
PROBLEMS, CONJECTURES, SPECULATIONS

WOLFGANG BERTRAM (JUNE 2017)

“Wir müssen wissen. Wir werden wissen.” (David Hilbert)

In these notes I’m going to draft some open problems, conjectures, and specula-
tions related to my research topics, as presented in [RT]. Retrospectively, I realize
how much I owe to my Göttingen years of studies, with maths and physics living
together as a matter of course. Sharing Hilbert’s optimistic vision of science, I do
think that problems have a solution, and that conjecturing and speculating is part
of mathematical activity. Since the latter are usually banished from “official” re-
search papers, the present notes do not belong to that category. As in [RT], I shall
first develop some ideas related to conceptual differential calculus, and second, ideas
related to the relation between geometry and algebra. But let me start with some
general remarks. (I add some hyperlinks, in grey in the text.)

1. The universe of mathematics, and the mathematical universe

1.1. The universe of mathematics. I have spent a good deal of my mathematical
life by thinking about associative products a�b, and about the fact that any such
product comes together with an “opposite product”, say a♦b := b�a, which is again
associative. It is a feature of nature that there is strictly no reason to prefer using
one, or the other, and they look like monozygotic twins:1 hard to distinguish – all
you can do is to say: “I have fixed one product, and I’m going to use it throughout
the present text”. You cannot be sure your fellow mathematician uses the “same”
product, unless you show him a copy of your text, and both of you agree that you
are both writing from left to right, using the same symbols and conventions, etc.

If you take this silly remark seriously, then you must be puzzled by the fact that
virtually all modern mathematical texts speak of “the” composition of mappings,
which, as you learn, is one of the fundamental notions of mathematics, written g ◦f
and “defined” by (g ◦ f)(x) = g(f(x)). But there is no way to distinguish this from
the notation f(g(x)), except “showing” your text to your students or collegues. For
instance, we cannot know if mathematicians on distant galaxies use the “same”
definition of composition of mappings as we do: even if we assume that “left” and
“right” have the same meaning for them as for us, we cannot know if they write
from left to right, or from right to left. Thus the term “composition of mappings” is
well-defined only in the local context of a civilization where members are connected
to each other via e-mail, internet, reading the same books, or something similar.

You may say, as almost all mathematicians do, that this is not a big deal: it’s
just a question of notation; or: “the set of all products” is the same as “the set

1 In the dictionary I found that in English one also says: “identical twins”. Amazing!
1

https://en.wikipedia.org/wiki/David_Hilbert#Later_years
https://en.wikipedia.org/wiki/Function_composition#Alternative_notations
https://en.wikipedia.org/wiki/Function_composition#Alternative_notations
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of all opposite products”, or: mathematics based on the opposite composition is
“isomorphic” to mathematics based on the “usual” one; it’s just a matter of con-
vention how you write arrows, or morphisms, of your category. However, the fact
remains that notation is something “physical”, not understandable in purely math-
ematical terms, and that there are two ways of composing endomorphisms, which
in general give not the same result. Thus, if you don’t feel too comfortable with
“big” categories, like those of all products, or of the whole of mathematics, then
you may agree that it would be safer to develop our formalism in such a way that,
whenever some mapping, say the product �, or the Riemann curvature tensor or
whatever, is an object of study, you would prefer to look at it as some member of
a small category, that is, to fix a small set, which one may call “local universe”,
and where the mappings that you intend to compose are assumed to live in. Of
course, you need to have the notion of “composition of arbitrary mappings” in your
tool box, since you cannot avoid using it at some level – but then you loose control
over the order of composition. By properly choosing your universe you can retard
this moment as long as you wish. What I say here is a plea for using the language
of groupoids much more systematically than is done usually. Other people already
argued to this end, and I just want to go further: I propose to rewrite calculus
and differential geometry in this spirit. This may sound boring and pedantic, but
I rather guess it’s not: I expect that, done right, it will lead to interesting and
important insights.

Concerning differential calculus and differential geometry, this program is about
half-way carried out in my papers [37, 38, 40], cf. [RT]. What is missing, is a
systematic formalization of what happens if one exchanges everywhere groupoids
with opposite groupoids: “source” α and “target” β are exchanged, as well as
products and opposite produces – my feeling is that this should be the most natural
way towards supersymmetry (see below). In a certain sense this would provide a
good answer to our silly problem: develop a theory that contains source α and
target β as parameters and that predicts what happens if these parameters take
different values.

One can imagine another way out of the “�-versus-♦-dilemma”: if there is a
further product, or a vector space, around, written additively, then one may form
the Jordan product, a • b = a�b+a♦b

2
, sort of avoiding to choose between � and

♦. Even if there is no + around, you always may look at the squaring mapping
x 7→ x�x = x♦x, which retains precisely those properties that are common between
� and ♦. But be aware that you enter a new world, the world of non-associative
products. This world is strange in many respects, and quite fascinating – I have been
working for a long time on the “geometry of Jordan structures”, and I’ll say a bit
more on this below. Concerning the human side of the “universe of mathematics”,
let me just add that Jordan theory is a topic far remote from mainstream, which
even can be considered as an endangered species: it lacks of young academics.

I believe that both “solutions” of our silly problem lead to interesting conclusions,
and that they are “complementary” to each other – rather than choosing between
one or the other, one should pursue both of them simultaneously.
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1.2. The mathematical universe. As a mathematician, I feel quite comfortable
with Max Tegmark’s thesis that there be a bijection between physical reality and
mathematics, the Mathematical Universe Hypothesis (MUH). Basically, I think and
work as if it were true.2 However, I don’t believe that all mathematical structures
are equally important or unimportant for reality, under the hypothetic bijection,
and I would rather think that the “weight in reality” of a mathematical structure
is correlated with its degree of “naturality” or “unavoidability”. For instance, most
people having some scientific education would certainly agree that differential cal-
culus is a piece of mathematics that must have a huge weight in our “mathematical
universe”, whatever the final theory looks like: since Newton and Leibniz, all of
physics is built on calculus. Therefore, on heuristic bases given by the MUH, we
may suspect that any mathematical modification or extension of differential calcu-
lus is likely to reflect profound aspects of physical reality. However, as far as I see,
most physicists and mathematicians do not imagine that differential calculus could
be a topic of active research, and rather consider it as a tool having reached its
final form, to be taught to undergraduates without major changes during the next
centuries. I’m not so sure about that: I would say that calculus is not yet dead, it
still has much potential for development, and we should try to better understand
it; then, by the MUH, this may tell us something about reality.3

As said above, associative products are another important piece of mathematics,
which also should have a very big weight in our mathematical universe. Indeed,
it is hard to imagine any process or motion without associativity. Pascual Jordan
put forward the idea that the mathematical formalism of quantum mechanics could
equivalently be based on the Jordan product •, instead of the associative compo-
sition of operators or matrices. This might suggest that the weight of the Jordan
product in our mathematical universe be even bigger than the one of associative
products. On the other hand, the followers of non-commutative geometry would
certainly defend that the weight of associative, but generally non-commutative,
products, is much higher. If, as I said above, this weight somehow corresponded to
“naturality” of a structure in mathematics, then the purely mathematical discussion
of the mutual relation of these theories and approaches should tell us something
important about reality. For instance, on these grounds, I would rather say that
Pascual Jordan (and his co-workers) were completely mislead when wanting to find
some “exceptional setting” of quantum mechanics, and even more beside the point is
their deception when Adrian Albert discovered that there is no infinite-dimensional
such setting: they should have taken this discovery as a signpost to continue on the
right way, instead of a defeat leading them to abandoning!4

2 I guess that, for a long time, such kind of ideas has been living as folklore in maths and physics
communities. As far as I remember, I first read some explicit version of it in Roland Omnès book
“Converging Realities” [O2]. From its preface: I suggest the name “physism” for the philosophical
proposal that considers the foundations of mathematics as belonging to the laws of nature.

3 I don’t claim to be the only person who considers differential calculus to be a topic of serious
research – see comments in [RT], in particular on synthetic differential geometry. However, try
yourself what you find about differential calculus in the msc2010...

4 Cf. Kevin McCrimmon, A Taste of Jordan Algebras, where the story is told in that way, and
some remarks on this in my book review.

https://en.wikipedia.org/wiki/Mathematical_universe_hypothesis
https://de.wikipedia.org/wiki/Pascual_Jordan
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/siam.pdf
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2. Conceptual calculus, and elementary particles of mathematics

2.1. Calculus. I often feel embarrassed when explaining to other mathematicians
that I’m working on differential calculus: how can such an old and well-understood
theory be a topic of “serious” present-day research? What new stuff could be discov-
ered there – everything is known, isn’t it? In Sections 1.1 – 1.3 of [RT] I have tried
to explain and motivate this research, by describing my way from “usual” differen-
tial calculus via topological differential calculus to conceptual differential calculus.
The last stage is not yet fully accomplished, but the fundamental structure seems
quite clear at present. Although much remains yet to be done, I will not subsume
under “problems” the technical details and computations that remain to be worked
out: this is more or less a matter of patience and time, but not a fundamental
problem. To point out the problems I consider as “fundamental”, and to make
the following discussion more concrete, I will just recall from the introduction to
[40] three formulae that suffice to cast the whole theory (see [RT] for some more
explanations). In a first round, for U one may take an (open) subset in a K-vector
space or K-module V , and, in a second round, a general manifold, by gluing pieces
together. The first formula defines its first extended domain

U [1] := {(x, v, t) ∈ V × V ×K | x ∈ U, x+ tv ∈ U}, (2.1)

and the second formula goes with a theorem saying that the pair (with source and
target projection, units, product and invesion defined as in loc. cit.)

U{1} := (U [1], U ×K) (2.2)

is a groupoid. To write the third formula, we first have to make a formal copy {k}
of the symbol {1}, for each k ∈ N, and then iterate the whole procedure by defining
inductively the following gadget

Un := U{1,2,...,n} := (. . . (U{1}){2} . . .){n}. (2.3)

Iterating the theorem mentioned above, one realizes that Un is an n-fold groupoid.
(Please don’t be afraid if you have never met such animals: nor have I, not long ago.
They don’t bite!) I call it the n-fold tangent groupoid of U . The basic principles
of topological differential calculus then imply that a map f : U → U ′ is smooth
if, and only if, it has natural (continuous) prolongations to groupoid morphisms
fn : Un → (U ′)n, for all n ∈ N. Studying the structure of fn and the one of Un

go hand in hand: that is the heart of “conceptual calculus”. See my lecture notes
[CG] and the papers [37, 38, 40] for unfolding these statements in more detail.

2.2. Understand the scaloid. Although, as I said, writing up explicit formulae
for the structure of Un and of fn is possible and just a matter of patience, I must
admit that I am still quite far from having a comprehensive and good theory of
the algebraic structure of the n-fold groupoids Un. To illustrate the difficulty of
the problem, and without exaggerating too much, one might say that such a theory
would be a “theory of everything” – at least: a theory of everything concerning
infinitesimal and local geometry of general manifolds or varieties. But you cannot
get all this for free: digging details out of the general and abstract approach costs
a lot of work.
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To warm up, one may develop a simplified theory, called in [38, 40] symmetric
cubic, which consists in fixing in each of the formulae (2.1), (2.2), (2.3) the value of
the scalar parameter t, and so on: in the k-th iteration step we take a fixed value tk,
so that the symmetric cubic version of Un depends on a parameter t = (t1, . . . , tn) ∈
Kn. The resulting, symmetric cubic, theory is much simpler than the full cubic one:
it deals with edge-symmetric n-fold groupoids. By letting t1 = . . . = tk = t, and
taking the limit t → 0, we get back “usual calculus”. In a way, symmetric cubic
calculus is “universal” for base fields and rings of characteristic zero.

However, for really understanding what is going on, symmetric cubic calculus
alone does not suffice: one needs “full cubic” calculus. Fortunately, all difficulties
can be concentrated in a single object, which I’ve named scaloid: let us call naked
point, and denote by 0 the zero-subset of the zero-K-module {0}. By definition,
the scaloid is the family of n-fold groupoids 0n, for n ∈ N. Of course, 0 itself is a
trivial gadget, but 0n is not: already 01 = (0[1],K) = (K,K) is not trivial as a set
(although it is trivial as a groupoid), but 02 ∼= K{2} is already non-trivial, both as
set and as algebraic structure. Indeed, the theories of 0n and of Kn−1 are essentially
the same: 0n is a non-trivial (n − 1)-fold groupoid. It secretely enters into most
computations related to Un. The abstract reason for this is explained in [37].

Now, here is a question, admittedly speculative: let us assume that some ver-
sion of the MUH is true; then the family of scaloids (0n)n∈N must correspond to
“something real” – what is it? It must be something “very small”, indeed corre-
sponding on the level of base sets to a single point. The most natural speculation
would be that it somehow represents “elementary particles”, or maybe better: some
“classification system of elementary particles”. Namely, for each n, the scaloid 0n

is a collection of 2n sets, each of which is a free finite dimensional K-module, and
the highest of these sets (the “top vertex set”) is rather big – it has dimension
2n − 1. So there is plenty of room for interesting mathematics to happen: one may
try to break up these spaces into “irreducibles”, which each could play the rôle of
some more specific type of “elementary particle” – for instance, each of these 2n

spaces certainly decomposes into irreducible subspaces under the action of certain
symmetry groups. Such groups could enter the stage on the levels n = 1, 2, 3, and
they could be related to the groups SU(3), SU(2),U(1) that physicists like to use in
gauge theories. But let me say again, even if this speculation were entirely ill: for
purely mathematical reasons, understanding the scaloids really is the key to under-
standing conceptual calculus, and these “elementary particles” may play a useful
rôle in mathematics, even if physics does not want them.5

2.3. Discrete versus continuous, and difference versus differential calculus.
It seems to be a mad idea to develop “differential calculus” over discrete, possibly
finite, fields or rings: you can do difference calculus, that is, look at finite difference
quotients, but there is no way to take their “limit”. Nevertheless, if you have
not yet abandoned reading this text, you should be prepared to find it less crazy:
the “conceptual” approach is algebraic in nature, and it suffices to upturn things.

5 This discussion is related to the “functor of points approach” from algebraic geometry, but
should not be confused with it. As far as I see, the scaloid never appeared in algebraic geometry.
Explaining the precise relation of these theories with each other is part of our problem list.

https://ncatlab.org/nlab/show/functorial+geometry
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Indeed, this can be done ([38)]): in topological calculus, we used topology to prove
certain algebraic properties; now let us take these algebraic properties as starting
point. That is exactly what algebra people do with polynomials: they replace the
analytic concept of a polynomial function by the algebraic concept of an abstract
polynomial.

But why should one want to do this? First, there are purely mathematical rea-
sons: e.g., modern algebra cannot do without abstract polynomials, for good rea-
sons, and likewise, some day, conceptual analysis will not waive abstract smooth
functions neither. For present day analysts this day may seem still very far away,
and all this will sound exotic and extremely formal. But, second, let’s add some
speculation: quantum physics suggests that the universe be discrete in nature; so,
if we want to continue using differential calculus in physics, we may need something
like “discrete differential calculus”. Maybe there are other, better, propositions of
how this can be done – but it least it seems to me that the “conceptual” approach
raises questions that have to be answered in this context. For instance, what is
the rôle of infinity? As far as I see, “infinitesimal calculus” needs to use “infinite
mathematics” somewhere. In usual, topological calculus, this infinity comes in via
the (uncountable) infinity of the point set underlying the topological spaces (real
manifolds, typically), and this infinity allows to recover all desired limits, as usual
in analysis. If the underlying point set is discrete, or even finite, this is no longer
possible. Then either we must give up the idea of “derivatives of all orders”, and
content ourselves with the poor information of zero-jets, or we store the infinite
information somewhere else: in a sort of “attached file” to the possibly finite base
space M , we carry along all higher order finite spaces (Mn)n∈N. The (uncountable)
infinity of the base set is now replaced by letting each point be carrier of a (count-
able) infinity of information. Thus, there are two different kinds of infinity in play,
and even in a “physically finite” universe we will need infinite mathematics.

Of course, pursuing this approach, a lot of new problems will appear. For in-
stance, relating the differential notions of length and volume with their local or
global analogs, in a discrete space, raises entirely new questions – the answers from
usual real differential geometry do not carry over. To add some more speculation: it
would seem unreasonable to give up topological notions completely; one may rather
wish to “combine” both approaches, using some discrete-valued distance function
on the base space, in order to modelize quantum foam; and doing so, the “ratio”
between the two kinds of infinity mentioned above should be some fixed value,
resembling something like a “Planck constant” associated to a discrete space.

2.4. Connections. The main progress, and the main challenge, related to con-
ceptual calculus is to understand the link between infinitesimal and local (or even:
global) features of “space” in an algebraic (conceptual, chart-independent) way, and
not, as in the usual approach, in an analytic way, via some chart-dependent topolog-
ical “limit process”. Once you start looking at things this way, you will wish to do
something similar with various structures appearing in differential geometry. The
most important of these are probably connections (affine, principal, or whatever):
you will wish for a local (or global) concept of connection. Remarkably, such a theory
already exists, although it is hardly known, even among specialists: L.V. Sabinin

https://en.wikipedia.org/wiki/Quantum_foam


PROBLEMS, CONJECTURES, SPECULATIONS 7

has developed, in a long series of papers, an approach to (affine) connections based
on the algebraic concepts of loops and quasigroups, see his book Smooth Quasigroups
and Loops. On page 5 of his book, Sabinin writes: Since we have reformulated the
notion of an affine connection in a purely algebraic language, it is possible now to
treat such a construction over any field (finite if desired)... Naturally, the complete
construction needs some non-ordinary calculus to be elaborated. You will not be
surprised reading me claim that Conceptual Calculus is precisely the “non-ordinary
calculus” that Sabinin was dreaming of, and that nothing prevents us now from
putting his conjectures into practice. Moreover, doing this should shed new light
both on his theory, and on conceptual calculus itself. If ever you have the courage
to read his book, you will agree that it would be useful to reformulate things in
a more modern and conceptual way (he heavily uses coordinate-computations in
which one quickly gets lost). I’ve been working on this since quite a while. The
manuscript is still unfinished, both for reasons of time, and because there are still
several fundamental issues to be better understood. See also Section 6.3.6 of [40].

2.5. Basic symmetries: CPT. An observation that may be pure coincidence, or
not: the most basic symmetries of the tangent groupoid U{1} (and hence also of all
higher groupoids Un) strongly resemble CPT symmetry from physics:

(C) is inversion in the groupoid U{1}, given by i(x, v, t) = (x+tv,−v, t); as every
groupoid inversion, it is an antiautomorphism: it exchanges α and β, and
the groupoid product ∗ and its opposite product ∗opp.

(P) is the map f {1}(x, v, t) = (−x,−v, t) induced by the spacial point reflection
at the origin, f : V → V , x 7→ −x. In fact, for each point p ∈ V , the point
reflection at p induces such a groupoid automorphism. The collection of
point reflections encodes the structure of V as a symmetric space, that is, V
together with its natural flat connection. But the same definitions could be
made for symmetric spaces with curvature, or even for any affine connection.

(T) is the map σ(x, v, t) = (x,−v,−t) which is the same as the rescaling auto-
morphism Φs for s = −1, as defined in [38, 40].

Is there something special about the anti-automorphism CPT that sends (x, v, t) to
(−x− tv,−v,−t) ? I don’t know.

2.6. Supersymmetry? I have never seriously worked on (mathematical questions
of) supersymmetry. But, knowing people working in this domain, and since the
formalism is interesting and intriguing, I have regularly read books and papers
about this topic. The main reason distracting me from going to work in this domain
is that its principal thread, the “sign rule”, lacks a more profound motivation: the
motivation mentioned most often is that “it works”, but I would like to know, why
does it work? For my taste, the most natural, and most satisfying, solution of
this question would be that supersymmetry is a kind of answer to the �-versus-
♦-dilemma that I mentioned in the very beginning. Whatever you do, there is no
reason to prefer � or ♦. And, even if you have fixed your choice, there is no abstract
way to “communicate” it: you can communicate it only by using physical procedures
(like those called “notation”, using ink and paper, or computers). Thus the dilemma
seems to be not only a mathematical one, but rather a joint problem of maths and

http://www.springer.com/us/book/9780792359203
http://www.springer.com/us/book/9780792359203
https://en.wikipedia.org/wiki/CPT_symmetry
https://de.wikipedia.org/wiki/Ladungskonjugation
https://en.wikipedia.org/wiki/Parity_(physics)
https://en.wikipedia.org/wiki/Symmetric_space
https://en.wikipedia.org/wiki/T-symmetry
https://en.wikipedia.org/wiki/Supergeometry
https://en.wikipedia.org/wiki/Supergeometry
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physics. Taken seriously, this remark should have a number of consequences, among
them supersymmetry.

Of course, you may hope that, in the whole of maths, a “usual” composition,
named ◦, somehow will win the game – that is, you may hope there is some kind of
“mathematical parity violation”. But to me that would be a great surprise! Rather,
my feeling is that the “axiom” saying “◦ exists” is comparable to Euclide’s parallel
postulate: logically sound, but independent of the remaining structure, and there
may be life beyond it (non-Euclidean life. Finally, that question was settled from
the physics side.) As long as we don’t know, and in order to better understand the
logical status of a possible mathematical parity violation, I propose to work with
local universes: small sets M , the small groupoids Mn built on such sets, and so on,
step by step. Since (bijective) mappings f : M → M are nothing but (bi)sections
of the pair groupoid (M ×M,M) of M , you eventually get all maps that you may
be interested in, and you avoid speaking about “all maps in all of mathematics”.

To make these speculations more concrete, juste note that, exchanging the “usual”
composition and its opposite, amounts to exchange “everywhere in mathematics”
the target map β and the source map α. To make sense out of this, let’s do this
already on the level of our groupoids M{1}: what happens if we exchange source
and target there? Well, everything seems to look as before: we just have applied the
inversion (C) from above, which is an automorphism from the groupoid onto its op-
posite groupoid. (But maybe time (T) is now going backwards? Or are we reading
it backwards?) Anyhow, forgetting motivation of supersymmetry from physics, one
would like to know for purely mathematical reasons how a theory like conceptual
calculus behaves if we exchange source and target, at least for a fixed “universe”
M : what happens if M{1} is replaced by its opposite groupoid? and if we do the
same exchange when applying the next copy {2}: combining, do we get 2 × 2 = 4
different versions of M2? and so on: do we get some kind of (Z2)

n-grading on Mn?

3. Geometries, Algebras, and Coquecigrues

While the preceding section was about a part of general language of mathematics
(differential calculus), let’s now turn to something more specific:

3.1. Coquecigrues. The coquecigrue is a specious and farcical imaginary creature
mentioned first by Rabelais in “Gargantua”. The wikipedia page does not mention
the use of this word in mathematics: indeed, it is not part of the official language
of maths, and I use it to render homage to Jean-Louis Loday, who not only liked
mathematics but also associating colorful and fancy words and names to our activity.
So, here is the “general coquecigrue problem”: given some class of algebras (defined
in the sense of universal algebra by identities, such as: Lie-, Jordan-, associative,
alternative, or other kinds of algebras), is there a correspondence between algebras of
this type and certain geometric objects (the coquecigrues), which sort of “integrate”
the algebra? As far as I know, Loday never raised the problem in this degree of
generality, but just for a special kind of algebras (the Leibnitz algebras). Of course,
he had in mind the best known such correspondence, the one between Lie groups and
Lie algebras, and he was quite enthusiastic when I told him (later) that for Jordan
algebras the coquecigrue more and more transmutes from an imaginary creature to

https://de.wikipedia.org/wiki/Parit%C3%A4tsverletzung
https://fr.wikipedia.org/wiki/Coquecigrue_%28cr%C3%A9ature%29
https://fr.wikipedia.org/wiki/Coquecigrue_%28cr%C3%A9ature%29
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a real one – and hopefully no longer appearing specious and farcical to the common
mathematician. Although I’m aware that the “general coquecigrue problem” sounds
a bit vague and ill-defined, I’m inclined to think that it is well-posed and has a
solution. However, at present there is not even the slightest beginning of a general
theory dealing with the general problem, but only a collection of examples where
the coquecigrues are more or less tamed and have entered into the zoo of respectable
mathematical beings. Thus, before attacking the general problem, it seems wiser
continuing to glean more and more animals in order to better understand this zoo.

3.2. The associative coquecigrue, and NCG. Noncommutative geometry (NCG)
is a mathematical theory started by Alain Connes and concerned with a geometric
approach to associative, noncommutative algebras, and with the construction of
spaces that are locally presented by them (possibly in some generalized sense). Its
dream is to generalize the classical duality to the duality between noncommutative
algebras and geometric entities of certain kinds, and give an interaction between
the algebraic and geometric description of those via this duality. In other words:
the dream of NCG is to find and tame the “coquecigrue of associative (possibly
non-commutative) algebras”! Well, it’s not – this would be a profound misunder-
standing. See Section 2.4 of [RT] for some comments on this point: there are two
powerful paradigms in maths, relating geometries and algebras, the “Lie paradigm”
and the “Grothendieck paradigm”, to pin names on them, and you cannot follow
both of them at the same time (at least, not today). This does not mean that one
of them were “wrong”: rather, they seem to be “complementary”, shedding light
on mathematical structures in a very different way. I would be very interested to
know the opinion of NCG-ers on this, but so far I did not succeed.

3.3. The geometry of quantum mechanics. The rest of this section is devoted
to speculations. Quantum theory, the heart of present day physics, has been formu-
lated axiomatically by Paul Dirac and John von Neumann, with some subsequent
updates by them and by other persons, as an algebraic theory in terms of asso-
ciative (C∗-) algebras, or (P. Jordan: see above) in terms of Jordan algebras, or
(G. Emch) in terms of Jordan-Lie algebras. Given that quantum theory can be
formulated axiomatically in the framework of some class of algebras, and given a
positive answer to the coquecigrue problem for that class of algebras, it follows that
the axioms of quantum theory can be formulated in a geometric way, in terms of
the geometry of the “coquecigrue”. This is a purely mathematical result; it remains
of course an open question if this axiomatic geometric formulation leads to new
insights. Assuming some variant of the MUH, there may be arguments in favor of
that; I have written them up in my texts [23] and [O8], and the interested reader
should have a look at these. As a mathematician, I find it quite curious that there
are over twenty “interpretations” of quantum mechanics, and thousands of pages of
discussion which one is the “correct one”, but the Dirac-von Neumann axioms seem
perpetual and out of range of questions. Maybe after another 2000 years shall we
find, as for Euclide’s axioms of geometry, that they have some flaws, and that we
can play around with the fifth postulate and get something new and very interest-
ing? In this sense, proposing a “coquecigrue approach” is just playing around with
mathematics. Maybe we will find something, or maybe not.

https://en.wikipedia.org/wiki/Noncommutative_geometry
https://en.wikipedia.org/wiki/Noncommutative_geometry
https://en.wikipedia.org/wiki/Noncommutative_geometry
https://en.wikipedia.org/wiki/Noncommutative_geometry
https://en.wikipedia.org/wiki/Noncommutative_geometry
https://en.wikipedia.org/wiki/Noncommutative_geometry
https://en.wikipedia.org/wiki/Noncommutative_geometry
http://en.booksee.org/book/509602
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics#Mathematical_structure_of_quantum_mechanics
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In the following, let me briefly take up those topics where my regard has changed
since I wrote [23] and [O3], be it because of mathematical progress made meanwhile
(in particular, better understanding of associative geometries, which I now prefer
to Jordan geometries) or because of reading other books and other opinions (in
particular, I would like to mention books by David Deutsch and Carlo Rovelli).

3.4. Duality. Duality is a pervasive feature of our most fundamental mathematical
theories – see, e.g., this beautiful paper by Michael Atiyah. If you look at the
wikipedia list of dualities, you find that mathematics is most fond of cooking them in
various ways, followed by physics, whereas in philosophy there is basically “just one
duality”, which then re-appears in various implementations. For people interested
in science, maybe the most salient implementation of these philosophical dualities is
the “mind-body dualism”: as in particular David Deutsch stresses in his books, the
activity of the mind, and the role played by “information”, become more and more
a part of physics, and having an increasing influence on the cosmological evolution.
Sooner or later, physics will have to take seriously account of this – and hence
maths, too, if we believe in the MUH!

My own speculation in this realm is that, also in physics, there should essentially
be just one, fundamental, duality, and which should translate the most classical
duality of mathematics: the duality between (topological) vector spaces V and their
dual space V ′, or its geometric avatar, duality in projective geometry. Mathemat-
ically, this duality is one of the origins of the Jordan Pair concept by Ottmar
Loos, whose geometric avatar is in turn the duality of generalized projective geome-
tries, as explained in [23]. One advantage of a geometric coquecigrue-description
of quantum theory could be that the rôle of duality becomes much more eminent
and fundamental: you really better understand projective geometry if you learn
to distinguish a space and its dual space, even if at the beginning you were only
interested in “space”, and not in its “dual space”. This is precisely what Roland
Omnès in [O], p. 527, says about physics: The pure philosopher may start from
a postulated unity and call it Being. He may then concede the necessity of distin-
guishing two modes of being and call them reality and logos, or whatever else... A
physicist groping with his science is after all following the same path. In [23], I
proposed the terms observable and observer for elements of space and dual space.
Of course, by “observer” is not meant a human being. I just propose to concede
the necessity of distinguishing two modes of being, and hope that this may help to
better understand and describe our theory of reality. Since the mind-body problem
belongs to reality6, it may be hoped that we get a bit closer to understanding it.

3.5. Monism. Dualism is not the end of the story. I do not want to “decide” be-
tween dualism and monism, or triism, or polyism. On purely mathematical grounds,
the distinction between these isms can be questioned. Indeed, this is a beautiful
lesson that mathematics can tell philosophers: Plato, and every other geometer,

6 I cannot abstain from quoting Hermann Weyl at this point ([W], p. 215): The body-soul
problem belongs here too. I do not believe that insurmontable difficulties will be encountered in
any unprejudiced attempt to subject the entire reality, which undoubtedly is of a psycho-physical
nature, to theoretical construction.

http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/Atiyah-Duality.pdf
https://en.wikipedia.org/wiki/List_of_dualities
https://en.wikipedia.org/wiki/Dualism_(philosophy_of_mind)
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would concede that duality in projective geometry is an extremely useful and beau-
tiful principle, and he won’t waive it. However, there is one special case where
this duality breaks down, and the distinction between space and dual space really
becomes a fiction: this is the one-dimensional case, the case of the projective line.
A hyperplane in a projective line is a point, and so the “space of hyperplanes” then
really is “the space of points”: space and dual space literally are the same. You
may say that this case is degenerate and uninteristing. This is true for the ordinary
projective line RP1, or CP1. But there are other, very interesting “generalized pro-
jective lines”: namely the projective lines over possibly non-commutative algebras
A, denoted by AP1 (see [O8] for their definition). And much more: these general-
ized projective lines, and their associated “Hermitian projective lines”, turn out to
be precisely the coquecigrues belonging to associative (involutive) algebras, hence
are exactly the “geometric home” for quantum theory! Thus we end up with an
apparently paradoxal situation: we have to distinguish “space” and “dual space”,
but in the end we find out that the distinction is a (useful) fiction. The lesson is
that sometimes the “same” thing has to be seen double if you want to understand
it. Mathematics tells us that there is no logical contradiction about this.

3.6. The relational aspect. Relational quantum mechanics (RQM) is an inter-
pretation of quantum mechanics which treats the state of a quantum system as
being observer-dependent, that is, the state is the relation between the observer
and the system. This approach has been developed by Carlo Rovelli since 1994,
and presented to a large readership in some recent quite popular books. It would
fit very well with our geometric coquecigrue-approach, and possibly even gain in
acuteness: a point (“state”) should be understood not as a “point x in space”, but
as a pair (x, a) consisting of a “point x in space” and a “point a in dual space”
(observer). The “space of quantum mechanics” is the space of such pairs (x, a),
i.e., the cartesian product X ×X ′ of space X and dual space X ′. The space-point
x can only be described via its relation to an observer-point a. Indeed, as in usual
projective geometry, the dual point a (hyperplane) defines an “affine chart” of the
point-space X, and only the chart-picture is accessible to physicists (measurements,
description by numbers, etc.). And vice versa.

According to RQM, the error of the standard description of quantum mechanics
is to consider one observer to be fixed once and for all, and to consider all others
as unreal fictions. The geometric picture might carry this approach even further
than Rovelli did: as Rovelli was inspired by the analogy with special relativity,
the coquecigrue-approach would suggest an analogy with general relativity: the
whole structure is a geometric, non-linear object; the affine and linear structure
also is observer-dependent, as is the case for true, “curved”, manifolds. Different
observers may observe different linear structures. (Here it is important to use the
precise mathematical language: the linear structures may be different, but they will
always be isomorphic. Possibly, much confusion in mathematical physics goes back
to not carefully distinguishing between “different” and “non-isomorphic”: “being
identical” is context-depending – it depends on the category you are working in).

3.7. How many worlds? I must admit that, until quite recently, I did not really
take seriously the Many-worlds interpretation (MWI) of quantum mechanics – if

https://en.wikipedia.org/wiki/Relational_quantum_mechanics
https://en.wikipedia.org/wiki/Relational_quantum_mechanics
https://en.wikipedia.org/wiki/Relational_quantum_mechanics
https://en.wikipedia.org/wiki/Relational_quantum_mechanics
https://en.wikipedia.org/wiki/Relational_quantum_mechanics#History_and_development
https://en.wikipedia.org/wiki/Many-worlds_interpretation
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at all the “interpretation” of quantum mechanics was mentioned as a topic, my
Göttingen teachers rather depicted some abridged Copenhagen interpretation as
the final state of the story (the shadow of Heisenberg over Göttingen... and maybe
even more the one of his student Carl Friedrich von Weiszäcker, who is hardly known
outside Germany, but whose books had highest ranking and large readership in old
Western Germany). I still feel unable to judge and to “choose” between various
“interpretations” of quantum mechanics; but I find convincing the arguments in
favor of the MWI formulated by David Deutsch in his books.

As a mathematician, I would be even more convinced if the MWI came out as
a natural way of reading the mathematical structure of quantum theory – and in
this respect, my hope would be that playing around with the axioms of quantum
mechanics, as said above, would clarify the picture, just like Hilbert’s “Grundlagen
der Geometrie” clarified the picture, more than 2000 years after Euclide. Playing
around with a geometric “coquecigrue-approach” might open interesting possibili-
ties, and at least it may give an indication into which direction one might play the
game. In fact, the arguments supporting a compatibility with MWI are the same
as those supporting a compatibility with RQM, so that, in the end, I wonder if
MWI and RQM are really so much different from each other. Indeed, what would
distinguish the “world” from the “world observed by an observer”? Our world is
the world observed by us. And hence, if we agree that there are many observers,
and that our description of things really is depending on the observer, we must also
agree that there are many worlds. (Let me say once again that by “observer” is
not meant a human being, but just a mode of being belonging to the dual space
X ′ of the point space X. Because of the problem of self-reference, human beings
are “too big as categories” to be treated in the language of small sets and small
categories. Or, to put it once again with the words of Hermann Weyl, [W], p. 215:
The real riddle, if I am not mistaken, lies in the double position of the ego: it is not
merely an existing-individual which carries out real psychic acts but also a ‘vision’,
a self-penetrating light (sense-giving consciousness, knowledge, image, or however
you may call it).)

4. Conclusion

I think this is enough for today. Comments are welcome.

W.B., Villers-lès-Nancy, june 2017
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