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Abstract. — We interprete RAMANUJAN’s master theorem (see [B85])

(R)

∫ ∞

0
x−s−1

∞∑

k=0

((−1)ka(k)xk) dx = −
π

sin(πs)
a(s)

as a relation between the Fourier transforms of an analytic function f
with respect to the real forms U(1) (compact) and R+ (non-compact) of
the multiplicative group of non-zero complex numbers, and we ask for a
similar relation between the spherical Fourier transforms of an analytical
function with respect to a compact real form and the non-compact dual
real form of a complex symmetric space. We obtained results in the case of
symmetric cones ([Be93]) and in the rank-one case (announced in [Be94a]).
Here we present the latter case in detail, describing features which will be
also important for the general rank case.

0. Introduction: “RAMANUJAN’s transform” for symmetric spaces

0.1 The geometrical setting: duality of riemannian symmetric
spaces. — We consider a compact symmetric space XU = U/K, its non-
compact dual XG = G/K, both realized as real forms of their common
complexifcation XC = UC/KC. The simplest example of this situation is
given by the circle and the positive real half line, both real forms of the
multiplicative group of non-zero complex numbers. So let U be a compact
Lie group, σ a non-trivial involution of U and K an open subgroup of
the fixpoint group Uσ of σ. Then XU = U/K is a compact symmetric
space, and its complexification is by definition the complex symmetric
space XC = UC/KC, where, for a compact Lie group L, LC denotes its
universal complexification. This is a complex Lie group having as Lie
algebra the complexification lC = l ⊕ il of the Lie algebra l of L and
admitting a Cartan decomposition LC = L exp(il) (see [BtD85] III.(8.3)).
This decomposition implies that, in the above case, KC ∩ U = K, so

XU → XC, uK %→ uKC

is injective, and we may and will consider XU as the U -orbit of the base
point in XC.

The non-compact dual of XU is the riemannian symmetric space XG :=
G/K0, where K0 denotes the identity component of K and G is the
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analytic subgroup of UC having as Lie algebra g := k ⊕ iq, where
u = k ⊕ q is the decomposition in ±1-eigenspaces of u with respect to
the differential σ̇ of σ at the origin. More conceptually: if τ ist the
antiholomorphic involution of UC having U as fixed point group, and
the holomorphic continuation of σ onto UC is also denoted by σ, then
θ := σ ◦ τ = τ ◦ σ is an antiholomorphic involution of UC having G
as the connected component of the identity of its fixed point group. In
terms of the Cartan decomposition: θ(u exp(iX)) = σ(u) exp(−iσ̇X); so
G has Cartan decomposition G = K0 exp(iq). From this we see that
G ∩ UC = K0, so

XG → XC, gK0 %→ gKC

is injective, and we will consider XG as the G-orbit of the base point inXC.
We remark that the three involutions σ, τ and θ induce involutions on XC

such that σ is the symmetry with respect to the origin of the symmmetric
space XC, XU is open in the fixed point set of τ and XG is open in the
fixed point set of θ.

Besides the above (abelian) example XU = U(1), let us mention two
other important (non-abelian) examples: firstly, the complexification of
the n-sphere XU = Sn which is just the complex quadric with the same
equation, and the non-compact dual XG is the real hyperbolic space
Hn; secondly, the group case: K is a compact connected Lie group,
XU = K × K/dia(K × K) ∼= K, XC

∼= KC, XG
∼= KC/K, the latter

imbedded into KC as the set {zτ(z)−1| z ∈ KC} where τ is the conjugation
of KC w.r. to K.

0.2 The analytical setting: compact and non-compact spher-
ical Fourier transform. — We are interested in analyzing complex-
valued functions f which are holomorphic on XC or at least on parts of
XC which contain the orbits XU and XG, and we suppose that f is KC-
invariant. Then we define the non-compact spherical Fourier transform f̃
of f by

(0.1) f̃(λ) =

∫

XG

f(x)φ−λ(x) dx,

where dx is a G-invariant measure on XG (unique up to a constant) and

φλ(x) =

∫

K
e(ρ+λ)H(kg) dk

is HARISH CHANDRA’s formula for the spherical functions of XG, with
respect to an Iwasawa decomposition G = NAK of G, A being a vector
group having a maximal abelian subspace a of p = iq as Lie algebra and
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H : G → a, nak %→ log a being the Iwasawa projection. The parameter λ
runs through a∗

C
, the dual space of the complexification of a, and ρ ∈ a∗

C
is

the half sum of the positive roots in the restricted root system Σ := Σ(a, g).
We say that the spherical Fourier transform of f is defined at λ if (0.1)
converges absolutely. It is known that f̃ is invariant under the action of
the Weyl group W := W (Σ) of Σ.

We will define the compact spherical Fourier transform of f in a
somewhat different manner than usual in order to be able to compare
it with the non-compact transform defined above. The key will be the
following lemma (see [He94] III.9):

0.2.1 Lemma. — The spherical function φλ admits a holomorphic
continuation onto XC if and only if λ belongs to the W -orbit of the set
Λ+ρ, where Λ is the set of the dominant spherical weights, i.e. the highest
weights of K-spherical irreducible representations of U which can also be
described as the set of λ ∈ a∗ such that (see [La78] thm.B and references
there)

∀µ ∈ Σ+ :
(λ|µ)

(µ|µ)
∈ Z

+, λ(ΓU/K) ⊂ 2πiZ,

where ΓU/K = {X ∈ ia| expX ∈ K}. Then the restriction of φλ to XU

is a spherical function of XU , and all spherical functions of XU arise in
this manner.

The lemma permits us to define, by a formula very similar to (0.1), the
compact spherical Fourier transform of f for λ ∈ Λ+ ρ by

(2) f̂(λ) :=

∫

XU

f(x)φ−λ(x) dx =

∫

XU

f(x)φλ(x) dx;

here dx is a Haar measure on XU , and the last equality is due to the fact
that φ−λ(x) = φλ(x−1) (where φλ is considered as bi-invariant function
on the group) and that the spherical functions of XU are of positive type.

0.3 “RAMANUJAN’s transform”. — If f is a “good” analytic and
KC-invariant function on XC, then, as the spherical Fourier transform is
invertible, it will be determined by its non-compact transform f̃ as well
as by its compact transform f̂ , which in turn means that these transforms
determine each other. We express this by the diagram

f
f |XU f |XG

↓ ↓

f̂
(R)
←→ f̃ ,
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where we would like to call the bottom line the “RAMANUJAN transform”
because of the fact that it was RAMANUJAN who discovered in 1913 a
relation, nowadays called his “master theorem” (see [B85] p.298), of the
kind we are looking for. It concerns the abelian caseXU = U(1), XC = C∗,
XG = R+, and we state it in the way RAMANUJAN did:

(R)

∫ ∞

0
x−s−1

( ∞∑

k=0

(−1)ka(k)xk
)
dx = −

π

sin(πs)
a(s).

If we let f(x) :=
∑∞

k=0(−1)
ka(k)xk, and we remark that xs is the spherical

function φs for the multiplicative group R+ and xm, m ∈ Z are the
spherical functions of U(1), then the formula takes the form

(R) f̃(s) = −
π

sin(πs)
a(s), f̂(m) = (−1)ma(m).

Here RAMANUJAN implicitely assumes that the series, not converging
on the whole of [0,∞[ in general, admits an analytic continuation, still
denoted by the same series symbol. For example, if a(s) = 1, then the
series f(x) converges on the unit disk and has an analytic continuation,

given by f(x) = 1
1+x , and

∫∞
0

x−s−1

1+x dx = −Γ(s)Γ(1 − s) = − π
sin(πs) , as

stated by (R). Let us give one precise formulation of the “master theorem”
(there are several formulations possible; see [B85] for a discussion):
Assume that a(s) is holomorphic on the half-plane {/s > −1} and
decreasing in the sense that there is an integer N > 1 and a constant
M <∞ such that |a(s)| < M(1 + |s|)−N , then f(x) =

∑∞
m=0 a(m)(−x)m

converges on the unit disc and admits a holomorphic continuation onto
a neighbourhood of R+ such that (R) is valid for all s with −1 < /s <
0. We can read (R) as an interpolation formula for the coefficients
a(m): there is a (in some sense unique) holomorphic interpolation of the
coefficients a(m), which is related to the non-compact Fourier transform of
f by the formula (R). Under certain other assumptions on f , we can also
read this formula in the other direction: given the non-compact transform
f̃(s) of f , we may find the coefficients of its compact transform as the
values of the holomorphic function a(s) = − 1

π sin(πs)f̃(s) at s = m ∈ N,
multiplied by (−1)m. We see that we need these operations: “analytic
continuation”, “multiplying by a particular function” and “evaluating at
integer points” in order to describe RAMANUJAN’s transform, and so will
we in other cases than the abelian one.

The expression for the transform (R) in the general case of a Rieman-
nian symmetric space is not known. We have obtained results in two
special cases: firstly, in the case of symmetric cones ([Be93], see also
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[DGR93]), and secondly, in the case of rank-one symmetric spaces, an-
nounced in [Be94a] and which will be the main result of the present work.
This result, stated in a precise form below (theorems 1.5 and 2.5.1), can
be written “à la RAMANUJAN” as
(R1)∫

XG

(
∞∑

m=0

(−1)mdma(m+ ρ)φm+ρ(x))φs(x) dx = b(s)a(s) + b(−s)a(−s),

where b(s) is a meromorphic function depending only on the structure of
the space and for which we give an explicit formula, namely

b(s) =
1

sinπ(s+
mβ/2

4 )
,

where β is the bigger (or unmultipliable) root in the positive system Σ+,
and the multiplicity mβ/2 of its half may be zero (case of the spheres).
In all our formulas concerning the rank-one case we identify a∗ and R by
identifying β and 1. Note that the right-hand side of (R1) has two terms
instead of a single one as was the case in RAMANUJAN’s formula; this
is due to the non-commutativity of the groups entering in the harmonic
analysis in this case and can in fact be interpreted as a sum over the Weyl
group. We will give two versions of (R1): the first one (chapter 1) is more
conceptual and many of its ingredients can be generalized to the general
rank case; the second one (chapter 2) describes an interesting family of
functions for which (R1) holds. It could be seen as an application of the
first version if the assumptions needed for the first approach held for this
family of functions; but this is not the case, and thus the second version
is completely independent of the first. However, the result is formally the
same, given by (R1), and it seems to be difficult, just as in the classical
case, to describe the set of “all” functions for which (R1) holds.

0.4 First version using the residue theorem. — HARDY proved
RAMANUJAN’s Master Theorem by using the residue theorem (see [Ha20],
[Ha37], [DGR93]). Adapted to the rank-one case, this approach can be
presented as follows: the idea is to relate the Fourier-inversion formulas

f(x) =
∞∑

m=0

(−1)mdma(m+ ρ)φm+ρ(x)

with (−1)ma(m+ ρ) = f̂(m+ ρ) (compact) and

f(x) =

∫ i∞

−i∞
f̃(s)φs(x)

ds

c(s)c(−s)
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(non-compact) by the residue theorem. Suppose that there is a function
b(s) such that f̃(s) = a(s)b(s)+a(−s)b(−s) holds for all “good” a (which
define f by the series expression). Substituting this into the integral and
using that φs = φ−s we get

∞∑

m=0

(−1)mdma(m+ ρ)φρ+m(x) = 2

∫ i∞

−i∞
a(s)φs(x)

b(s)

c(s)c(−s)
ds.

One should expect this to be a consequence of the residue theorem, so
b(s) should satisfy the requirement

ress=m+ρ
b(s)

c(s)c(−s)
= (−1)mdm.

Now, going the inverse way and defining b(s) by the formula given in
the previous section, one shows that this is indeed the case, and under
suitable assumptions on a(s) (theorem 1.5) the residue theorem indeed
implies that the integral and the series representation define the same
analytic function f , the Fourier transforms of which then satisfy (R1). In
the course of the proof we get a very useful interpolation formula for the
dimensions dm (section 1.3) and find a simple relation of this interpolation
with the Plancherel measure of G/K (section 1.4) which holds also in the
general rank case.

0.5 Second version using the generalized MEHLER and HEINE

formulae. — Our original strategy to find relations of the form (R) was
different from the above: we were looking for a sufficiently large set of
functions fj , j ∈ J , where J is some index set, of which we are able to

calculate both the compact transform f̂j and the non-compact transform
f̃j . Then we find a relation (R) satisfied by these transforms, which will
then be satisfied also for all “superpositions” f =

∫
J fjdj, dj some measure

on J . In all cases we treated we had J = XC, that is, we were looking at
kernel functions k(x, y).

Let us describe the kernel function for the rank-one case: we normalize
the Riemannian metric on the compact space XU = U/K such that
the diameter (the maximal distance d(x, y) between points x, y ∈ XU )
is π. Then (if we suppose that K is connected) the function z(x) :=
cos(d(x, x0)) (x0 being the base point in XU ) is K-invariant on XU ,
admits a holomorphic and KC-invariant continuation onto XC, and every
holomorphic and KC-invariant function on XC factors through z. The
kernel function is then defined by

k(u, w) := (z(u) + z(w))−2ρ,
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using the identification of R and a∗ explained in section 0.3. The
calculation of the compact and non-compact transforms of ku(x) := k(u, x)
is of some interest in its own right. In the special case where XU is the
2-sphere S2 the results are classical; the compact transform is given by
NEUMANN’s formula ([Er53] 3.6 (29))

(N)

∫ 1

−1
Pm(x)(x+ y)−1dx = (−1)mQm(y), m ∈ N

(which by Fourier inversion is equivalent to HEINE’s formula [Er53] 3.10
(10)), and the non-compact transform is given by MEHLER’s formula
([Er53] 3.14 (6))

(M)

∫ ∞

1
Ps−1/2(x)(x+ y)−1dx =

π

cos(πs)
Ps−1/2(y), |/s| < 1/2,

where Ps and Qs are Legendre functions of the first, resp. second kind.
Using these classical formulae, together with the classical formula [Er53]
3.3.1 (3)

(HC′) π tan(πs)Ps−1/2(y) = (Q−s−1/2(y)−Qs−1/2(y)),

E.Stein and M.Wainger have treated the case of the sphere S2 in [SW63],
which has been of interest long before in the context of the so-called
Watson-Sommerfeld transform in quantum mechanics. Our results are
a generalization of theirs. In fact, the rank-one case could be treated as a
problem in the analysis of JACOBI functions, but we tried to replace this by
group-theoretic arguments whenever possible, so giving some new proofs to
classical results, in order to prepare the understanding of the general case
of RAMANUJAN’s transform. We show first that the kernel k is a solution
of the generalized Darboux equation Lxu(x, y) = Lyu(x, y) (L being the
Laplacian, acting with respect to first, resp. second variable) and deduce
then that the integral transformations associated to k commute with the
action of the Laplacian. This implies in a rather straightforward way the
fact that the integrals in (M) and (N) “reproduce” the Legendre functions
(which correspond to the spherical functions). A more detailed analysis
is needed to calculate the proportionality factor as a function of s resp.
m appearing at the right hand side of (M) and (N). Finally, we deduce
(R1) by putting the results together with Harish-Chandra’s expansion of
the spherical functions (see [He84] p.430) which in the rank-one case reads

(HC) φs = c(s)fs + c(−s)f−s, −2s /∈ N,
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where fs is an eigenfunction of the Laplacian for the same eigenvalue as
φs, behaving as e(ρ−s)r as r goes to infinity. The formula (HC′) is just a
special case of (HC) expressed in the language of Legendre functions.

0.6 Some problems and remarks on the general case. — 1.
Recall that the right-hand side of (R1) can be interpreted as a sum over
the Weyl group. This leads to the conjecture that in the general case (R)
takes the form

f̃(s) =
∑

w∈W

b(w · s)a(w · s), ∀m ∈ Λ+ ρ : a(m) = ε(m)f̂(m),

where ε(m) is some±1-valued function on ρ+Λ and b a function depending
only on the structure of the space. Then an interesting question would be
how to interprete this function, and in particular to examine its relation
with HARISH-CHANDRA’s c-function. The arguments developped in section
0.4 apply to this general situation and show that b should satisfy some
requirements on the residues at the points of Λ+ ρ.

2. When calculating the compact and non-compact transforms of the
kernel function in the rank-one case by comparing asymptotic behaviours
at infinity, we also get information about the asymptotic behaviour of the
spherical functions at their singularities situated at the antipodal set of
the base point x0 in XU , and similarly for the singularity of fs situated at
x0. The function b we determine in the rank-one case is (though rather
implicitely) related to these asymptotic behaviours. Therefore it would
be interesting to have information about the behaviour of the spherical
functions at the antipodal set of x0 in XU for the general case, and to
investigate how this is related to RAMANUJAN’s transform.

3. The original strategy we used to obtain relations of the form (R)
depended on the knowledge of functions of which we can calculate the
compact and non-compact spherical Fourier transforms. Are there good
candidates for such functions in the general rank case? It would be helpful
to have a geometric interpretation of the kernel-function we use in the
rank-one case in order to investigate a possible generalization.

4. As holomorphic continuation is compatible with the algebra struc-
ture of function spaces given by ordinary function multiplication, the top
line of the diagram on section 0.3 is a homomorphism of usual function
algebras. Thus RAMANUJAN’s transform (the bottom line) will be a homo-
morphism of the algebra structures obtained from the function-algebras
by forward transport by the Fourier transform. In an abstract language
this can be expressed by saying that (R) should be a homomorphism of the
dual hypergroups associated to XU and XG. See [He94] for some results
on the dual hypergroups (p. 333 f. for XU , p.365 f. for XG).
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5. In a similar way, we remark that (R) commutes with multiplication
by W -invariant polynomials. This is due to the fact that the algebras of
invariant differential operators D(XG) and D(XU ) can both be identyfied
with the algebra of holomorphic invariant differential operators on XC,
and on both sides of the diagram in section 0.3 this action comes down
by spherical Fourier transform to multiplication by the same W -invariant
polynomial.

6. Finally, one can interprete RAMANUJAN’s master theorem in various
ways and generalize or extend our attempt in different directions. F.ex.
one may consider vector-valued functions or functions transforming by
certain K-types, or one may interprete the formula as a relation between
the “compact” and “non-compact” spectral resolutions of a certain differ-
ential operator (not necessarily related to group theory). A particularly
interesting viewpoint might be to investigate the relation to the harmonic
analysis on a non-riemannian real form of the complex symmetric space
XC. For the case where XU is a sphere and XG a real hyperbolic space
one can consider the non-riemannian real form given by a one-sheeted
hyperboloid, as was done by Bros and Viano [BV].

This work grew out of the author’s thesis [Be94b]. I would like to thank
Jacques Faraut for suggesting me the problem and encouraging my work
on it all the way long, and the Mittag-Leffler Institute for hospitality when
I worked out this version, as well as M. Flensted-Jensen and S. Helgason for
helpful discussions on this subject during the program “Harmonic Analysis
on Lie Groups”.

1. The rank-one case: approach by the residue theorem

1.1 Geometric preliminaries. — Let XU = U/K be a compact
rank-one symmetric space. Then U will be simple, except for the one-
dimensional spaces XU = S1 and XU = PR

2. The classification of the
rank-one spaces contains three series and one exceptional space. They are
characterized by the number of connected components of K and by the
root system Σ of their non-compact dual XG = G/K which contains one
or two positive roots, depending on the case. General notations being as
in the introduction, we will write β for the bigger root in Σ+, mβ for its
multiplicity and mβ/2 for the multiplicity of β/2 which may be zero. We
give the classification and the characterizing data following [He84] p.167.
In all cases except the second K is connected; in the remainig case K has
two connected components.

1. The spheres: U/K = Sn = SO(n+1)/SO(n),mβ/2 = 0, mβ = n−1.
2. The real projective space: U/K = Sn/ ± 1 = O(n + 1)/O(n),
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mβ/2 = 0, mβ = n− 1.
3. The complex projective space: U/K = SU(n + 1)/S(U(n)× U(1)),

mβ = 1, mβ/2 = 2n− 2.
4. The quaternionic projective space: U/K = Sp(n + 1)/S(Sp(n) ×

Sp(1)), mβ = 3, mβ/2 = 2n− 2.
5. The Cayley projective plane: U/K = F4/Spin(9), mβ = 7,

mβ/2 = 8.
In the sequel we will assume that K is connected; i.e. we exclude case

2. (In fact, the final result for case 2 may be obtained by applying the
result of case 1 to functions which are invariant by the group {±1}.) We
then normalize the Riemannian metric on XU such that the diameter of
XU is π (see section 0.4). This metric is a multiple of the one induced by
the Killing form; from [He84]p.169 we deduce the following formulas which
characterize the metric: let H ∈ a be the element such that β(H) = 1.
Then the scalar product (·|·) on the tangent space q = ip of the origin is
such that (iH|iH) = 1, which in turn implies that d(exp(irH), x0) = r.
This metric identifies a and a∗ with R (and their complexifations with C)
by identifying H and β with 1. From the conditions stated in Lemma 0.1.2
it is clear then that the set of dominant spherical weights of U is generated
by β, so we will identify it with N. If we introduce the parameters

(1.1) a :=
mβ +mβ/2 − 1

2
, b :=

mβ − 1

2
,

then ρ = a+b+1
2 ∈ N

4 . More precisely, we have in
case 1 and 2: a = b = n−2

2 , ρ = n−1
2 ;

case 3: a = n− 1, b = 0, ρ = n
2 ;

case 4: a = n, b = 1, ρ = n+2
2 ;

case 5: a = 7, b = 3, ρ = 11
2 .

We remark that in all cases ρ turns out to be an integer or half-integer.

1.2 Relation of spherical functions to JACOBI-functions. — As
said in the introduction, we define the function z on XU by

(1.2) z(x) := cos(d(x, x0)),

d(x, x0) being the riemannian distance of a point x from the base point x0

inXU . It is clear that this function is invariant by the isotropy subgroupK
of x0. Furthermore, every K-invariant function f on XU factors through
z: there is a function F defined on the interval [−1, 1] such that f = F ◦z.
This is a consequence of the fact that f , in the rank-one case, is a function
of the distance d(x, x0), and that cos : [−π, π] → [−1, 1] is bijective. We
shall always use lower-case letters for K-invariant functions defined on
XU and and upper-case letters for the corresponding function on [−1, 1].
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For example, φm = Φm ◦ z, φm being a spherical function on XU . The
following proposition is classical (see [La78]).

1.2.1 Proposition. — The function z admits a holomorphic contin-
uation onto XC, and every spherical function of XU is a polynomial in z.
More precisely, there are constants r, s, r + s = 1, such that rz + s is a

spherical function of XU , and Φm+ρ = P (a,b)
m , where P (a,b)

m is a normalized
Jacobi polynomial (see definition below) with a and b given by (1.1).

Proof. — If we write L for the Laplace-Beltrami operator of XU ,
let L0 be the second degree ordinary differential operator defined by
Lf = L0F ◦ z for a K-invariant function f . Using the expression of L
in polar coordinates ([He84] p.169) and a change of variables we get

(1.3) L0F (z) = (1− z2)
d2F

dz2
− ((a− b) + (a+ b+ 2)z)

dF

dz
.

This is just the Jacobi operator ([Er53] 10.8.(14)). Knowing that the
spherical function φm+ρ is caracterized by the equation Lφm+ρ = (m2 −
ρ2)φm+ρ, we conclude that Φm+ρ is a solution of the hypergeometric
equation L0F = (s2 − ρ2)F . The solution which is regular at the point
1 may be expressed using the hypergeometric function F (a, b; c; z) =∑

m
(a)m(b)m
(c)mm! zm, where (a)m := Γ(a+m)

Γ(a) , see [Er53] 2.9 and 10.8.(16):

(1.4) Φs(z) = F (ρ+ s, ρ− s; a+ 1;
1− z

2
).

It is known that this function is regular on the interval [−1, 1] if and only
if it is polynomial, and this is the case if and only if s = ρ+m with m ∈ N.
The function

P (a,b)
m (z) := Φs+ρ(z) = F (m+ a+ b+ 1,−m; a+ 1;

1− z

2
)

is a Jacobi polynomial of degree m, normalized by P (a,b)
m (1) = 1. We have

shown that φm+ρ = P (a,b)
m ◦ z. In particular, as P (a,b)

1 is a polynomial of
degree one, P1(x) = rx+ s, i.e. rz + s = φ1+ρ is spherical. We know that
every spherical function of XU admits a holomorphic continuation onto
XC (lemma 0.2.1); so this is also the case for z.

1.2.2 Remark. Let us indicate a more geometrical proof of the propo-
sition. The above proof shows that z is a linear combination of the trivial
spherical function and the first non-trivial spherical function of XU , in
particular it is a K-invariant matrix coefficient of some finite-dimensional
spherical representation of U . Let us describe this representation. In the
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case of the spheres, this representation of SO(n+1) is the natural one and
z is in fact the associated spherical function (the JACOBI-polynomials are

called GEGENBAUER-polynomials in this case, and we have P (a,a)
1 (z) = z).

For the general case, we recall a result of U.Hirzebruch (see [FK94], exer-
cise IV.5 and V.5 and references there) stating that every compact rank-
one symmetric space can be realized as an orbit of a linear group action
in a euclidean Jordan-algebra V , namely as the set J (V ) of primitive
idempotents of this algebra, the compact group U acting transitively on
this space being the automorphism group of the algebra. We choose a
base point c ∈ J (V ) and let K be its stabilizer in U . Using results of
Hirzebruch (see [FK94] IV, exercise 4) one shows that for x ∈ J (V ),

z(x) = 〈x|2c− e〉,

where e is the unit element of the algebra V . In other terms, writing z as
a K-biinvariant matrix coefficient of U ,

z(u) = 〈u · c, 2c− e〉 =
1

2
〈u · (2c− e)|2c− e〉+ 〈e|c〉 −

1

2

for u ∈ U (where we have used that U · e = e). Now one can check,
using dimension arguments, that the lowest-dimensional non-trivial and
irreducible K-spherical respresentation of U is realized on the orthocom-
plement of the unit element e of V . If 2c−e = λe+f is the corresponding
orthogonal decomposition, then z(u) = 〈u · f |f〉 + λ2 + 〈e|c〉 − 1

2 is the
decomposition of z as a linear combination of the trivial and the first
non-trivial spherical function of U/K.

The holomorphic continuation of z, restricted to the non-compact dual
XG of XU , is (using holomorphy of the exponential map) given by the
formula

z(exp(rH)) = ch(r).

Every K-invariant function f on XG factors through z; as in the compact
case we write f = F ◦ z, where F is now defined on [1,∞[. As a particular
case, φs = Φs ◦ z, where Φs is a Jacobi function, given by equation
(1.4). We can rewrite Harish-Chandra’s spherical function expansion (see
introduction, formula (HC)) in terms of the hypergeometric function. As
Φs is given by formula (1.3), we can rewrite [Er53] 2.10 (2) as

Φs(z) = c(s)Fs(z) + c(−s)F−s(z)

with

Fs(z) = (2z − 2)s−ρF (ρ− s, b+ 1− s; 1− 2s;
2

1− z
), −2s /∈ N,

12



(this function behaving as (2z)s−ρ as z (real) goes to infinity) and

c(s) = 22ρ−2s Γ(a+ 1)Γ(2s)

Γ(s+ ρ)Γ(s+ a−b+1
2 )

= 2−2ρΓ(a+ 1)Γ(2s)Γ(s+ a−b
2 )

Γ(s+ ρ)Γ(2s+ a− b)
.

We remind the reader that all our formulas are written with respect to
the bigger root β (that is, if we replace s by (s|β)

(β|β) , we can interprete s as

a parameter in a∗
C
); for this reason our formula for the c-function looks

slightly different from the usual ones taking the smaller root as reference
(f.ex. [He84] p.437). (In our note [Be94a] we followed this usual choice
which made our formulas unnecessarily complicated.)

1.3 Interpolation of the Plancherel measure of XU . —

1.3.1 Lemma. — The dimension dm of the irreducible U -represen-
tation having highest weight mβ is given by the formula

dm = c · (2m+ a+ b+ 1)
Γ(m+ a+ 1)Γ(m+ a+ b+ 1)

Γ(m+ b+ 1)Γ(m+ 1)

with the constant c = Γ(b+1)
Γ(a+1)Γ(a+b+2) .

Proof. — This formula may be obtained as a consequence of [Er53]
10.8 (4) and (3). One may also specialise the coefficients a and b to the
values listed in section 1.1 and obtains then the table given in [She90] p.90.
We shall give here a purely group-theoretic proof which generalizes to the
higher rank case. Recall the following relation (due to Vretare) between
the Plancherel measures of XG and XU (see [He94] thm. 9.10):

dm = lim
s→ρ

c(s)c(−s)

c(s+m)c(−s −m)
.

Using the (first) explicit formula for the c-function given above we obtain

dm = lim
s→ρ

(
Γ(2s)Γ(−2s)

Γ(2s+ 2m)Γ(−2s− 2m)
·

Γ(s+ ρ+m)Γ(ρ− s−m)

Γ(s+ ρ)Γ(ρ− s)

Γ(s+m+ a−b+1
2 )Γ(−s−m+ a−b+1

2 )

Γ(s+ a−b+1
2 )Γ(−s+ a−b+1

2 )
).

We then transform each of the three terms using the identity

Γ(z + w +m)Γ(w − z −m)

Γ(z + w)Γ(w − z)
= (−1)m−1 (z + w)(z + w + 1)...(z + w +m− 1)

(z − w + 1)(z − w + 2)...(z − w +m)

13



for m ∈ Z+, z − w 2= 1, ..., m (which is an easy consequence of the
functional equation of the Gamma-function). Passing to the limit s → ρ
gives (modulo constants which are later determined by the requirement

d0 = 1) for the fist term: 2ρ+2m, for the second term: (m+2ρ−1)!
m! , and for

the third term: (m+a)!
(m+b)! (in the case where a and b are integers (case 3,4

and 5); in case 1 this term cancels), which altogether gives the announced
formula for dm.

We define the polynomial δ by

δ(s) := s ·
Γ(s+ ρ)Γ(s+ a−b+1

2 )

Γ(s− ρ+ 1)Γ(s+ b−a+1
2 )

= s · (s− ρ+ 1)(s− ρ+ 2)...(s+ ρ− 1)·

(s−
mβ/2

4
+

1

2
)(s−

mβ/2

4
+

3

2
)...(s+

mβ/2

4
−

1

2
)

(if mβ/2 = 0, then the last term does not appear, and if ρ = 1
2 , then

δ(s) = s), then dm = δ(m+ρ)
δ(ρ) , and so δ gives a polynomial interpolation of

the coefficients dm. Its zeroes are the points 0 and −ρ+1,−ρ+2, ..., ρ−1
in the case of the spheres, and in the other cases there are in addition also
zeroes at the points b − ρ + 1, b − ρ + 2, ..., ρ − b − 1 (and b is then an
integer). The order of the zero at the point 0 decides whether δ is an odd
or an even function: if XU is not an odd-dimensional sphere, the zero at
the point 0 is of order one or three, corresponding to ρ being a half-integer
resp. integer, and δ is an odd function. In the case of the spheres Sn,
the zero at the point 0 is of order one or two, correspondig to ρ being a
half-integer (n even) resp. integer (n odd), and only in the case of the
odd-dimensional spheres δ is an even function.

1.4 The functions δ(s)c(s)c(−s) and b(s). — Using the explicit
formulae for the polynomial δ and the c-function from the previous section,
as well as the relations Γ(z)Γ(1−z) = − π

sin(πz) and Γ(1/2+z)Γ(1/2−z) =
π

cos(πz) , we obtain

δ(s)c(s)c(−s) =
sinπ(s− ρ)

sin(2πs)
cosπ(s−

a− b

2
)

where a−b
2 =

mβ/2

4 = ρ − mβ

2 . We use the formula sin(2πs) =
2 sin(πs) cos(πs) and observe that, because ρ is either integer or half-
integer (see 1.1), we can replace s by s − ρ in the term sin(2πs); we
obtain (neglecting constants)

(1.5) δ(s)c(s)c(−s) =
cosπ(s− ρ+ mβ

2 )

cosπ(s− ρ)
.
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If mβ is even (this happens only in the case of the odd-dimensional
spheres), then this expression equals ±1, and ifmβ is odd (all other cases),
then it equals ± tanπ(s−ρ). Let us define the meromorphic function b(s)
by

(1.6) b(s) :=
δ(s)c(s)c(−s)

sinπ(s− ρ)

=
cosπ(s− ρ+ mβ

2 )

cosπ(s− ρ) sinπ(s− ρ)
=

±1

sinπ(s− ρ+ mβ

2 )
=

±1

sinπ(s−
mβ/2

4 )

which equals either ±1
sin(πs) (cases 1,5 and 3,4 with n even) or ±1

cos(πs) (cases

3 and 4 with n odd).

1.4.1 Proposition. — The following relation between the Plancherel
measures of the rank-one spaces XG and XU holds:

1

c(s)c(−s)
= δ(s)(cotπ(s− ρ))ε

where δ(s) is the polynomial defined in the previous section and ε = 0 in
the case of the odd-dimensional spheres and ε = 1 in all other cases.
In all cases, 1

c(is)c(−is) ∼ ±δ(is) (s → ∞). If XU is not an odd-

dimensional sphere, the function 1
c(s)c(−s) has simple poles at the points

ρ +m, m = 0, 1, ... with residues dm (up to a common factor); there are
no poles between ρ and −ρ. The function

b(s)

c(s)c(−s)
=

δ(s)

sinπ(s− ρ)

has (in all cases) simple poles situated at s = ρ + m, m = 0, 1, ... with
residues (−1)mdm (up to a common factor); there are no poles between ρ
and −ρ.

Proof. — The statements about the asymptotic behaviour, the poles
and residues are immediate consequences of the given formulae and of the
location of the zeroes of δ(s), see 1.3.

We remark that the above lemma is also true for XU = S1 (which is
an odd-dimensional sphere). The generalization of the formulas for δ(s)
and δ(s)c(s)c(−s) (but not for b(s)!) to general-rank spaces is immediate,
because the interpolation formula for the dimensions has the same product
structure as the product formula of Gindikin and Karpelevic for the c-
function ([He84] p.447) - this follows just by putting the product formula
for the c-function into the formula of Vretare we used in 1.3.1 to derive
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our formula for δ(s). As a special case, the group case will give us a
product of several factors, each of them of the type corresponding to
XU = SU(2) = S3, and we get WEYL’s dimension formula.

1.5 RAMANUJAN’s master theorem for rank-one spaces (first
version). — Let a(s) be a holomorphic function on the half-plane
{/s > −ρ} satisfying the decrease condition ∃A < π, C < ∞, ε > 0:
|a(s)| < CeA|'s|e−ε(s. Then the series

f(x) :=
∞∑

m=0

(−1)mdma(m+ ρ)φm+ρ(x)

converges on a neighbourhood of XU , defining there a holomorphic and
K-invariant function, and admits a holomorphic continuation onto a
neighbourhood of XG, given by the formula

f(x) =

∫ i∞

−i∞
φs(x)(b(s)a(s) + b(−s)a(−s))

ds

|c(s)|2
.

The non-compact spherical Fourier transform f̃ exists for |/s| < ρ and
there satisfies the relation

(R1) f̃(s) = b(s)a(s) + b(−s)a(−s)

with b(s) = 1

sinπ(s−
mβ/2

4
)
(see formula (1.6)).

Proof. — It was shown by Lassalle ([La78]; there the case of arbitrary
rank is treated) that the decrease condition |a(m+ρ)| < Ce−ε(m+ρ) assures
the normal convergence of the series f(x) on a neighbourhood (depending
on ε and which can be described explicitely) of XU .

Let us show that the integral given in the theorem defines indeed an
analytic continuation of f . We first use the fact that |c(s)|2 = c(s)c(−s)
for imaginary s and that φs = φ−s to write the given integral as

I(x) :=

∫ i∞

−i∞
φs(x)a(s)

b(s)

c(s)c(−s)
ds

(1.8) =

∫ i∞

−i∞
φs(x)a(s)

δ(s)

sinπ(s− ρ)
ds

(by (1.6)). As remarked in proposition 1.4.1, the poles of the integrand
on the half-plane /s > −ρ are situated at the points ρ+m, m = 0, 1, ....
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In particular, there are no poles on the imaginary axis. Furthermore, by
the assumption on a, |a(s) δ(s)

sinπ(s−ρ) | < Cδ(s)e(A−π)|s| with A−π < 0, and

thus by proposition A.1 (appendix) I(x) defines a holomorphic function
on a neighbourhood of XG.

We now show, using the residue theorem, that f(x) = I(x) for
x ∈ K exp([0, ε[H) · x0. We define the integration path γr joining the
vertices (−ir, ir), (ir, ir + r), (ir + r,−ir + r), (−ir + r,−ir), and recall
that the poles of the integrand are situated at the points ρ+m, m = 0, 1, ...
with residues (−1)ma(m+ ρ)δ(m+ ρ)φρ+m(x) (see prop. 1.4.1). Thus we
obtain by the residue theorem

∫

γr

a(s)φs(x)
δ(s)

sinπ(s− ρ)
ds =

[r−m]∑

m=0

(−1)mdma(m+ ρ)φm+ρ(x).

To get the desired expression for the limit r = ρ + n + 1
2 → ∞ (n ∈ N),

we need the following estimation on φs(x) as a function of the parameter
s (see [Ko84] p.53 eqn. (6.3)): there is M <∞ such that for all t > 0 and
s ∈ C,

|φs(exp(tH) · x0)| < M(1 + t)et(|(s|−ρ).

We now fix t ∈ [0, ε[ and consider the above integral for x := exp(tH) ·x0.
Using the quoted estimation on φs(x) and the decrease assumption on a(s),

we get |φs(x)a(s)
δ(s)

sinπ(s−ρ) | < C′δ(s)e(t−ε)(se(A−π)|'s| where t−ε < 0 and

A−π < 0. This and the fact that δ(s) is polynomial imply that in the limit
r = ρ+ n+ 1

2 →∞ only the integral over the imaginary axis contributes,
and so

I(x) =

∫ i∞

−i∞
a(s)φs(x)

δ(s)

sinπ(s− ρ)
ds

=
∞∑

m=0

(−1)mdma(m+ ρ)φm+ρ(x) = f(x)

as was to be shown.
Let us show that the function h(s) := b(s)a(s)+b(−s)a(−s) is square

integrable over the imaginary axis w.r.t. the measure ds
|c(s)|2 . In fact,

using the definition (1.6) of b(s) we easily get for pure imaginary s,
|h(s)|2

|c(s)|2 ≤
|δ(s)|2c(s)c(−s)
| sinπ(s−ρ)|2 4CeA|s| ≤ 4Cδ(s)e(2A−2π)|s|, which has a finite

integral over the imaginary axis. Now the inversion theorem of the
spherical Fourier transform (see [He84]) assures that h(s) is the spherical
Fourier transform of f in the L2-sense, that is

f̃(s) = b(s)a(s) + b(−s)a(−s)
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for almost all s ∈ iR. But as f is bounded on XG (which is an easy
consequence of Prop. A 1), this is an identity between holomorphic
functions on {|/s| < ρ}.

1.6 Remark. — Recall from proposition 1.4.1 that, if XU is not an
odd-dimensional sphere, then ress=ρ+m

1
c(s)c(−s) = dm. One may wonder

whether then the series
∑

m dma(m + ρ)φm+ρ(x) can be linked to the
integral

∫
iR(a(s) + a(−s))φs(x)

ds
c(s)c(−s) by the residue theorem. This

would give a “simple” version of the previous theorem, where b(s) is
replaced by 1 and the factors (−1)m do not appear. However, the following
arguments strongly suggest that no such version exists: let us try to find a
decrease condition on a(s) required in order to adapt the previous proof to
this situation. We claim that the condition on a(s) stated in the theorem
is essentially necessary in order to conclude as in the proof. In fact, for
the convergence of the series f(x) on a neighbourhood of XU this is shown
in [La78] and for the convergence of the integral on a neighbourhood of
XG this can be shown in similar way. The estimation on φs(x) we used
in the proof is also quite sharp, making it very unlikely to find a less
restrictive assumption on a(s). One should remark that the growth of
a(s) we admit in imaginary direction is thus only due to the strong decay
of b(s) in this direction. But, b(s) replaced by 1, we would have to make
on a(s) the much stronger requirement |a(s)| < Ce−ε|s| (for some ε > 0) on
a half-plane. Then |a(s) sin(πs)| < 2Ce(π−ε)|s|, so Carlson’s uniqueness
theorem (see [Ti39], [Ha20]) applied to the function a(s) sin(πs) yields
a(s) = 0. Thus it seems that there are no non-trivial examples for the
“simple” version of RAMANUJAN’s transform. We may conclude that a
non-trivial function b(s) should appear in the formula for (at least) two
reasons: firstly, the function b(s) has to produce residues also in the cases
where 1

c(s)c(−s) has no poles (the odd-dimensional spheres), and secondly,
the strong decay of the b-function in the imaginary direction allows the
function a(s) to be non-trivial.

1.7 An example. — Let XU = Sn = SO(n + 1)/SO(n). We define
a K-invariant and holomorphic function on XC by f(x) := e−rz(x) with
r > 0. The compact and non-compact spherical Fourier transforms of f
are known: by [FH87] p.30 we have (up to a constant not depending on
r) the following expansion of a plaine wave in spherical harmonics:

e−r cos θ =
∞∑

m=0

dm(−1)mr−ρIρ+m(r)Φm+ρ(cos θ),

where Iν(r) = rν
∑∞

k=0
1

k!Γ(k+ν+1) (
r
2)

2k is the modified Bessel function.
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In other terms

f̂(m+ ρ) = r−ρ(−1)mIρ+m(r), m ∈ N0.

So a(s) := r−ρIs(r) is an analytyic interpolation of the coefficients
(−1)mf̂(ρ+m). By [FH87] p.45 we have for all complex numbers s

f̃(s) = r−ρ I−s(r)− Is(r)

sin(πs)
.

So the relation (R1) (case of the spheres) f̃(s) = 1
sin(πs)(a(s) − a(−s))

is satisfied for all s ∈ C. We do not know whether a(s) satisfies the
assumptions of the previous theorem.

2. The rank one case by the generalized MEHLER and HEINE formulae

2.1 The kernel function. — We continue to use all notations and
conventions introduced in the previous chapter for the rank one case. We
define the kernel function k by the formula

k(u, w) := (z(u) + z(w))−2ρ,

where 2ρ is the integer a+ b+ 1 (see 1.1) and z the holomorphic function
introduced in 1.2. The kernel k is meromorphic on XC × XC and well-
defined and analytic on the whole of XG ×XG.

2.1.1 Proposition. — The kernel k is a solution of the generalized
Darboux equation

Luk(u, w) = Lwk(u, w),

where Lu, resp. Lw, denotes the Laplacian acting with respect to the first,
resp. second, variable. (The Laplacians of XU and of XG act in a natural
way on holomorphic functions defined on domains of XC, and these actions
agree; so we need not specify which of these we mean.)

Proof. — Let us calculate L0Ky, where Ky(x) := K(x, y) := (x +
y)−(a+b+1), and L0 is the operator given by (1.2) acting w.r. to the variable
x:

L0Ky(x) = 2ρ (x+ y)−
a+b+1

2
−2(

a+ b+ 3

2
xy + (a− b)(x+ y)).

This function is symmetric in x and y.
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The generalized Darboux equation is studied in [He84] p. 288.

2.2 The integral transforms associated to the kernel function.
The kernel k being as introduced above, let us define the compact and
non-compact integral transforms associated to k by

(RUf)(x) :=

∫

XU

f(y)k(x, y)dy

and

(RGf)(x) :=

∫

XG

f(y)k(x, y)dy.

Taking for f a spherical function will give us later the spherical Fourier
transforms of the functions ky(x) := k(x, y).

2.2.1 Proposition. — (i) If f is a K-invariant differentiable function
on XG which is integrable or satisfies the following decrease condition:

(∗) ∃ε > 0,M <∞ : |f(exp(rH)x0)| ≤Me−εr,

then RGf is a differentiable and K-invariant function on XG and a
holomorphic function on the domain of XC defined by z(x) /∈] −∞,−1].
If f is in addition square-integrable, then

L(RGf) = RG(Lf).

(ii) If f is a K-invariant and differentiable function on XU , then RUf
is a differentiable and K-invariant function on XG − {x0} which tends
to zero as the distance r to the base point tends to infinity, and it is a
holomorphic function on the domain of XC defined by z(x) /∈] − ∞, 1].
The transform RU commutes with the action of the Laplacian:

L(RUf) = RU (Lf).

Proof. — The K-invariance of the transforms is clear from the invari-
ance of k. (We even could have dropped the invariance assumption on f ;
but then R(f ◦ k) = Rf for all k ∈ K, so the assumption means no re-
striction.) Using the integral formulas for K-invariant functions f in polar
coordinates ([He84] p.186 and 190) we get, after a change of variable,

∫

XG

f(g)dg =

∫ ∞

1
F (x)(x− 1)a(x+ 1)bdx,

∫

XU

f(u)du =

∫ 1

−1
F (x)(1− x)a(1 + x)bdx.
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Substituting in these expressions F (x)K(x, y) = F (x)(x + y)−(a+b+1) in
the place of F (x) we easily see that the transforms RUf and RGf are
defined and holomorphic on the domains stated, as well as the decrease
stated in (ii). (We remark, however, that the base point will be a singular
point for RUf in general.) If f is square-integrable, using Prop. 2.1.1, the
selfadjointness of the Laplacian and that kx is square-integrable, we get

(L(RGf))(x) =

∫

XG

f(y)Lxk(x, y)dy

=

∫

XG

f(y)Lyk(x, y)dy

=

∫

XG

Lyf(y)k(x, y)dy

= (RG(Lf))(x),

The same argument holds for RU .

For later use we state the asymptotic behaviour of the transforms RGf ,
resp. RUf at their singularities possibly situated at the antipodal set of
the origin in XU , resp. at the origin. The following asymptotic formulas
hold all up to a constant; so we suppose that Haar measures are suitably
normalized.

2.2.2 Proposition. — (i) If f satisfies the assumptions of 2.1.1 (i)
and if b > 0, then

(RGf)(x) ∼ f(x0)(z(x) + 1)−b (x ∈ XU , z(x)→ −1).

If b = 0 (i.e. if XU = S2 or XU = Pn(C)), then

(RGf)(x) ∼ f(x0)(log(z(x) + 1) (x ∈ XU , z(x)→ −1).

(ii) Let A(x0) be the antipodal orbit of x0 in XU . Then for every
continous and K-invariant function f defined on XU ,

(RUf)(x) ∼ f(A(x0))(z(x)− 1)−a (x ∈ XG, x→ x0),

if a 2= 0. If a = 0 (i.e. XU = S2),

(RUf)(x) ∼ f(A(x0)) log(z(x)− 1) (y ∈ XG, y → x0).

Proof. — (i) Let b > 0. We show that

(x+ 1)b(RGF )(x) =

∫ ∞

1
F (y)(x+ y)−(a+b+1)(x+ 1)b(y − 1)a(y + 1)b dy
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tends (up to a constant) to F (1) as x tends to −1. We choose δ > 0 and
write the integral as a sum of two integrals I1 and I2 over the intervals
[1, 1 + δ] and [1 + δ,∞[. The second one is easily seen to tend to zero as
x tends to −1. For the first one, we introduce the new variable z := y−1

x+1
and obtain

I1 =

∫ δ
x+1

0
F (z(x+ 1) + 1)(z + 1)−(a+b+1)za((x+ 1)z + 2)b dz

→ F (1)2b
∫ ∞

0
(z + 1)−(a+b+1)za dz = F (1)2b

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)
(x→ −1)

using Lebesgue’s theorem on dominated convergence. In the case b = 0 we
use similar arguments, but we have to use L’Hospital’s rule before passing
to the limit in I1.

(ii) Let a > 0. We show that

I := (x−1)a(RGF )(x) =

∫ 1

−1
F (y)(x−1)a(x+y)−(a+b+1)(1−y)a(1+y)b dy

tends (up to a constant) to F (−1) as x tends to 1. We introduce the new
variable z := y+1

x−1 and obtain

I =

∫ 2
x−1

0
F (z(x− 1)− 1)(z + 1)−(a+b+1)(2− (x− 1)z)azbdz

→ F (−1)2a
∫ ∞

0
(z + 1)−(a+b+1)zb dz = F (−1)2a

Γ(b+ 1)Γ(a)

Γ(a+ b+ 1)
(x→ 1).

In the case a = 0 we use the same argument as in (i), case b = 0.

2.3 Non-compact spherical Fourier transform of the kernel
and asymptotic behaviour of the spherical functions at the
singularity. —

2.3.1 Proposition (MEHLER’s formula). — If |/s| < ρ, then, for
all x such that z(x) /∈]−∞,−1],

∫

XG

φs(x)k(x, y)dx = d(s)φs(y),

with

d(s) =
Γ(ρ+ s)Γ(ρ− s)

Γ(2ρ)
.
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Proof. — Using the asymptotic behaviour of the spherical functions at
infinity,

φs(exp(rH)x0) ∼ c(s)er(s−ρ)H (r →∞)

for /s > 0 (see [He84] p.435), where c is Harish-Chandra’s c-function, we
see that f = φs for |/s| < ρ satisfies the assumptions of prop.2.2.1 (i). We
will show that L(RGφs) = RG(Lφs) = (s2 − ρ2)RGφs and conclude that
RGφs, being a K-invariant eigenfunction of L for the same eigenvalue
as φs, defined on the whole of XG, must be a multiple of the spherical
function φs. Because φs is not square integrable we cannot apply directly
the last statement of 2.2.1 (i). We use the formula (see [Fa81] p.415)

(2.1)

∫ s

t
(gLf − fLg)(r)∆(r)dr = [f, g](s)− [f, g](t),

for differentiable functions f and g on ]0,∞[ (here r is the distance from
the origin) and 0 < t < s, whith

[f, g](r) = ∆(r)(
df(r)

dr
g(r)− f(r)

dg(r)

dr
)

and ∆(r) = (sh r
2 )

mβ/2(sh r)mβ , and we remark that [φs, ky](0) = 0
and [φs, ky](r) → 0(r → ∞), which permits to conclude as in the
proof of the last statement of 2.2.1 (i). As said above, this implies
that RG(φs)(y) = d(s)φs(y) where d(s) is a complex number which we
are going to determine now by comparing the asymptotic behaviours of
both sides as y tends to infinity. Using the asymptotic behaviour of the
spherical functions, Φs(x) ∼ c(s)(2x)s−ρ (x → ∞) (see above), we can,
for 0 < |/s| < ρ, calculate

d(s) = lim
y→∞

RgΦs

c(s)(2y)s−ρ

=
1

c(s)
lim
y→∞

∫ ∞

1

Φs(x)

(2y)s−ρ
(x+ y)−(a+b+1)(x− 1)a(x+ 1)bdx

=
1

c(s)
lim
y→∞

∫ ∞

1
y

Φs(yz)

(2yz)s−ρ
zs−ρ(z + 1)−(a+b+1)(z −

1

y
)a(z +

1

y
)bdz,

where we introduced the new variable z := x
y . As the function Φs(x)

(2x)s−ρ is

continous on [1,∞[ and tends to a constant for x →∞, it is bounded by
a constant C1 <∞ (depending on s). So the integrand is dominated by

C1z
s−ρ(z + 1)−(a+b+1)za(z + 1)b < C1(z + 1)s−ρ−1,
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which is integrable for |/s| < ρ. As the integrand tends to

c(s)zs−ρz2ρ−1(1 + z)−(a+b+1) = c(s)(1 + z)−2ρzρ+s−1

as y tends to infinity, we have by Lebesgue’s theorem

d(s) =

∫ ∞

0
zs+ρ−1(z + 1)−2ρdz =

Γ(ρ+ s)Γ(ρ− s)

Γ(2ρ)
.

We have the following interpretation of the function d(s): it describes
the asymptotic behaviour of the spherical function φs at its singularity
situated at the antipodal orbit A(x0) of the base point x0:

2.3.2 Proposition. — The function Φs, |/s| < ρ, has the following
asymptotic behaviour at the point −1: If b > 0,

Φs(x) ∼
1

d(s)
(x+ 1)−b (x→ −1),

and if b = 0 (i.e. case 3 listed in section 1.1),

Φs(x) ∼
1

d(s)
log(x+ 1) (x→ −1).

Proof. — Applying MEHLER’s formula and 2.2.2 (f = φs for |/s| < ρ
satisfies the assumptions of 2.1.2), we get in the case b > 0

d(s)Φs(x) = (RGΦs)(x) ∼ Φs(1)(x+ 1)−b (x > −1, x→ −1),

For the case b = 0 we use the same argument.

Remark. In the case of the sphere XU = S2, Φs = Ps−1/2, where Ps is
a Legendre function of the first kind, and the classical MEHLER formula
(M) (see introduction) appears as a special case of 2.3.1.

2.4 Compact transform of the kernel and asymptotic be-
haviour of the functions of the second kind. — As for the non-
compact transform, prop. 2.1.1 implies that RUφs for s ∈ ρ + Λ is an
eigenfunction of the Laplacian for the same eigenvalue s2 − ρ2 as φs. But
now RUφs is not defined on the whole of XG; it is singular at the base
point x0 and goes to zero at infinity. We conclude that RUφs is a multiple
of the eigenfunction f−s of the Laplacian defined by Harish-Chandra’s ex-
pansion of the spherical function (HC) (see section 1.2): there is a complex
number µ(s) such that

RUϕs = µ(s)f−s, s ∈ Λ+ ρ.
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An explicit formula for µ(s) is given by

2.4.1 Proposition (NEUMANN’s formula). — For x ∈ XC such
that z(x) /∈]−∞, 1],

∫

U
k(x, y)φs(y) dy = (−1)me(s)f−s(x), s = m+ ρ, m ∈ N,

where f−s is the function defined by (HC) and e is the meromorphic
function defined by one of the following equivalent formulas:

e(s) =
1

δ(s)c(s)

Γ(s+ ρ)

Γ(s− ρ+ 1)
,

e(s) =
1

s c(s)

Γ(s+ b−a+1
2 )

Γ(s+ a−b+1
2 )

,

e(s) =
Γ(s+ ρ)Γ(2s+ b− a)

Γ(2s+ 1)Γ(s+ b−a
2 )

.

Proof. — For s ∈ ρ + N, we will calculate µ(s) by determining the
asymptotic behaviour of the function

RUΦs(x) =

∫ 1

−1
(x+ y)−(a+b+1)Φs(y)(y − 1)a(y + 1)b dy,

as x goes to infinity. First, using the binominal expansion for Kx(y) =
(x+ y)−(a+b+1), we get

RUΦm+ρ(x) = x−(a+b+1)·

∫ 1

−1

∞∑

k=0

(−1)k
Γ(a+ b+ 1 + k)

Γ(a+ b+ 1)Γ(k + 1)
(
y

x
)kΦm+ρ(y)(y − 1)a(y + 1)b dy.

Because of the Schur orthogonality relations, the scalar product in L2(XU )
of φm+ρ with a polynomial in z of lower degre is zero, so that we can
replace the summation from zero to infinity by summation from m to
infinity. When taking the limit x →∞, the terms of higher order can be
neglected with respect to the term of order m. We end up with

RUΦm+ρ(x) ∼ (2x)−(a+b+1)−m

·(−1)m
2a+b+1+mΓ(a+ b+ 1 +m)

Γ(a+ b+ 1)Γ(m+ 1)

∫ 1

−1
ymΦρ+m(y)(y − 1)a(y + 1)b dy
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as x goes to infinity. This last integral is the scalar product of ϕρ+m and
zm in L2(XU ). If we write

φm+ρ =
m∑

j=1

cjz
j ,

then, once more because of Schur’s orthogonality relations,

∫

U
zm(u)φρ+m(u) du =

1

cm

∫

U
(φρ+m(u))2 du =

1

cm dm
,

where dm is the dimension of the representation associated to φm+ρ. As
Φρ+m(x) has asymptotic behaviour cm(2x)m as x goes to infinity, we
deduce

cm = 2mc(m+ ρ).

Hence RUΦs(x) ∼ (−1)mµ(s)(2x)−2ρ−m (x→∞) with

µ(s) =
(−1)m

dm

Γ(a+ b+ 1 +m)

c(ρ+m)Γ(a+ b+ 1)Γ(m+ 1)
, s = m+ ρ, m ∈ N.

This gives the first formula stated for e(s). Using the formula dm = δ(m+ρ)
δ(ρ)

and the explicit formula for δ(s) (lemma 1.3.1), we get the second formula
stated for e. We now observe, using the first explicit formula for the

c-function given in section 1.2, that the term c(s)
Γ(s+a−b+1

2
)

Γ(s+ b−a+1
2

)
gives the

formula for the c-function with permutet parameters a and b. Now the
third formula stated for e is just a consequence of the functional equation
of the Gamma function.

The proposition states that, for x ∈ XG − {x0}, the function {/s >
mβ/2

4 } → C, s %→ e(s)f−s(x) is a holomorphic interpolation of the

coefficients (−1)mk̂x(ρ+m). One can show that this interpolation tends to
zero as /s tends to infinity, and Carlson’s uniqueness theorem (see [Ti39]
5.8) implies that it is the unique interpolation having this property. Let
us now show that the function e is related to the asymptotic behaviour of
the function f−s at its singularity at the origin x0 of XG:

2.4.2 Proposition. — For s ∈ Λ + ρ, the function f−s has the
following asymptotic behaviour at x0: if a > 0,

F−s(x) ∼ s · c(s)(x− 1)−a (x→ 1),

and if a = 0,
F−s(x) ∼ s · c(s) log(x− 1) (x→ 1).
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Proof. — By NEUMANN’s formula and 2.2.2, in the case a > 0,

F−s(x) = (−1)me(s)−1(RUΦs)(x) ∼ (−1)me(s)−1Φs(−1)(x− 1)−a

Using [Er53] 10.8 (13) (observe the normalisation [Er53] 10.8 (3) in this
formula), we get for s = ρ+m

Φm+ρ(−1) = (−1)m
Γ(b+ 1 +m)Γ(a+ 1)

Γ(a+ 1 +m)Γ(b+ 1)
= (−1)m

Γ(s+ b−a+1
2 )Γ(a+ 1)

Γ(s+ a−b+1
2 )Γ(b+ 1)

,

and the observation on the c-function used at the end of the proof of 2.4.1
gives now

(−1)mΦs(−1)e(s)
−1 = c(s)s,

which, substituted into the first equation, gives the affirmation. Similar
for a = 0.

Remarks. 1. One can show, using eqn. (2.1), that the statement of the
preceeding proposition is in fact true for all s (−2s /∈ N) ([Be94b] 2.4.10).

2. In the case of the sphere S2 we can express fs in terms of the
Legendre function of the second kind Qs: F−s(x) = c(s)Qs−1/2(x), and
the classical NEUMANN formula (see introduction) appears as a special case
of 2.4.1.

2.5 RAMANUJANs transform (second version). — Let us put to-
gether the MEHLER and HEINE formulae with HARISH-CHANDRA’s spher-
ical function expansion (HC). For f = kx, where x ∈ XC is such that
z(x) /∈] −∞, 1] and kx(y) = k(x, y) is the kernel function defined in 2.1,
we have f̃(s) = d(s)φs(x) for |/s| < ρ (Prop. 2.3.1), and the coefficients
(−1)mf̂(m + ρ) have a holomorphic interpolation by a(s) := e(s)f−s(x)
(Prop. 2.4.1). Using the relation φs = c(s)fs(x) + c(−s)f−s(x) (2s /∈ Z)
we thus obtain for |/s| < ρ and 2s /∈ Z

f̃(s) = d(s)φs(x) = b(s)a(s) + b(−s)a(−s)

with

(2.2) b(s) :=
d(s)c(−s)

e(s)
.

Using the formula for d(s) from prop. 2.3.1 and the first formula for e(s)
given in prop. 2.4.1, we obtain

b(s) = δ(s)Γ(ρ− s)Γ(s− ρ+ 1)c(s)c(−s)
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= δ(s)
π

sinπ(ρ− s)
c(s)c(−s),

which shows that the b-function defined here is the same as defined in
section 1.4 by eqn. (1.6).

2.5.1 Theorem. — Assume f is a K-invariant function on the rank-
one symmetric space XG admitting the following integral representation:

f(x) = (RGh)(x) =

∫

XG

h(y)k(x, y) dy

where h is a continous and integrable K-invariant function on XG and k
the kernel function defined in 2.1. Then f has a holomorphic continuation
defined on a neighbourhood of XG and on XU −A(x0), where A(x0) is the
antipodal set A(x0) of the base point x0 in XU . Then the restriction of f
to XU − A(x0) is integrable, and the coefficients

a(m+ ρ) := (−1)mf̂(ρ+m), m ∈ N,

have a holomorphic interpolation given by

a(s) = e(s)

∫

XG

h(y)f−s(y) dy,

with e(s) defined in prop. 2.4.1. The function a is meromorphic on
/s > −ρ. The non-compact spherical Fourier transform of f exists for
|/s| < ρ, and, for 2s /∈ Z, satisfies

(R) f̃(s) = b(s)a(s) + b(−s)a(−s)

with b(s) given by one of the formulae (1.6) or (2.2).

Proof. — (i) The function

(RGH)(x) =

∫ ∞

1
H(x)(x+ y)−(a+b+1)(y − 1)a(y + 1)b dy

is analytic on C\]−∞,−1], and behaves like H(1)(x+ 1)−b as x goes to
−1, see 2.2.2. This implies that RGh is integrable on XU . So f̂ exists,
and we can apply Fubini’s theorem to obtain

f̂(m+ ρ) =

∫

XU

φm+ρ(u)(RGh)(u) du

=

∫

XU

∫

XG

φm+ρ(u)k(u, x)h(x) dx du

=

∫

XG

h(x)

∫

XU

φm+ρ(u)kx(u) du dx

= (−1)me(m+ ρ)

∫

XG

h(x)f−(m+ρ)(x) dx

= (−1)ma(m+ ρ),
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using NEUMANN’s formula 2.4.1. In order to see that the function

a(s)

e(s)
=

∫

XG

h(x)f−s(x) dx =

∫ ∞

1
H(z)F−s(z)(z − 1)a(z + 1)b dz

is well defined and holomorphic on /s > −ρ, we remark that F−s(z) ∼
(z − 1)−a(z → 1) (see 2.4.2) and F−s(z) ∼ z−s−ρ(z → ∞). In order
to determine f̃ we use Fubini’s theorem and MEHLER’s formula 2.3.1; we
obtain for |/s| < ρ,

f̃(s) =

∫

G

∫

G
φs(g)k(g, x)h(x) dx dg

=

∫

G
h(x)

∫

G
φs(g)kx(g) dg dx

= d(s)

∫

G
h(x)φs(g)dg

= d(s)(FGh)(s)

converges for |/s| < ρ. Finally, we use (HC) φs = c(s)fs + c(−s)f−s to
obtain the relation

f̃(s) = d(s)

∫

XG

h(x)φs(x) dx

= d(s)

∫

XG

h(x) (c(s)fs(x) + c(−s)f−s(x)) dx

= d(s)(c(s)
a(−s)

e(−s)
+ c(−s)

a(s)

e(s)
)

= b(s)a(s) + b(−s)a(−s)

with b(s) = d(s)c(−s)
e(s) .

2.5.2 Remark. — Our theorems 1.5 and 2.5.1 give a version of
RAMANUJAN’s transform (as introduced by the diagram in section 0.3)
read “from right to left”, but they do not give a formula for the transform
“from left to right”. Let us give at least a partial answer to this problem.
One may ask for the relation between our formula (R1)

f̃(s) = b(s)a(s) + b(−s)a(−s)

and the decomposition of f̃(s) into the “partial spherical Fourier trans-
forms”

f̃(s) =

∫

XG

c(−s)f−s(x)f(x)dx+

∫

XG

c(s)fs(x)f(x)dx,
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where f±s are the functions appearing in HARISH-CHANDRA’s spherical
function expansion. (By prop. 2.4.2 and the following remark, fs is locally
integrable at the origin, so the “partial transforms” are well-defined for
|/s| < ρ if f is bounded.) In the framework of the above theorem these
two decompositions are indeed the same; i.e. one can show that, for all f
described by the theorem and /s > −ρ,

(R′
1) a(s) =

c(−s)

b(s)

∫

XG

f−s(x)f(x) dx.

This can be read as a formula for the Fourier coefficients of f which are
given by (−1)ma(m+ ρ):

(−1)m
∫

XU

φm+ρ(u)f(u)du =
c(−s)

b(s)

∫

XG

f−s(x)f(x)dx|s=m+ρ.

However, this interpolation is described in terms of the “partial spherical
Fourier transform” and not in terms of the usual (symmetric) spherical
Fourier transform, and recovering the partial spherical Fourier transform
directly from the symmetric one would involve a kernel on a∗ × a∗ of the
form

∫
XG

f−s(x)φλ(x)dx.
As for the proof of the above relation (R′

1), it is enough to show it
for the functions f = ky, y ∈ XG − Kx0. Knowing that in this case
a(s) = e(s)f−s(y) (prop. 2.4.1), we have to show that for /s > −ρ,

∫

XG

ky(x)f−s(x)dx = d(s)f−s(x),

which is a sort of “MEHLER’s formula of the second kind” (compare with
2.3.1). In fact, the proof can be carried out along the same lines as our
proof of 2.3.1, using eqn. (2.1) and the fact that [f−s, ky](r)→ 0 (r → 0).

Appendix

We shall give in this appendix a very rough analog of a theory by
Lassalle ([La78]) on the holomorphic continuation of Fourier series on
a compact symmetric space, transferred into the framework of the non-
compact dual. If G = NAK is the Iwasawa-decomposition associated to
the non-compact riemannian symmetric space XG = G/K (see section
0.2) and NC, AC ⊂ UC are the complexifications of the corresponding
groups, then it is clear that the orbit NCAC ·x0 is an open neighbourhood
of XG = NA · x0 in XC (it is even dense). The following proposition is
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stated for the rank-one case but can easily be generalized to the general-
rank case. We use the identification of a∗ (and of its dual) with R by
means of the bigger root β, see section 1.1. The function as is defined on
XG by as(x) = es log a(x) = esH(x), see section 0.2. This function has a
holomorphic continuation onto the neighbourhood NCAε ·x0 of XG, where
Aπ = exp(a ⊕ i] − π, π[). In fact, it is well-known that the function a−1

is a matrix-function of a finite-dimensional UC-representation (it is the
highest weight vector in the first non-trivial spherical representation) and
is thus holomorphic on the whole of XC (this is essentally what is needed
to prove lemma 0.2.1; see [He94].) The holomorphic function as for s ∈ C

may thus be defined on NCAπ · x0 by

as(na · x0) = (a−1(na · x0))
−s = (e− log a)−s = es log a

with log a ∈ a ⊕ i]π, π[. (We might also define as to be a holomorphic
function on the universal cover of NCAC and would then not need the
precautions on the domain of log a.)

A.1 Proposition. — Let F be a function on R such that |F (s)| <
Ce−ε|s| for some C <∞ and ε > 0. Then

(i)

I(x) :=

∫ i∞

−i∞
F (s)as+ρ(x)

ds

c(s)c(−s)

defines a holomorphic function on the neighbourhood NCAε · x0 of XG,
where Aε = exp(a⊕ i]− ε, ε[) (assuming ε < π).

(ii)

J(x) :=

∫ i∞

−i∞
F (s)φs(x)

ds

c(s)c(−s)

defines a holomorphic function on a neighbourhood of XG which is bounded
on XG.

Proof. — (i) For real s we can estimate

|ais(na · x0)| = |eis log a| = e−s'(log a) ≤ e|s'(log a)|.

Hence for x = na · x0 ∈ NCAε · x0:

|I(x)| ≤ |aρ|

∫ i∞

−i∞
|asF (s)|

ds

c(s)c(−s)
≤ |aρ|

∫ i∞

−i∞
e|s|(|'(log a)|−ε) ds

c(s)c(−s)

converges for |6(log a)|−ε < 0, i.e. onNCAε where it defines a holomorphic
function.
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(ii) follows from (i) by averaging over the K-orbits after having chosen
a suitable K-invariant neighbourhood of XG inside NCAε · x0. (Such
neighbourhoods exist as is easily seen using compactness of K.) As∫
K aρ(log(a(kx)))dk = φ0(x) is bounded onXG, the above estimations imply
that J(x) is bounded on XG.
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pour les espaces riemanniens symétriques de rang un, C.R.Acad.Sci.Paris,
t. 318, Série I, 111-116, 1994.
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Institut de Mathématiques (UMR 9994 du CNRS)
4, place Jussieu
F - 75252 Paris Cedex 05

and
Institut Mittag-Leffler
Auravägen 17
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