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The purpose of the following short note is to propose an axiomatic approach,
called affine algebra, to affine spaces over a field K: I will explain that affine
spaces over K are the same thing as vector spaces equipped with the new laws
S(a, b, c) = a − b + c and Pr(b, c) = (1 − r)b + rc. To start an axiomatic the-
ory, we characterize these two laws by certain algebraic identities (in the sense of
universal algebra), implying that, for b fixed, we recover a vector space with origin
b. The main difference with the “usual” definitions is of logical order: whereas the
“usual” definition takes vector spaces as logically prior to affine spaces, we opt for
two indepependent definitions – you can start with affine spaces and go to vector
spaces, or the other way round, as you wish. This has the advantage that all cat-
egorical notions (morphisms, subspaces, etc.) are simpler and more natural than
in the usual approach. The presentation given here is a further development of
ideas from my paper [13] (see paper list on my homepage), but, certainly, all this
essentially is “folklore” – see, e.g., the informal description of affine spaces in the
wikipedia article: all I do here is to turn this “informal” description into a “formal”
one. For teaching affine spaces on an elementary level, it is not necessary to discuss
the axioms in full length: it suffices to know that S and P contain the whole thing.

Since there is no extra cost, in the following we allow K to be any unital ring,
and we define the affine space analog of left K-modules. Of course, the reader may
think of a commutative field and vector spaces.

1. Affine spaces

Definition. An affine space over K is given by a set A with two structure maps

S : A× A× A→ A, (a, b, c) 7→ S(a, b, c),

P : K× A× A→ A, (r, a, b) 7→ Pr(a, b) := ra(b)

satisfying, for all a, b, c, u, v ∈ A,

(S1) S(a, a, c) = c = S(c, a, a)
(S2) S(a, b, c) = S(c, b, a)
(S3) S(S(a, b, c), u, v) = S(a, S(b, c, u), v),

and, for all r, s ∈ K and a, b, c, d ∈ A,

(P1) P1(b, c) = c
(P2) Pr(b, Ps(b, c)) = Prs(b, c)
(P3) Pr(b, S(a, b, c)) = S(Pr(b, a), b, Pr(b, c))
(P4) Pr+s(b, c) = S(Pr(b, c), b, Ps(b, c))
(P5) S(a, b, Pr(c, d)) = Pr(S(a, b, c), S(a, b, d)).
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A morphism of affine spaces (A, S, P ), (A′, S ′, P ′) is a map f : A→ A′ commuting
with structure maps: f(S(a, b, c)) = S ′(fa, fb, fc), f(Pr(b, c)) = P ′r(fb, fc).

Lemma 1.1. If (A, S, P ) is an affine space over K, then, for any b ∈ A, the set A
with vector addition and multiplication by scalars

a+ c := a+b c := S(a, b, c)

rc := r ·b c := Pr(b, c)

becomes a left K-module (A, b) with origin b. Moreover, an affine map f : A → A′

gives rise to a linear map f : (A, b)→ (A′, f(b)).

Proof. Properties (S2), (S3) say that (A,+b) is commutative and associative, and
(S1) that b is a neutral element. The element S(b, a, b) is a negative element of a:

S(S(b, a, b), b, a) = S(b, S(a, b, b), a) = S(b, a, a) = b = S(a, b, S(b, a, b)).

Thus (V,+b, b) is an abelian group. Now, (P1) – (P4) are precisely the properties
of scalar action: 1c = c, r(sc) = (rs)c, r(a+c) = ra+rc, (r+s)c = rc+sc, proving
that we get K-modules. (Property (P5) is not needed to prove the lemma.) In the
same way, it is immediate that f : (A, b)→ (A′, f(b)) is linear. �

Lemma 1.2. Let V be a left K-module. Then (V, S, P ), with structure maps

S(a, b, c) := a− b+ c

Pr(b, c) := (1− r)b+ rc

satisfies Properties (S1) – (P5), i.e., it is an affine space over K.

Proof. This is checked by straightforward computation which we leave to reader. �

Theorem 1.3. The constructions from the preceding two Lemmas are inverse to
each other.

Proof. Obviously, starting with a linear space (V, 0), constructing (V, S, P ) by Lemma
1.2, we get back the linear space we started with, by using Lemma 1.1 with b = 0.
Conversely, assume given an affine space (A, S, P ) and fix some base point o ∈ A
and define a+ c := S(a, o, c) and rc := Pr(o, c). We have to show that

S(a, b, c) = a− b+ c, Pr(b, c) = (1− r)b+ rc.

The first of these conditions follows from (S1) - (S3), recalling that −b = S(o, b, o),

(a+ (−b)) + c = S(S(a, o, S(o, b, o)), o, c) = S(S(a, o, o), b, S(o, o, c)) = S(a, b, c).

In order to prove the second condition we use (for the first time) condition (P5):

Pr(b, c) = Pr(b+ o, b+ (c− b)) = Pr(S(b, o, o), S(b, o, c− b))
= S(b, o, Pr(o, c− b)) = b+ r(c− b) = (1− r)b+ rc

(for the last equality, recall that by Lemma 1.1, (V, o) is a linear space). �

Remark and example. Condition (P5) is needed only for the last step. One may
wonder whether it is a consequence of the other properties. In fact, it is not: for
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instance, let V 6= 0 be a complex vector space, so K = C, and define new laws:
S̃ := S, and P̃ is defined as follows:

P̃r(0, c) = rc, ∀b 6= 0 : P̃r(b, c) := (1− r)b+ rc.

Then, for any fixed b, the “local” laws +b, ·b define complex vector spaces (the usual
space, for b = 0, and the complex conjugate spaces, for b 6= 0), hence (S1) - (P4) are
satisfied, but (P5) is not: translations are not isomorphisms from one local space to
another. On the other hand, for K = R or K = Q, condition (P5) does indeed follow
from the other ones, since these fields do not admit non-trivial automorphisms.

Theorem 1.4. Affine spaces are the same thing as linear spaces equipped with the
laws S(a, b, c) = a− b+ c and Pr(b, c) = (1− r)b+ rc. Stated more formally: there
is an equivalence of categories between affine spaces as defined above and affine
spaces, defined in the usual way. The category of linear spaces (i.e., K-modules) is
equivalent to the category of affine spaces with a fixed base point.

Proof. This is a fairly direct consequence of the preceding theorem: if (A, S, P ) is
an affine space as defined above, define the translations and translation group by

Ta,b : A→ A, x 7→ Ta,b(x) := S(a, b, x),

V := Tran(A) := {f : A→ A | ∃u, v ∈ A : f = Tu,v}.
Fixing an origin o ∈ A, it follows from the preceding theorem that V is an abelian
group carrying a natural K-module structure and acting simply transitively on A,
so we have the usual properties of an affine space. Conversely, in Lemma 1.2 we
have seen that an affine space in the usual sense defines one in our sense.

In order so see that morphisms also correspond to each other, it remains to show
that an affine map f : A → A′ in our sense induces a linear map F : Tran(A) →
Tran(A′). This can be proved in the usual way, by choosing an origin o ∈ A and
using arguments in linear spaces. (The reader who wishes so may give a more
conceptual proof, avoiding the choice of base point.) �

Remark. In the context of the preceding proof, property (P5) enters to the effect
that the translation group is not only an abelian group, but also carries a well-
defined scalar action, and thus is a module.

2. Affine combinations and barycentric calculus

As a consequence of the preceding theorem, affine combinations of the form a−
b+c and (1−r)b+rc are independent of the base point o chosen to define addition +
and multiplication by scalars ·. In fact, any sum of the form

∑
i λiai with

∑
i λi = 1

is independent of the choice of base point p used in its definition: the notion of
affine combinations is intrinsic to affine geometry. Indeed, choosing some other
base point p instead of o, we claim that

λ1a1 + . . .+ λkak = λ1 ·p a1 +p . . .+p λk ·p ak.
To prove this, note the sum on the right hand side has k terms, and hence there
are k − 1 signs +p ; since x +p y = x − p + y, we have to subtract (k − 1)p. But,

λi ·p ai = (1− λi)p+ λiai, thus we have to add the term
∑k

i=1(1− λi)p = kp− p =
(k − 1)p, so the terms cancel out, and we get the sum on the left hand side.
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3. Categorical notions

Since affine spaces are defined by structure maps satisfying certain identities, they
form a variety in the sense of universal algebra, and thus all “categorial” notions
are completely natural (see also [13]):

(1) morphisms (=affine maps) f : A→ A′ have been defined above;
(2) subspaces are subsets B ⊂ A closed under P and S; equivalently, they are

stable under all affine combinations,
(3) direct products A× A′ are defined by

S((a, a′), (b, b′), (c, c′)) := (S(a, b, c), S ′(a′, b′, c′)),
Pr((b, b

′), (c, c′)) = (Pr(b, c), P
′
r(b
′, c′)),

(4) the space Map(A,A′) of all maps between affine spaces A,A′ is again an
affine space, by taking the pointwise structure

(S(f, g, h))a := S(fa, ga, ha), (Pr(g, h))(a) := Pr(ga, ha);
(5) if, in the preceding item, A = A′, then Map(A,A) carries a canonical struc-

ture of K-module, by taking idA as base point in the affine space Map(A,A),
(6) if K is commutative, then the space Aff(A,B) of affine maps between A

and B is an affine subspace of Map(A,B); thus Aff(A,A) then carries a
canonical K-module structure.

Using this, we get a very natural construction of the universal space Â of the affine
space A, and certain facts and constructions easily generalize for torsors.

4. Identities

The maps S and P satisfy many other identities, apart from those defining them.
Indeed, one may replace the defining identities by other ones from the following
list – and maybe the reader may find shorter, or more convincing lists of defining
axioms. We leave the proof of the following identities as an exercice, as well as
finding some geometric or categorical interpretation for them:

(1) Pr(a, a) = a
(2) P1−r(a, b) = Pr(b, a)
(3) if rs = sr, then Pr(a, Ps(b, c)) = Ps(Pr(a, b), Pr(a, c))
(4) if rs = sr, then Pr(a, Ps(a, b), Ps(c, d)) = Ps(Pr(a, c), Pr(b, d))
(5) Pr(S(a, b, c), S(u, v, w)) = S(Pr(a, u), Pr(b, v), Pr(c, w))
(6) Pr(a, S(u, v, w)) = S(Pr(a, u), Pr(a, v), Pr(a, w))
(7) Pr(a, Ps(b, c)) = S(Pr(a, b), b, Prs(b, c))
(8) S(S(a, b, c), S(u, v, w), S(x, y, z)) = S(S(a, u, x), S(b, v, y), S(c, w, z))
(9) S(a, b, a) = P−1(a, b) = P2(b, a)

If the scalar 2 is invertible in K, the last relation (9) can be used to recover the
map S from the map P : namely, rewriting a+ c = 2a+c

2
, with new origin b, reads

S(a, b, c) = P2(b, P 1
2
(a, c)).

This permits to give an axiomatic definition of affine spaces based on the map P
only – see [13], where the approach is carried further to define projective algebra.
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