1.4 The link with Jordan algebras

Whereas all results from the preceding sections are naturally and easily un-
derstood from the point of view of Lie theory, the results presented next are
“genuinely Jordan theoretic” – by this we mean that proofs by direct calcu-
lation in 3-graded Lie algebras are much less straightforward; the reader may
try to do so, in order to better appreciate the examples to be given in the
next section.

In the following, g is a 3-graded Lie algebra, with associated Jordan pair
(V +, V −) = (g1, g−1). For x ∈ V −, we define a K-linear map

Q−(x) : V + → V −, y 7→ Q−(x)y :=
1

2
T−(x, y, x) = −

1

2
[x, [x, y]].

In the same way Q+(y) for y ∈ V + is defined. Then the following hold:

(1) The Fundamental Formula. For all x ∈ V −, y ∈ V +,

Q−(Q−(x)y) = Q−(x)Q+(y)Q−(x).

(2) Meyberg’s Theorem. Fix a ∈ V −. Then Va := V + with product

x •a y :=
1

2
T +(x, a, y)

is a Jordan algebra (called the a-homotope algebra). Recall (see, e.g., [McC04]),
that a (linear) Jordan algebra is a K-module J with a bilinear and commuta-
tive product x • y such that the identity

(J2) x • (x2 • y) = x2 • (x • y)

holds.

(3) Invertible elements and unital Jordan algebras. An element a ∈ V −

is called invertible in (V +, V −) if the the operator Q−(a) : V + → V − is
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invertible. The element a ∈ V − is invertible in (V +, V −) if, and only if, the
Jordan algebra Va described in the preceding point admits a unit element; this
unit element is then a] := (Q(a))−1(a). Moreover, the Jordan pair (V +, V −)
can then be recovered from the Jordan algebra (V, •) = (Va, •a) as follows: let
V + := V − := V as K-modules and let T : V 3 → V ,

T (x, y, z) := (x • y) • z − y • (x • z) + x • (y • z).

Then (V, T ) is a Jordan triple system, and its underlying Jordan pair (V +, V −)
is the one we started with.

1.5 Some examples

(1) Jordan pairs of rectangular matrices. Let A and B two K-modules
and W := A ⊕ B. Let I : W → W be the linear map that is 1 on A and −1
on B. Then the Lie algebra g := gl

K
(W ) is 3-graded, with, for i = 1, 0,−1,

gj = {X ∈ g| [I, X ] = 2jX}. In an obvious matrix notation, this corresponds
to describing g by 2 × 2-matrices, g0 as diagonal and g1 as upper and g−1 as
lower triangular matrices:

(

g0 V +

V − g0

)

Therefore
(V +, V −) = (HomK(A, B), HomK(B, A))

carries the structure of a linear Jordan pair. The Jordan pair structure is given
by

T±(X, Y, Z) = XY Z + ZY X.

In fact, this is proved by the following calculation (using matrix notation for
elements of g):

[

[

(

0 X
0 0

)

,

(

0 0
Y 0

)

]

,

(

0 Z
0 0

)

]

=
[

(

XY 0
0 −Y X

)

,

(

0 Z
0 0

)

]

=

(

0 XY Z + ZY X
0 0

)

.

The proof of the Fundamental Formula for this Jordan pair is easy since we
may calculate in the associative algebra HomK(W, W ), where Q(x) = `x◦rx is
simply composition of left and of right translation by x. Similarly, the proof of
Meyberg’s Theorem becomes an easy exercise: for any a ∈ HomK(W, W ), the
product (x, y) 7→ xay is again an associative product, and by symmetrizing
and restricting to V +, if a ∈ V −, we get the Jordan algebra •a.

In general, the Jordan pair (V +, V −) does not contain invertible elements.
For instance, if K is a field and A and B are not isomorphic as vector spaces,
then it is easily seen that Q−(x) is never bijective.

Finally, it is clear that, if A and B are isomorphic as K-modules, and fixing
such an isomorphism in order to identify A and B, an element a ∈ V + = A =
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V − is invertible if it is invertible in the usual sense in Hom(A, A), and then
•a has a−1 as unit element. Note that, in particular, this happens for the Lie
algebra gl(2, K), with V + ∼= V − ∼= K, where x •a y = xay = yax.

(2) Function spaces. As for any algebraic structure defined by identities,
spaces of functions with values in such a structure, equipped with the “point-
wise product”, form again a structure of the given type. In our case, if M
is a set and (V +, V −) a Jordan pair, then (Fun(M, V +), Fun(M, V −)) is a
again a Jordan pair, and similarly for Jordan triple systems and Jordan al-
gebras. Moreover, if (V +, V −) corresponds to a 3-graded Lie algebra g, then
the function space corresponds to the 3-graded Lie algebra Fun(M, g). In par-
ticular, pairs of scalar functions (Fun(M, K), Fun(M, K)) form a Jordan pair
with pointwise product

(T (f, g, h))(p) = 2f(p) g(p)h(p).

Under suitable assumptions, “regular” functions (continuous, smooth, alge-
braic, . . .) will form subpairs.

(3) The classical examples. Besides rectangular matrices, these include:

• full asociative algebras A. Here (V +, V −) = (A, A), and g ⊂ gl(2, A) is
the subalgebra generated by the strict upper triangular and strict lower
triangular matrices;

• Hermitian elements of an involutive associative algebra (A, ∗). Here,
(V +, V −) = (Ah, Ah) is the fixed space of ∗, and g is the symplectic
algebra of (A, ∗) (cf. [BeNe04], Section 8.2). Note that symmetric and
Hermitian matrices are a special case;

• skew-Hermitian elements of an involutive associative algebra (A, ∗): similar
as above, replacing ∗ by its negative. As above, Jordan pairs of skew-
symmetric or skew-Hermitian matrices are a special case;

• conformal geometries (or “spin factors”). Here, V + = V − = V is a K-
module with a non-degenerate symmetric bilinear form (·|·) : V × V → K

and trilinear map

T (x, y, z) = (x|z)y − (x|y)z − (z|y)x .

Then g is the orthogonal Lie algebra of the quadratic form on K⊕ V ⊕K

given by
β((r, v, s), (r, v, s)) = rs + (v|v) .

There are also exceptional Jordan systems, namely octonionic 1× 2-matrices,
resp. the Hermitian octonionic 3× 3-matrices, corresponding to 3-gradings of
the exceptional Lie algebras of type E6, resp. E7.
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2 The generalized projective geometry of a Jordan pair

2.1 The construction

The following construction of a pair (X+,X−) of homogeneous spaces asso-
ciated to a Jordan pair (V +, V −) is due to J.R. Faulkner and O. Loos (see
[Lo95]): starting with a (linear) Jordan pair (V +, V −), let g be the 3-graded
Lie algebra g constructed in Section 1.2; as explained there, we may assume
that g contains an Euler operator E, i.e., an element such that [E, X ] = iX
for X ∈ gi.

Next we define two abelian groups U± = exp(g±1) by observing that, for
X ∈ g±1, the operator ad(X) : g → g is 3-step nilpotent, and that

exp(X) := ead(X) = id + ad(X) +
1

2
ad(X)2

is an automorphism of g (for this we need that 2 and 3 are invertible in K).
Since g±1 are abelian, U± are abelian subgroups of Aut(g). The maps exp± :
g± → Aut(g) are injective (here we use our Euler operator: exp±(X) = id
implies exp±(X)E = E ± X = E, whence X = 0). Thus U± is isomorphic
to (V ±, +). The elementary projective group associated to the Jordan pair
(V +, V −) is the subgroup

G := PE(V +, V −) := 〈U+, U−〉

of Aut(g) generated by U+ and U−. Let H be the subgroup of G stabilizing
the grading (i.e., commuting with ad(E)); then U+ and U− are normalized
by H , and the groups P± generated by H and U± are semidirect products:

P± := 〈H, U±〉 ∼= H o V ±.

Finally, we define two homogeneous spaces X± := G/P∓ with base points
o± = e/P∓ (e being the unit element of G).

The pair of “geometric spaces” (X+,X−) is called the generalized pro-
jective geometry associated to (V +, V −). It is indeed the geometric object
associated to the Jordan pair (V +, V −), in a similar way as a Lie group is the
geometric object associated to a Lie algebra. Let us explain this briefly.

2.2 Generalized projective geometries

The spaces X± being defined as above, the direct product X+×X− is equipped
with a transversality relation: call (x, α) ∈ X+ × X− transversal, and write
x>α, if they are conjugate under G to the base point (o+, o−). It is easy to
describe the set α> := {x ∈ X+|x>α} : if α = o− is the base point (whose
stabilizer is P+), then this is the P+-orbit P+.o+ which is isomorphic to
V + ∼= U+.o+. Note here that the set α> carries a canonical structure of an
affine space over K, since the vector group U+ acts on it simply transitively.
By homogenity, the same statements hold for any α ∈ X−. This observation
leads to the following definition:
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Definition 2.1. A pair geometry is a pair of sets X = (X+,X−) together
with a binary relation > ⊂ X+×X− (called transversality, and we write x>α
for (x, α) ∈ >) such that X± is covered by subsets of the form

α> = {x ∈ X±|x>α}, α ∈ X∓.

A linear pair geometry (over K) is a pair geometry (X+,X−,>) such that,
for any transversal pair x>α, the set α> is equipped with a structure of linear
space over K (i.e., a K-module), with origin x, and the same property holds
by exchanging the rôles of X+ and X−.

An affine pair geometry is a linear pair geometry such that the underly-
ing affine structure of the linear space (α>, x) does not depend on x, for all
transversal pairs (x, α), and dually. In other words, for all α ∈ X−, the set
α> carries the structure of an affine space over K, and dually.

The discussion above shows that, to any Jordan pair (V +, V −) over K,
we can associate an affine pair geometry (X+,X−,>). The link with triple
products is given by introducting the structure maps of a linear pair geometry:
if x>α, y>α, z>α and r ∈ K, then let rx,α(y) := ry denote the product r · y,
and y +x,α z the sum of y and z in the K-module α> with zero vector x. In
other words, we define maps of three (resp. four) arguments by

Pr : (X+ ×X− ×X+)> → X+, (x, α, y) 7→ Pr(x, α, y) := rx,α(y),
S : (X+ ×X− ×X+ ×X+)> → X+, (x, α, y, z) 7→ S(x, α, y, z) := y +x,α z,

where the domain of Pr is the “space of transversal triples”,

(X+ ×X− ×X+)> = {(x, α, y) ∈ X+ ×X− ×X+|x>α, y>α},

and the domain of S is the similarly defined space of generic quadruples. Of
course, we should rather write P+

r instead of Pr and S+ instead of S; dually,
the maps P−

r and S− are then also defined. The structure maps encode all the
information of a linear pair geometry: by fixing the pair (x, α), the structure
maps describe the linear structure of (α>, x), resp. of (x>, α). In this way,
linear pair geometries can be regarded as objects whose structure is defined
by (one or several) “multiplication maps”, just like groups, rings, modules,
symmetric spaces . . .

This point of view naturally leads to the question whether there are more
specific “identities” satisfied by the structure maps. If (X+,X−;>) is the ge-
ometry associated to a Jordan pair, then this is indeed the case: there are
two such identities, denoted by (PG1) and (PG2) in [Be02]; the first iden-
tity (PG1) can be seen as an “integrated version” of the defining identity
(LJP2) of a Jordan pair; it implies the existence of a “big” automorphism
group, whereas (PG2) is rather a global version of the Fundamental Formula
and implies the existence of “structural maps” exchanging the two partners
X+ and X− (we refer the reader to [Be02] for details). The important point
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about these identities is that we can also go the other way round: by “de-
riving” them in a suitable way, one can show that any affine pair geometry
satisfying (PG1) and (PG2) in all scalar extensions gives rise to a Jordan pair
(V +, V −) as “tangent geometry” with respect to a fixed base point (o+, o−).
This construction clearly parallels the correspondence between Lie groups and
Lie algebras (and even more closely the one between symmetric spaces and
Lie triple systems, [Lo69]; see also [Be06]); however, in contrast to Lie the-
ory, the constructions are algebraic in nature and therefore work much more
generally in arbitrary dimension and over general base fields and rings. They
define a bijection (even an equivalence of categories) between Jordan pairs
and connected generalized projective geometries with base point – and, in the
same way, between Jordan triple systems, (resp. unital Jordan algebras), and
generalized polar (resp. null) geometries, i.e., generalized projective geome-
tries with the additional structure of a certain kind of involution, cf. [Be02],
[Be03]. Thus, in principle, all Jordan theoretic notions can be translated into
geometric ones; in general, it is not at all obvious what the correct transla-
tion should be, but once it has been found, it often sheds new light onto the
algebraic notion. In Chapter 4 we illustrate this at the example of the notion
of inner ideals and their complementation relation.

2.3 The geometric Jordan-Lie functor

Symmetric spaces are well-known examples of “non-associative geometries”
(cf. [Lo69]): they are manifolds M together with a point reflection σx attached
to each point x ∈ M such that the multiplication map µ : M × M → M ,
(x, y) 7→ σx(y) satisfies the properties

(M1) µ(x, x) = x,
(M2) µ(x, µ(x, y)) = y,
(M3) µ(x, µ(y, z)) = µ(µ(x, y), µ(x, z)),
(M4) the tangent map Tx(σx) is the negative of the identity of the tangent

space TxM .

Recall from Lemma 1.4 the (algebraic) Jordan-Lie functor, associating a Lie
triple system to a Jordan triple system. The geometric analog of this func-
tor associates to each generalized polar geometry (X+,X−; p) the symmetric
space M (p) of its non-isotropic points. The geometric construction is very sim-
ple: essentially, the multiplication map µ is obtained from the structure maps
Pr by taking the scalar r = −1. More precisely, given a polarity (i.e., a pair
of bijections (p+, p−) : (X+,X−) → (X−,X+) that are inverses of each other,
compatible with the structure maps and such that there exists a non-isotropic
point x ∈ X+, which means that x>p+(x)), for each non-isotropic point x we
define the point-reflection by

σx(y) := P−1

(

x, p+(x), y
)

.
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The above mentioned identity (PG1) then implies in a straightforward way
that the set M (p) of non-isotropic points of p becomes a symmetric space (cf.
[Be02] for the purely algebraic setting and [BeNe05] for the smooth setting).
Moreover, the Lie triple system of the symmetric space M (p) is precisely the
one defined by Lemma 1.4. The well-known construction of finite and infinite
dimensional bounded symmetric domains (cf. [Up85]) arises as a special case
of the geometric Jordan-Lie functor. The remarks following Lemma 1.4 imply
that in fact “most” symmetric spaces (in the finite dimensional real case)
are obtained by the preceding construction (essentially, all classical finite-
dimensional real ones and about half of the exceptional ones, cf. tables in
[Be00]).

2.4 Examples revisited

(1) Rectangular matrices correspond to Grassmannians. Let W =
A ⊕ B be as in Example (1) of Section 1.5 and let GrasB

A(W ) be the set
of all submodules V ⊂ W that are isomorphic to A (“type”) and admit a
complement U ⊂ W isomorphic to B (“cotype”). Then

(X+,X−) = (GrasB
A(W ), GrasA

B(W )),

with transversality of (V, U) ∈ X+ × X− being usual complementarity of
subspaces (W = U ⊕ V ), is an affine pair geometry over K: it is a standard
exercise in linear algebra to show that the set U> of complements of U carries
a natural structure of affine space. Note that by our definition of Grassman-
nians as complemented Grassmannians this affine space is never empty; if
K is a field this condition is automatic. (However, if K is a topological field
or ring and W a topological K-module, then one will prefer modified defi-
nitions of “restricted Grassmannians” by imposing conditions of closedness,
of boundedness, of Fredholm type or other, cf., e.g., [PS86], Chapter 7. All
such conditions lead to subgeometries of the algebraically defined geometries
considered here.)

Fixing the decomposition W = A⊕B as base point (o+, o−) in (X+,X−;>),
by elementary linear algebra one may identify the pair of linear spaces
((o−)>, (o+)>) with the pair (V +, V −) = (Hom(B, A), Hom(A, B)). By still
elementary (though less standard) linear algebra, one can now give explicit
expressions for the structure maps introduced in Section 2.2 and check their
fundamental identities, thus describing a direct link between the geometry
and its associated Jordan pair (see [Be04]): namely, elements of X+ are real-
ized as images of injective maps f : A → W , modulo equivalence under the
general linear group GlK(A) (f ∼ f ′ iff ∃g ∈ GlK(A): f ′ = f ◦ g), and simi-
larly elements of X− are realized as kernels of surjective maps φ : W → A,
again modulo equivalence under GlK(A). Two such elements are transversal,
[f ]>[φ], if and only if φ ◦ f : A → A is a bijection, and the structure map Pr

is now given by
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Pr([f ], [φ], [h]) =
[

(1 − r)f ◦ (φ ◦ f)−1 + rh ◦ (φ ◦ h)−1
]

.

As in ordinary projective geometry, an affinization is given by writing f : A →
W = B ⊕A as “column vector” and normalizing the second component to be
1A, the identity map of A, and similarly for the “row vector” φ : B ⊕ A → A
(see [Be04]). To get a feeling for the kind of non-linear formulas that appear
in such contexts, the reader may re-write the preceding formula for Pr by
replacing f, φ and h by such column-, resp. row-vectors, and then re-normalize
the right-hand side, in order to get the formula for the multiplication map in
the affine picture. The special case r = 1

2 (“midpoint map”) is particularly
important from a Jordan-theoretic point of view.

One may as well also consider the total Grassmannian geometry of all
complemented subspaces of W ,

Gras(W ) := {V ⊂ W | (V submodule), ∃V ′ : W = V ⊕ V ′(V ′ submodule)}.

Then the pair (Gras(W ), Gras(W )) still is a generalized projective geometry,
but it is not connected in general (there is a natural notion of connectedness
for any affine pair geometry, see [Be02]). In infinite dimension, the geometries
(X+,X−) introduced above need not be connected either, but in finite dimen-
sion over a field they are; in fact, they then reduce to the usual Grassmannians
Grask(Kn) ∼= Gl(n, K)/(Gl(k, K) × Gl(n − k, K)) of k-spaces in Kn.

The case n = 2k, or, more generally, A ∼= B, deserves special attention: in
this case, X+ and X− really are the same sets; the identity map X+ → X−

is a canonical antiautomorphism of the geometry. Its properties are similar to
the well-known null-systems from classical projective geometry. In particular,
in the case of the projective line (Gras1(K

2), Gras1(K
2)), this really is the

canonical null-system coming from the (up to a scalar) unique symplectic
form on K2.

(2) Geometries of maps and functions. We fix some generalized projec-
tive geometry X = (X+,X−), and let M be any set. Then the geometry of
maps

(Fun(M,X+), Fun(M,X−))

with “pointwise transversality and structure maps”, is again a generalized
projective geometry. By arguments similar as above, we see that it corre-
sponds to the Jordan pair of functions introduced in Example (2) of Sec-
tion 1.5. As explained there, the case of scalar valued functions corresponds
to V + = V − = Fun(M, K) with pointwise triple product (T (f, g, h))(p) =
2f(p) g(p)h(p). On the geometric side, then X+ = X− = KP1 is the projec-
tive line, and Fun(M,X+) = Fun(M,X−) is the space of functions from M
into the projective line. Note that these definitions parallel the usual ones for
groups (cf. [PS86]); in particular, taking for M the unit circle, we would get
“loop geometries”.

(3) The classical examples. We briefly characterize the geometries (X+,X−)
corresponding to the examples of item (3) of Section 1.5:



Jordan structures and non-associative geometry 15

• full asociative algebras A correspond to the projective line (AP1, AP1) over
A (cf. [BeNe04]);

• Hermitian elements of an involutive associative algebra (A, ∗) correspond
to the ∗-Hermitian projective line over A (cf. [BeNe04], Section 8.3), and
similarly for skew-Hermitian elements. Lagrangian geometries are a special
case of this construction, corresponding to (skew-) Hermitian or (skew-)
symmetric matrices or operators

• conformal geometries (or “spin factors”): here, X+ ∼= X− is the projective
quadric of K ⊕ V ⊕ K with the same quadratic form as in Section 1.5.

As to the exceptional Jordan systems, their geometries are among those con-
structed by Tits; to our knowledge, their structure of generalized projective
geometry has not yet been fully investigated.

3 The universal model

We have given above the construction of the generalized projective geome-
try (X+,X−) associated to a 3-graded Lie algebra g via homogeneous spaces
(G/P−, G/P+). For a more detailed study, a geometric realization of these
spaces is useful, which in some sense generalizes the example of the Grass-
mannian geometries. This “universal model” has been introduced in [BeNe04]
and used in [BeNe05] to define (under suitable topological assumptions) a
manifold structure on (X+,X−).

3.1 Ordinary flag geometries

We fix some K-module g and denote by Fk the set of all flags

f =
(

0 = f0 ⊂ f1 ⊂ . . . ⊂ fk = g
)

of length k in E (i.e., the fi are linear subspaces of E, and all inclusions are
supposed to be strict). We say that two flags e, f ∈ F are transversal if they
are “crosswise complementary” in the sense that

∀i = 1, . . . , k : g = fi ⊕ ek−i.

It is a nice exercise in linear algebra to show that e and f are transversal
if, and only if, they come from a grading of g of length k: given a grading
g = (g1, . . . , gk), i.e., a decomposition g = g1 ⊕ . . . ⊕ gk, we define two flags
f+(g) and f−(g) via

f+i (g) := g1 ⊕ . . . ⊕ gi, f−k−i(g) := gi+1 ⊕ . . . ⊕ gk.

Then f+(g) and f−(g) are obviously transversal, but the converse is also true:
every pair of transversal flags can be obtained in this way! From this exercise,
one deduces easily that we get a linear pair geometry (X+,X−;>) by taking
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X+ := X− := X := {f ∈ Fk| ∃e ∈ Fk : e>f},

the space of all flags that admit at least one transversal flag (cf. [BL06]). For
k = 2, this is the total Grassmannian geometry, and similarly as in that case,
one may for general k single out connected components by taking flags of fixed
type and cotype. In general, these geometries will be linear, but not affine pair
geometries, and we do not know what kind of “laws” (in a sense generalizing
the laws of generalized projective geometries) can be used to describe them.

3.2 Filtrations and gradings of Lie algebras

Let us assume now that g is a Lie algebra with Lie bracket denoted by [·, ·],
and that all our gradings and filtrations are compatible with the Lie bracket
in the sense that

[fi, fj ] ⊂ fi+j , [gi, gj] ⊂ gi+j .

We will assume that our Lie algebra is 2k+1-graded, i.e., as index set we take
Ik = {−k,−k+1, . . . , k}, and we say that a 2k+1-grading is inner if it can be
defined by an Euler element, i.e., by an element E ∈ g such that [E, X ] = iX
for all X ∈ gi, i ∈ Ik. We denote by Gk the set of all inner 2k + 1-gradings of
g (it is harmless to assume that the center of g is reduced to zero, and so Gk

can be identified with set of all Euler elements). An inner 2k + 1-filtration of
g is a flag

f = (0 = fk+1 ⊂ fk ⊂ . . . ⊂ f−k = g)

such that there is some inner 2k+1-grading with fi = gi⊕gi+1⊕. . .⊕gk, for all
i ∈ Ik; we write Fk for the set of all such filtrations. Then the following holds
([BeNe04] for the case of 3-gradings (k = 1), and [Ch07] for the general case).
We have to impose some mild restrictions on the characteristic of K since we
want to use, for X ∈ f1, the operator exp(X) = ead(X) =

∑∞
j=0

1
j!ad(X)j , the

sum being finite since [f1, fi] ⊂ fi+1, so that ad(X) is nilpotent.

Theorem. Assume that K is a commutative ring such that the integers
2, 3, . . . , 2k + 1 are invertible in K.

(1) Two inner 2k + 1-filtrations f and e are transversal if, and only if, there
exists a 2k+1-grading g = (g−k, . . . , gk) such that f = f+(g) and e = f−(g).

(2) The geometry of inner 2k + 1-filtrations (Fk,Fk;>) is a linear pair ge-
ometry. More precisely, for any f ∈ Fk, the nilpotent Lie algebra f1 is in
bijection with f> via X 7→ exp(X).e, for an arbitrary choice of e ∈ f>.

Now assume that k = 1, i.e., we are in the 3-graded case. Then [f1, f1] ⊂ f2 = 0
(i.e., f1 is an abelian subalgebra), whence part (2) of the theorem says that
we have a simply transitive action of the vector group f1 ∼= exp(f1) on f>, and
thus we see that the geometry of inner 3-filtrations is an affine pair geometry.
In fact, fixing some inner 3-grading as base point in the space of all inner 3-
gradings, it now easily follows that the geometry (G/P−, G/P+) constructed
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in the preceding chapter is imbedded into the geometry from the theorem
simply by taking the G-orbit of the base point.

As mentioned above, this “universal geometric realization” turns out to
be useful for giving a precise description of the intersections of the “chart
domains” α> and β> for α, β ∈ X− and for calculating the corresponding
“transition functions” (see [BeNe04]); calculations become similar to the case
of Grassmannian geometries (Example (1) in Section 2.3 above), the differ-
ence being that the usual fractional linear transformations have to be replaced
by certain fractional quadratic transformations (this difference corresponds to
the fact that we are now working with true flags instead of single subspaces).
Using these purely algebraic results, one can now give necessary and suffi-
cient conditions for defining on (X+,X−) the structure of a smooth manifold
([BeNe05]). The theory works nicely over general topological base fields and
rings (cf. [Be06] for basic differential geometry and Lie theory in this general
framework); complex or real Banach, Fréchet or locally convex manifolds are
special cases of it. For higher gradings, similar results can be expected (J.
Chenal, work in progress, [Ch07]).

4 The geometry of states

Let us come back to the analogies, mentioned in the introduction, of the
preceding constructions with methods of commutative and non-commutative
geometry. In the language of classical physics, one wants to recover the pure
states of a system (the point space M) from its observables (the function
algebra A = Reg(M, R)). The usual procedure is to look at the (maximal)
ideals Ip = {f ∈ A| f(p) = 0} corresponding to points p ∈ M . Left or right
ideals in associative algebras are generalized by inner ideals in Jordan theory.
Therefore we shall interprete states in generalized projective geometries as the
geometric objects corresponding to inner ideals.

4.1 Intrinsic subspaces

Assume (X+,X−;>) is a linear pair geometry over the commutative ring K.

Definition 4.1. A pair (Y+,Y−) of subsets Y± ⊂ X± is called a subspace of
(X+,X−), if for all x ∈ Y± there exists an element α ∈ Y∓ such that x>α,
and if for every such pair (x, α) the set Yα := Y ∩ α> is a linear subspace of
(α>, x) and Y ′

x := Y ′ ∩ x> is a linear subspace of (x>, α).

A subset I ⊂ X+ is called a state or intrinsic subspace (in X+), if I
“appears linearly to all possible observers”: for all α ∈ X− with α> ∩ I 6= ∅
and for all x ∈ α> ∩ I, the set (α> ∩ I, x) is a linear subspace of (α>, x).

For instance, if (X+,X−) = (Gras1(K
n+1), Grasn(Kn+1)) is an ordinary

projective geometry, then all projective subspaces of X+ are intrinsic sub-
spaces, and every affine subspace of an affinization of X+ is obtained in this
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way. In contrast, for Grassmannian geometries of higher rank the situation be-
comes more complicated: only rather specific linear subspaces of the affiniza-
tion M(p, q; K) of Grasp(K

p+q) are obtained in this way, namely the so-called
inner ideals. This observation generalizes to all geometries (X+,X−) associ-
ated to a Jordan pairs (V +, V −): subspaces containing the base point (o+, o−)
correspond to subpairs of (V +, V −), and intrinsic subspaces of X+ containing
o+ to inner ideals I ⊂ V +, i.e., submodules such that T +(I, V −, I) ⊂ I (see
[BL06]). The notions of minimal, maximal, principal,. . . inner ideals may also
be suitably translated into a geometric language (minimal intrinsic subspaces
will also be called intrinsic lines and maximal ones intrinsic hyperplanes; read-
ers coming from axiomatic geometry or from Jordan theory will consider the
former as more fundamental and call them accordingly pure states, whereas
readers coming from algebraic geometry or C∗-algebra theory rather would
reserve this term for the latter ones). The collection of states associated to a
linear pair geometry can again be turned into a pair geometry by introducing
the following transversality relation:

Definition 4.2. Let I be an intrinsic subspace in X+ and J one in X−. We
say that I and J are transversal, and we write again I>J , if

(1) the pair (I,J ) is a subspace,
(2) the linear pair geometry (I,J ) is faithful in the following sense:

A linear pair geometry (Y+,Y−) is called faithful if Y− is faithfully rep-
resented by its effect of linearizing Y+, and vice versa: whenever α> = β> as
sets and as linear spaces (with respect to some origin o), then α = β, and the
dual property holds.

Let us give some motivation for this definition (which does not appear in
[BL06]). First of all, in general, a linear pair geometry need not be faith-
ful (take, for instance, a pair of K-modules with trivial structure maps), but
ordinary projective geometries over a field are. (In case of geometries corre-
sponding to Jordan pairs, faithfulness corresponds to non-degeneracy in the
Jordan-theoretic sense.) Next note that, even if the geometry (X+,X−) was
faithful, the geometry (I,X−) will in general not be faithful: there is a ker-
nel, i.e., the equivalence relation “α ∼I β iff α and β induce the same linear
structure on I” will be non-trivial on X−. The condition I>J means, then,
that the space J ⊂ X− is transversal to the fibers of this equivalence re-
lation, in the usual sense. (This is the geometric translation of the notion of
complementation of inner ideals introduced in [LoNe95]: the fiber of the equiv-
alence relation ∼I corresponds to the kernel of an inner ideal introduced in
[LoNe95]). For instance, if I is a projective line in an ordinary projective
space X+ = Gras1(K

n+1), corresponding to a 2-dimensional subspace I of
K

n+1, then J should be a projective subspace of the dual projective space
X− = Grasn(Kn+1) such that different elements of J define different affine
lines in I. If J is the set of hyperplanes lying over some k-dimensional sub-
space of Kn+1, then this means that I should contain some complement of J .
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Vice versa, J then also should contain some complement of I, and hence I
and J have to be complements of each other in Kn+1. Thus (I,J ) is a projec-
tive line which is faithfully imbedded in the projective geometry. Moreover,
in this example we clearly recover the Grassmannian geometry of 2-spaces as
the geometry of intrinsic lines in the 1-Grassmannian.

Parts of the observations from the example generalize: let S± be the set of
all intrinsic subspaces I in X± that admit a transversal intrinsic subspace J
in X∓. It is a natural question to ask whether (S+,S−) is again a linear pair
geometry, or under which conditions on (X+,X−) and on the states we obtain
one. For the time being, we have no general answers, but results from [BL06]
point into the direction that, indeed, for the most interesting cases we get
geometries (S+,S−) that are again linear pair geometries. More precisely, if
(X+,X−) corresponds to a Jordan pair (V +, V −) and we consider only states
that are associated, via a Peirce-decomposition, to idempotents, we obtain
geometries coming from 5-graded Lie algebras ([BL06], Theorem 5.8), and
these are indeed linear pair geometries, according to Theorem 3.2.

4.2 Examples

(1) Classical states and observables revisited. Let M be a set and A =
Fun(M, K) the Jordan algebra of all functions from M to K. It corresponds
to the geometry (X ,X ) with X = Fun(M, KP1). We claim that (if K is a
field) the set M can be recovered from the geometry X as the geometry of all
pure states (intrinsic lines) running through the “zero function” f0 ≡ o, by
associating to a point p ∈ M the intrinsic line

Lp = {f : M → KP
1| f(x) = o if x 6= p} ⊂ Fun(M, KP

1).

Indeed, note first that Lp is indeed a minimal intrinsic subspace since Lp
∼=

KP1 and the geometry (KP1, KP1) itself does not admit any proper intrinsic
subspaces that are not points. Now assume f : M → KP1 is a function taking
non-zero values at two different points p, q ∈ M . Then a look at the direct
product geometry (KP1, KP1)× (KP1, KP1) shows that the intrinsic subspace
generated by f contains at least all functions obtained from f by altering the
values at p and q in an arbitrary way, hence contains a homomorphic image
of KP1 ×KP1 and thus is not minimal, proving our claim. Of course, we may
as well work with the maximal intrinsic subspaces

Hp = {f : M → KP
1| f(p) = o } ⊂ Fun(M, KP

1).

This is certainly closer to the philosophy of algebraic geometry and to the
usual imbedding of “classical” into “non-commative” geometry, when M is
a smooth or algebraic manifold over R or C and we look at geometries of
smooth or algebraic functions f : M → KP

1. Both points of view are dual to
each other in the sense that one really should look at the geometry (S+,S−),
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where one of the S± is the collection of minimal, and the other of maximal
intrinsic subspaces, each having a complement (in the sense of Definition 4.2)
of the other type.

(2) Grassmann geometries X+ = GrasB
A(W ). Let us fix a flag in W of

length two, f : 0 ⊂ f1 ⊂ f2 ⊂ W . Then the set of all subspaces of W that are
“squeezed” by this flag,

If := {E ∈ X+| f1 ⊂ E ⊂ f2},

is an intrinsic subspace of X , and if K is a field and W is finite-dimensional
over K, then all intrinsc subspaces are of this form for a suitable flag f (see
[BL06], Theorem 3.11). Moreover, one can show that the intrinsic subspaces
If and Ie are transversal in the sense defined above if, and only if, the flags e

and f are transversal in the sense defined in Section 3.1 above. Therefore the
geometry of intrinsic subspaces of the Grassmannian geometry is a geometry
of flags of length two and hence is a linear pair geometry. The case of ordinary
projective geometry (i.e., A ∼= K) is somewhat degenerate: in this case there
is not much choice for the first component f1 of the flag f, and therefore the
intrinsic subspace If is already determined by f2 alone; we get back the usual
projective subspaces of a projective space. In all other cases, the geometry of
intrinsic subspaces is a true flag geometry corresponding to 5-gradings and
hence is a linear, but no longer an affine pair geometry.

(3) Quantum states. In the language of quantum mechanics (widely used
also in non-commutative geometry), states are defined as positive normalized
linear functionals φ : A → C on a C∗-algebra (A, ∗). They form a convex set,
whose extremal points are interpreted as pure states. These, in turn, admit a
Jordan theoretic interpretation via (primitive) idempotents – see [FK94] for
the theory of finite-dimensional symmetric cones and their geometry; there
is a vast literature on infinite dimensional generalizations, cf., e.g., [HOS84],
[ER92], [Up85]. Whereas the notion of state just mentioned depends highly
on the ordered structure of the base field R (via positivity and convexity),
this is not the case for the notion of inner ideal and intrinsic subspace, which
hence seem to be more general and more geometric. Accordingly, it has been
advocated to use inner ideals as a basic ingredient for an approach to quantum
mechanics (see [F80]).
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