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Présentation du cours en français. Ce cours d’un volume de 20 heures, destiné
à un public large de doctorants et de chercheurs dans les domaines scientifiques,
trâıtra de thématiques qui m’ont occupées – et qui m’occupent toujours – dans
ma recherche : la géométrie était, depuis plus que 2500 ans, non seulement un
domaine des mathématiques, mais aussi un langage, une façon de “voir” le monde
matériel ou immatériel. Plusieurs mathématiciens, suivant en cette matière Platon
et Euclide, seraient prêts à défendre que toute mathématique est géométrique ;
d’autres, issus de la grande école mathématique de l’ex-URSS, voient la géométrie
plutôt comme une manifestation de l’activité, synthétique et intuitive, de notre
hémisphère droite du cerveau, en constante interaction dialectique avec l’action du
cerveau gauche, analytique et formelle. La physique fondamentale du 20e siècle
reflète cette dialectique : théorie géométrique pure, pour l’une des grandes théories
(relativité) ; théorie linéaire, analytique et non-géométrique, pour l’autre (théorie
quantique).

Bien qu’issus de recherches géométriques au sens premier, les sujets du cours fer-
ont plutôt partie d’une étude du “langage géométrique”, au sens second : le titre du
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cours est une petite allusion à celui du livre Conceptual Mathematics – A first intro-
duction to categories par Bill Lawvere et Stephen Schanuel. En effet, le langage des
catégories est aujourd’hui un aspect important des mathématiques fondamentales,
et j’essaierai, dans une partie du cours, d’y donner une sorte d’introduction. Comme
je suis autodidacte dans ce domaine, mon approche sera quelque peu différente de
ce qu’on trouve dans la littérature, et elle devait plâıre à des informaticiens et
autres “usagers” des maths – j’essaierai de “déclarer” toutes les variables et leurs
domaines pour arriver à une description algorithmique la plus complète possible.
Cependant, le but de cette approche sera d’aller plus loin et de parler de catégories
supérieures : ces bêtes sont devenues populaires en physique théorique, grâce aux
blogs et articles de John Baez, http://math.ucr.edu/home/baez/week73.html,
et d’une activité assez importante autour du n-lab, http://ncatlab.org/nlab/
show/HomePage. Mon intérêt en ces théories est d’origine géométrique, suivant ici
de près Charles Ehresmann qui est le premier à avoir parlé de catégories doubles.
En me basant sur un travail récent dont la première partie est disponible sur arxiv,
je montrerai que les idées fondamentales d’Ehresmann s’appliquent déjà aux fon-
dations du calcul différentiel : on parlera donc, dans une partie du cours, de calcul
différentiel. Des connaissances de base de calcul différentiel en plusieurs variables,
niveau Licence, suffisent ; à partir de là, on reconstruira tout ce qui mène plus loin.

Selon le temps et les intérêts des auditeurs, je compte aborder dans une autre
partie du cours une thématique, à première vue, différente : les mathématiques
modernes, dont la théorie des catégories, ainsi que la façon d’appliquer les maths
dans les autres sciences, sont dominées par la notion de fonction ou application.
Or, les fonctions sont des cas particuliers de relations, et une grande partie de
mathématiques devait se généraliser, et ce parfois de façon très naturelle, au cadre
des relations : on pourrait parler de “mathématiques relationnelles”, pour les dis-
tinguer des “mathématiques fonctionnelles”. A ma grande surprise, quand j’ai fait
des recherches bibliographiques en lien avec cette thématique, je n’ai trouvé que
très peu de références écrites par des mathématiciens, la quasi totalité étant écrite
par des informaticiens. Plus précisément, je me suis intéressé à la loi d’associativité
(cf. ici), qui est la loi la plus fondamentale en mathématiques : d’où vient-elle,
qu’est-ce qu’on peut faire avec ? Pour bien apprécier l’intérêt de cette question, on
pourra, selon temps et envie, faire une excursion dans le “monde non-associative” :
il existe bel et bien des structures mathématiques qui ne sont pas associatives ; on
les qualifie parfois comme “exceptionnelles” ou “exotiques”, ce qui les rend encore
plus intriguantes...

Objectifs. Cet enseignement sera donné sous forme de cours, mais j’espère qu’il
donnera lieu à des discussions et à des interactions diverses. Le but n’est pas de
présenter le contenu d’un livre ou une théorie classique et finalisée, mais de donner
un aperçu de thématiques qui ne sont pas encore figées et qu’on peut rencontrer
dans la recherche actuelle.

Public visé et prérequis. Tout public ayant une formation scientifique in-
cluant les notions de base mathématiques : fonction, application, ensembles, calcul
différentiel de plusieurs variables, et qui souhaite revenir sur ces notions en y portant
un nouveau regard : mathématiciens de tout bord ; informaticiens ; physiciens...

http://fef.ogu.edu.tr/matbil/eilgaz/kategori.pdf
http://fef.ogu.edu.tr/matbil/eilgaz/kategori.pdf
http://math.ucr.edu/home/baez/week73.html
http://ncatlab.org/nlab/show/HomePage
http://ncatlab.org/nlab/show/HomePage
https://fr.wikipedia.org/wiki/Charles_Ehresmann
http://arxiv.org/abs/1503.04623
http://arxiv.org/abs/1406.1692
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1. First lecture: Introduction

1.1. Some personal motivation. I started research in the domain of Lie theory.
The main actors of this theory are Lie groups: they arise from a marriage of two
things, namely groups, and differentiable spaces. Thus a Lie group has two aspects:
(1) it represents a certain mathematical concept (group), that is, a piece of general
mathematical language (here: expressing the idea of symmetry), and (2) it is a
geometric object in its own right – a “space”, as one says in geometry, that is, a set
carrying structures having a “geometric flavor”. For instance, the following matrix
groups (with group law the usual matrix product XY ) are Lie groups:

Gl(n,R) := {X ∈M(n, n;R) | det(X) ̸= 0},
O(n) := {X ∈M(n, n;R) | X tX = In},

U(n) := {X ∈M(n, n;C) | X t
X = In}.

The above mentioned double aspect (“concept” and “space”) makes these groups
so important in mathematics: they are present everywhere since they are “part of
the general mathematical language”.

The characteristic feature of Lie theory is the so-called “Lie dictionary”: there is a
1:1-correspondence between Lie groups and algebraic structures called Lie algebras.
Geometric properties of the groups can be described in terms of these algebras,
which are sort of “differential of the group structure at the origin”. For instance, for
our three examples above, the algebras are vector spaces of matrices, with algebra
structure being the commutator [X, Y ] := XY − Y X of two matrices X,Y ,

gl(n,R) :=M(n, n;R),
o(n) := {X ∈M(n, n;R) | X t +X = 0}

u(n) := {X ∈M(n, n;C) | X t
+X = 0}.

Algebra is much easier than geometry! Indeed, to put it with the words of Michael
Atiyah (see [At02], p.7, talking on “Geometry and Algebra”): Algebra is the offer
made by the devil to the mathematician. The devil says: ‘I will give you this powerful
machine, it will answer any question you like. All you need to do is give me your
soul: give up geometry and you will have this marvellous machine.’ (Nowadays
you can think of it as a computer!) Of course we like to have things both ways; we
would probably cheat on the devil, pretend we are selling our soul, and not give it
away. Nevertheless, the danger to our soul is there, because when you pass over into
algebraic calculation, essentially you stop thinking; you stop thinking geometrically,
you stop thinking about the meaning. However, Atiyah himself certainly is aware
that doing mathematics already means to accept the devil’s offer... (and some pages
later he emphasizes the importance of Lie’s theory).

Once we have accepted the devil’s offer, we may ask if the “Lie dictionary”
generalizes to other contexts, that is, to other classes of algebras. I call this the
“coquecigrue problem”, en hommage à Jean-Louis Loday – on my homepage here
(Section 2.2) one may find some more remarks about this. Indeed, this question
really is close to my own research interests: I have been interested for a long time

https://en.wikipedia.org/wiki/Sophus_Lie
https://en.wikipedia.org/wiki/Michael_Atiyah
https://en.wikipedia.org/wiki/Michael_Atiyah
https://fr.wikipedia.org/wiki/Coquecigrue_(cr�ature)
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-page.pdf
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-page.pdf
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in the class of Jordan algebras (examples include matrix algebras, with symmetric
productX•Y := 1

2
(XY +Y X), instead of the commutator product), and later (with

M. Kinyon) in the case of associative algebras (e.g., the matrix space M(n, n,R)
with its “usual” product XY ). We call “associative geometry” the geometric object
corresponding to an associative algebra. At this place, a remark (cf. loc. cit.,
Section 2.4) on the relation with Non-Commutative Geometry is in order. But let’s
turn to a concrete example:

1.2. Example: the associative plane. The simplest example of an associative
geometry can be nicely represented by images – the following four illustrations
are taken from a “travaux pratiques” session made at the occasion of “Journées
d’immersion” 2013 – 15, and the reader should do the exercices proposed there: first
image – construct the fourth point W in a the parallelogram spanned by X, Y, Z,
as follows,

b
Y

bX

b Z

b W

The “geometric formula” for W is W = Par
(
Y ∨ Z,X

)
∧Par

(
Y ∨X,Z

)
. There is

also an “analytic” formula (seeing X, Y, Z,W as elements of the plane R2):

W = X − Y + Z.

This formula shows that W is a continuous function of three variables X, Y, Z, and,
for Y fixed, the map (X,Z) 7→W is a commutative group law. Second image

b b
h

b Y

b X

b
Z

bb

b
W

– in fact, this is the same image as before, but seen differently, with some line h
considered as “horizon” of our drawing plane. (The sense of this phrase is made
precise in projective geometry.) The geometric formula is

W =
((

(X ∨ Y ) ∧ h
)
∨ Z

)
∧
((

(Z ∨ Y ) ∧ h
)
∨X

)
.

http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-page.pdf
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-page.pdf
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/TDImmersion2015.pdf
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/TDImmersion2015.pdf
https://en.wikipedia.org/wiki/Projective_geometry
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It follows that (X,Z) 7→ W still is a commutative group law. (Exercise: check this
by an analytic computation in R2.) The third picture really is something new: do
the same construction with two different horizons, a and b,

W =
((

(X ∨ Y ) ∧ a
)
∨ Z

)
∧
((

(Z ∨ Y ) ∧ b
)
∨X

)
.

a

b

b Y

b
X b

Z

b

b

b
W

Theorem. Fix a, b and Y . Then the map (X,Z) 7→ W defines a group law (com-
mutative if a = b, but non-commutative else). This result is by no means obvious;
we asked several geometers if they had seen it before, but it seems that they haven’t.
The figure represents what one might call the associative plane. Before explaining
where it comes from, here is a last image, most useful for a more detailed study,
and equivalent to the preceding, by using projective geometry:

b b

bY

bZ

bX

b b

bW

So, here W is obtained by the geometric formula

W =
(
Par

(
(X ∨ Y ), Z

))
∧
((

(Z ∨ Y ) ∧ a
)
∨X

)
1.3. Torsors. To explain the theorem stated above, we need some algebra. First
recall the fundamental definition of a group. We recall also that the inverse of an
element a is unique, justifying the notation a−1. But note that, in a group such as
above, the “origin” Y is a point like any other, and has no reason to be preferred to

https://en.wikipedia.org/wiki/Group_(mathematics)#Definition
https://en.wikipedia.org/wiki/Group_(mathematics)#Uniqueness_of_identity_element_and_inverses
https://en.wikipedia.org/wiki/Group_(mathematics)#Uniqueness_of_identity_element_and_inverses
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others. Therefore, in geometry we often need a concept describing something like
a group, but with no point distinguished among the others. Here it is:

Theorem 1.1 (Forgetting the origin in a group).

(1) Assume (G, ·, e) is a group, and let (xyz) := x · y−1 · z . Then the following

para-associativity (PA), and idempotent law (IP) hold: ∀x, y, z, u, v, w ∈ G,
(PA) (xy(zuv)) = (x(uzy)v) = ((xyz)uv),
(IP) (xxy) = y, (wzz) = w.

(2) Conversely, if G is a set with a ternary law denoted by G3 → G, (x, y, z) 7→
(xyz) and satisfying (IP) and (PA), then, for any fixed element y ∈ G, we get
a group law on G, with neutral element y, given by x · z := x ·y z := (xyz) .

Proof. (1): By direct computation, (IP) and (PA) follow from the group properties;
(2): Associativity of · is direct from (PA), y is neutral by (IP), and for existence
of an inverse of x, we check that u := (yxy) satisfies u · x = (uyx) = ((yxy)yx) =
(yx(yyx)) = (yxx) = y = (xyu) by applying twice (IP), so x−1 = (yxy) is an inverse
of x. □
Definition 1.2. A torsor is a set G together with a ternary map G3 → G satisfying
(IP) and (PA). A torsor is called commutative if (xyz) = (zyx), for all x, y, z ∈ G.
Remark. Unfortunately, there is no universally accepted terminology: other terms
such as heap, flock, herd, pregroup, groud,.... are also used for what we call here
“torsor” – see here for some remarks.

Examples. (1) If the group is commutative and written additively, such as for

G = Rn or any other vector space, then its torsor law is (xyz) = x− y + z .

(2) If A and B are two sets, then the set G := Bij(A,B) of bijective maps f : A→ B

is a torsor with respect to the ternary map (fgh) := f ◦ g−1 ◦ h (proof: as above).

When A ̸= B, then G has no “natural origin”! However, note that G may be empty
(and the empty set is a torsor).

Exercise. In the situation of point (2) of the theorem, show that moreover (uvw) =
u ·y v−1 ·y w, so we really recover (1) from (2). Observe that the proof uses only

(PA’) (xy(zuv)) = ((xyz)uv),

so that a torsor could also be defined by requiring (PA’) and (IP).

Lemma 1.3. The torsor axioms (PA) ∧ (IP) are equivalent to (Ch) ∧ (IP):

(Ch) left Chasles relation: (xy(yuv)) = (xuv), and
right Chasles relation: ((xyz)zv) = (xyv);

(IP) idempotency: (xxy) = y = (yxx).

Proof. (IP) ∧ (PA) implies (Ch), directly by taking y = z. Conversely, (IP) ∧ (Ch)
implies (PA’): let k := (uvw) and m := (xyu), so

(xy(uvw)) = (xyk) = ((xyu)uk) = ((xyu)u(uvw)) = (mu(uvw)) = (mvw) =
((xyu)vw). By the preceding exercise, (IP) ∧ (PA’) implies (IP) ∧ (PA). □

Remark. The same approach can be used to define affine spaces: see here.

http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-torsors.pdf
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-affinespaces.pdf
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1.4. Back to the associative plane. Fix two lines (“horizons”) a and b, as in
the third image above. We want to show that the map (X, Y, Z) 7→ (XY Z) := W
defines a torsor law. By the preceding lemma, it suffices to prove that (IP) and
(Ch) hold. The idempotency law (IP) does not follow from the construction, but
experience (use geogebra!) shows that it makes good sense, so you may be willing to
accept that it holds. To prove (Ch), then, you may simplify the situation by taking
the line a “at infinity”, that is, by switching to the fourth image. By “exercice 6”
in the travaux pratiques-session (link above), (Ch) amounts to the assertion that
always H = U (resp. H ′ = U ′). This, in turn, can be proved in various ways: either,
by a brute-force computation in the coordinate plane (see here, Section 2), or by
noticing that the geometric configuration (the non-commutative prisms shown in
“exercice 6”) are equivalent to another classical geometric configuration, namely the
one from Desargues’s theorem. Indeed, this confirms what is well-known since David
Hilbert’s famous Grundlagen der Geometrie, where it is explained that Desargues’s
theorem is the key for understanding associativity in the foundations of geometry.
Summing up, we may state:

Theorem 1.4. For any two lines a, b in a Desarguesian projective plane, the set of
points not lying on either of these lines is a torsor with torsor law (XY Z)ab := W
defined as above.

Now, as Hilbert shows in his text, there do exist exceptional geometries (that is,
that do not satisfy Desargues’s theorem), so one may ask: What can we say about
(XY Z)ab in an exceptional geometry? This is an open problem (but see here for a
partial answer in the important special case of Moufang planes).

1.5. Outline of plan of the lectures. The contents of the lectures is not yet fixed.
Roughly, I would like to explain in more detail how to describe and understand the
above mentioned double aspect of notions such as Lie groups, torsors and things like
that: they are part of mathematical language, and they are geometric objects in
their own right. This is most clearly seen, and best explained, by studying groupoids
and categories, which generalize groups in a certain way.

In a further step, one observes that the double aspect makes it possible to apply
such gadgets to themselves: we may apply the gadget, seen as a concept, to study
it as an object. On a mathematical level, this leads to notions such as double
groupoids and double categories, and can be iterated n times, leading to n-fold
groupoids and n-fold categories. On a more philosophical level, such a situation deals
with self-reference, which often leads to difficult and profound problems (and also
shows up in theoretic informatics). Surprisingly, such difficulties also re-appear in
differential calculus: taking iterated derivatives f, f ′, f ′′, . . . , f (n) of a function of one
variable looks rather innocent; but already taking higher derivatives f,Df,D2f =
D(Df), . . . of a function of several variables is much more complicated, and quickly
leads to rather delicate questions. I intend to talk about such things in some of the
lectures.

http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/Exo-groupes-and-geometry.pdf
https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Desargues
http://www.gutenberg.org/files/17384/17384-pdf.pdf?session_id=6e7f8e0937e0740133889de909199ca432a2e40f
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/MoufangPlanes.pdf
https://fr.wikipedia.org/wiki/Autor%C3%A9f%C3%A9rence
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2. Second lecture: Small cats and groupoids

Mathematics, in its present shape, is based on set theory. But one can base it
also on the richer notion of category. As said above, this notion also has the double
aspect of being a concept and a mathematical object (a “space”). To separate these
two aspects, I will first of all treat them as concept (“concrete categories”) and then
as mathematical object (“small categories”). The general notion of category, con-
taining both of these special cases, bears a danger, often named the “size problem”,
related to any situation where self-reference is possible. Therefore, in these lectures
we shall work either with concrete or small categories.

2.1. Concrete cats. Whenever one encounters some kind of mathematical “ob-
jects”, as a rule, one should also look at the “morphisms”, that is, the mappings
which preserve the structure of this kind of objects. For instance, if “objects” are
vector spaces, then “morphisms” are linear maps:

Definition 2.1. A concrete cat (concrete cat, or: ccat, henceforth) is given by its
objects which are sets equipped with a structure of a certain “type” T , and by its
morphisms, which are certain maps between objects. It is required that

(1) the identity map idA of an object A is a morphism, and
(2) if g : A→ B, f : B → C are morphisms, then so is f ◦ g : A→ C.

A morphism f : V → W is called an endomorphism if V = W ; it is called an
isomorphism if it is bijective and if f−1 : W → V is also a morphism; it is called
an automorphism if it as an endo- and an isomorphism.

We won’t try define formally here what we mean by “type”; rather, we proceed by
giving a list of examples. As a matter of mathematical habit, the reader should ask
himself, whenever he meets some kind of stuff (mathematical objects): what are
the morphisms of this kind of stuff, and are (1) and (2) satisfied? For instance, the
reader may have met (or not)

• the ccat VectR; objects: real vector spaces, morphisms: linear maps,
• the ccat Grp; objects: groups, morphisms: group homomorphisms,
• the ccat Tor of all torsors (define the morphisms!),
• the ccat Ring of all rings, its subcat Field of all fields,
• the ccat Top of all topological spaces (with continuous maps as morphisms),
• the ccat Met of all metric spaces (who are the morphisms?)
• the ccat ManR of real, smooth manifolds (with smooth maps as morphisms),
• the ccat AlgK of all (associative) K-algebras,

• the ccat Cat of all small cats (see later) and its subcat Goid of all groupoids,
• the ccat Set; objects; sets, morphisms: (arbitrary) maps,
• ... add here your own favorite ccats !

Remark/exercise. The automorphisms of an object A always form a group
Aut(A). Describe it for the examples! Often it is automatic that, if f is bijec-
tive, the inverse f−1 is a morphism. For which examples is this not automatic?

For the moment, that’s all we need to know about ccats (see [BM], for a similar
approach; if you want to know more on ccats, have a look at [AHS04]).

https://en.wikipedia.org/wiki/Group_homomorphism
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2.2. General cats: size problems! Here is the general definition:

Definition 2.2. A category (short: cat) C is given by a class Ob(C) of objects and
a class Mor(C) of morphisms (or: arrows). Each morphism f has a source object
a = s(f) and a targent object b = t(f); we then write f : a→ b. It is required:

(1) for morphisms f : a → b and g : b → c, there is defined a morphism
g ∗ f : a → c, and the composition law ∗ is associative: for all f : a → b,
g : b→ c, h : c→ d,

(h ∗ g) ∗ f = h ∗ (g ∗ f),

(2) and for each object x, there is a morphism 1x : x → x, which is a unit for
composition: for any f : a → x and g : x → b, we have 1x · f = f and
f · 1x = 1x.

A morphism f : x→ y is called an endomorphism if x = y; it is called an isomor-
phism if there is a morphism g : y → x such that g ∗ f = 1x and f ∗ g = 1y, and it
is called an automorphism if it as an endo- and an isomorphism.

Remark. If f is an isomorphism, then, as for groups (see above!), it is seen that g
is unique, so we may speak of “the” inverse of f , and denote it by g = f−1.

Example. Every concrete cat is a category, where morphisms are usual maps and
the law ∗ is usual composition of maps. But there are categories that are not of
this kind (e.g., homotopy category in topology, see later).

Warning. We speak of a “class” Ob(C) of objects, and not of a “set of objects”
(and likewise for morphisms), because the collection of all objects is in general
“too big” and does not form a set. For instance, in the ccat Set of all sets and
set-maps, the class of objects is the “class of all sets”. Now, if one is not careful
enough, defining a set of all sets may lead to a contradiction: this is the famous
Russuell’s paradox – which is indeed the best known example of dangers related
to “self-reference”. Today, there are several “solutions” how to circumvent these
dangers; but each of them would need careful explanations on axiomatic set theory,
which is not the topic of this course. The interested reader may look here, and
there, or pages 21-24 in [CWM]. A simple way to avoid size problems is to restrict
attention to small categories.

2.3. Small cats, and groupoids. Now we view a category as a “space”:

Definition 2.3. A small category (small cat) is a category such that objects and
morphisms form a set, in the usual sense. In other terms (and with some change
of notation: π0, π1 instead of s, t, etc.): A small cat C is given by two sets M (or
C1), the set of morphisms, and B (or C0), the set of objects, together with

• maps π0 :M → B (“source map”) and π1 :M → B (“target map”),
• a map δ : B →M called the unit section, such that πi ◦ δ = idB for i = 0, 1,
• and a partially defined binary product map

∗ :M ×B M →M, (g, f) 7→ g ∗ f ,

https://en.wikipedia.org/wiki/Homotopy#Category
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Universal_set
https://en.wikipedia.org/wiki/Foundations_of_mathematics#Foundational_crisis
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defined on the domain given by

M ×B M := {(g, f) ∈M ×M | π0(g) = π1(f)} ,

such that the following holds:

(1) ∀(g, f) ∈M ×B M : π1(g ∗ f) = π1(g), π0(g ∗ f) = π0(f),
(2) the law ∗ is associative: whenever (h, g) and (g, f) are in M ×B M , then

(h ∗ g) ∗ f = h ∗ (g ∗ f) (henceforth denoted by h ∗ g ∗ f),
(3) units: ∀f ∈M : δ(π1(f)) ∗ f = f and ∀g ∈M : g ∗ δ(π0(g)) = g.

So, the whole thing is (M,B, π0, π1, δ, ∗), but we will often just write (M,B).

Definition 2.4. Given a small cat (M,B, . . .), an element f ∈ M is called in-
vertible, or an isomorphism if there is g ∈ M , such that π0(g) = π1(f) and
π1(g) = π0(f) and g ∗ f = δ(π0(f)) and f ∗ g = δ(π0(g)).

Lemma 2.5. In a small cat, the inverse element g of f , if it exists, is unique (and
then is denoted by f−1). If h is also invertible and (h, f) ∈M ×B M , then h ∗ f is
invertible, and (h ∗ f)−1 = f−1 ∗ h−1, and (f−1)−1 = f . For each x ∈ B, the set Gx

of all automorphisms of x forms a group.

Proof. If there is another inverse, g′, then g = g∗e = g∗f∗g′ = g′ where e = δ(π0(f).
Next, (f−1 ∗ h−1) ∗ (h ∗ f) = f−1 ∗ (h−1 ∗ h) ∗ f = δ(π0(f)), and similarly the other
way round, showing that h ∗ f is invertible and that (h ∗ f)−1 = f−1 ∗ h−1. □
Definition 2.6. A groupoid is a small cat in which every element f ∈ M is in-
vertible. The inversion map of a groupoid is the map i :M →M , f 7→ f−1.

Example 1. If (M,B) is a groupoid and B has exactly one element e, then M is
just a group (with unit element 1 = δ(π0(e))). If (M,B) is a small cat and B has
exactly one element, then M is like a group, but elements need not have inverses:
this is what one calls a monoid (fr.: monöıde ; example: Z with its usual product).

Example 2. If π1 = π0 =: π, then each set π−1(x) = {f ∈ M | π(f) = x} is a
group (resp. monoid), with unit δ(x), as in the preceding example, so (M,B) may
be seen as a “disjoint union”, or “bundle” of groups, resp. monoids. As a “space”,
M is then visualized as follows.

π0 = π1

b b

B

b x b
y

b z b w

Each vertical line represents a group, and we may identify x with δ(x) (that is, we
identify B with the set of units inside M), and we view π as a “projection” with

https://fr.wikipedia.org/wiki/Mono%C3%AFde
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direction indicated by the arrow. In the special case where each fiber has just one
point (the unit), we speak of a discrete cat (which is automatically a groupoid).
Note that then π and δ are inverse bijections, so one may then identify B with M .

Example 3 (The pair groupoid). If Ω is a set, then let B := Ω, M := Ω × Ω
π0(x, y) = y, π1(x, y) = x, δ(x) = (x, x) and (x, y) ∗ (y, z) = (x, z). Proposition:
this defines a groupoid (note: the inverse of (x, y) is (y, x)), called the pair groupoid
of Ω. Note: the pair groupoid is characterized by the fact that, for any two objects
x, y ∈ B, there is exactly one morphism with source x and target y. Here are two
visualizations of M as a “space”: the first is a “usual square”, with B its diagonal,

π1

π0

B

b
x

b y

b z

b
w

b
f

b
g

b
g ∗ f

b hb
h ∗ g ∗ f

b
f−1

b

but I prefer this one, with π0 “vertical” and π1 oblique, and B a horizontal line:

π1
π0

B
b

x
b
y

b

z
b

w

b
f b

g

b
g ∗ f

b h

b
h ∗ g ∗ f

b
f−1

b

We indicate also elements f, g, h ∈M and where to find g ∗ f , f−1, and so on.

Exercise. If (B,M) is a groupoid, show that the following defines an equivalence
relation on B: x ∼ y iff there is g ∈ M such that x = π0(g) and y = π1(g).

https://en.wikipedia.org/wiki/Discrete_category
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Show that each equivalence class defines a groupoid in its own right, which can be
described in terms of a pair groupoid and of the automorphism group of one of its
points. (See [Br1], top of p. 125, for a more precise statement of this exercise, and
check these statements!)

Remark. The preceding exercise says that every groupoid can, in a certain way, be
“decomposed” into pair groupoids, true groups and discrete groupoids. However,
such a decomposition is not useful in pratice (cf. [Br1], loc. cit.) But one may retain
that the preceding picture already illustrates quite well the situation of a general
groupoid, if one interpretes the image as follows: elements of B are identified with
points of the horizontal segment (the units); the vertical and oblique lines describe
the fibers of π0 (morphisms having same source), resp. of π1 (morphisms having
same target); the intersection of two such lines represents the whole set Mor(x, y)
of morphisms between an object x and an object y (in case of the pair groupoid,
there is just one such morphism, whereas in general there will be many of them).
Note that Mor(x, x) always is a monoid (resp. a group), and it contains a specific
element δ(x) (its unit element).

One may also note that every small cat has un underlying (oriented) graph: then
B is the vertex set, M is the set of edges, where an edge f has vertices π0(f)
(tail) and π1(f) (head). If C is moreover a groupoid, then the inversion map i is
a reflection of the graph, that is, a map of order 2 reversing the orientation of the
edges.

Example 4 (Locally defined maps). Let Ω be a set and B := P(Ω) = {A |
A ⊂ Ω} be the power set of Ω (set of all subsets of Ω).

(a) Let M := Floc(Ω) := {f : U → U ′ | U,U ′ ∈ P(Ω), f function} be the set of
functions with domain and range in Ω, let π0(f) := domf = U be the domain of
f and π1(f) := codomf = U ′ the codomain of f , and g ∗ f := g ◦ f whenever
domg = codomf ; and for U ∈ P(Ω), we let δU = idU . Obviously, this forms a small
cat (denoted by (Floc(Ω),P(Ω)).
(b) We can take for M also the sets F s

loc(Ω) of surjective, or F i
loc(Ω) of injective,

or F b
loc(Ω) of bijective functions with range and image in Ω, and get subcats of the

one defined in (a). Moreover, F b
loc(Ω) is a groupoid (the inverse of f is simply its

inverse map), the groupoid of local bijectijons of Ω. The automorphism group of an
object U is then nothing but the group of bijections of U .

2.4. Example: binary relations. This generalizes example 4. First, recall:

Definition 2.7. A binary relation between two sets A and B is simply a subset R
of B × A. We denote the set of binary relations from A to B by

R(B,A) := P(B × A).

Instead of (y, x) ∈ R one often writes yRx and says that x is in relation R with
y. (We consider x as “source element” and y as “target element”, see note below!)
We say that

Rop := {(x, y) ∈ A×B | (y, x) ∈ R} ∈ R(A,B)

https://en.wikipedia.org/wiki/Graph_%28discrete_mathematics%29
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is the opposite, or reverse, relation of R. The identity relation on a set A is

δA := {(x, x) | x ∈ A} ∈ P(A× A).
Theorem 2.8. For R ∈ P(C × B) and S ∈ P(B × A), we define their relational
composition R ◦ S ∈ P(C × A) by

R ◦ S = {(z, x) ∈ C × A | ∃y ∈ B : (z, y) ∈ R, (y, x) ∈ S} .

Then the associative law holds: (R ◦ S) ◦ T = R ◦ (S ◦ T ). Moreover, the identity
relation is a neutral element: δB◦S = S, R◦δA = R. In particular, the set P(A×A)
of endorelations on A is a monoid. Moreover,

(R ◦ S)op = Sop ◦Rop, (Rop)op = R.

Proof. The product is associative: both (R ◦ S) ◦ T and R ◦ (S ◦ T ) are equal to

R ◦ S ◦ T = {(z, w) ∈ Ω2 | ∃(y, x) ∈ S : (z, y) ∈ R, (x,w) ∈ T}.
And δA ◦ S = {(z, x) | ∃y : z = y, (y, x) ∈ S} = S. □
Theorem 2.9. For every set Ω, the pair of sets (M,B) = (P(Ω× Ω),P(Ω)), with
projections

π0(R) = {x ∈ Ω | ∃y ∈ Ω : (y, x) ∈ R}, π1(R) = {y ∈ Ω | ∃x ∈ Ω : (y, x) ∈ R},
units δ(A), and ∗ being relational composition ◦, is a small cat (which we call the
cat of endorelations of Ω).

Proof. The main point (associativity) has been proved above, and the rest follows
by direct check. □
Note that this small cat is not a groupoid! This may seem surprising, since the
relation Rop looks like an inverse of R. The reader is invited to find out why this
does not provide an inverse of R...

Theorem 2.10. Functions are special cases of relations: the small cat (Floc(Ω),P(Ω))
from Example 4 is included in (P(Ω × Ω),P(Ω), when we identify a function
f : A→ B with its graph

Γf := {(f(x), x) | x ∈ A} = {(y, x) | x ∈ A, y = f(x)}.
Proof. Composition of functions corresponds to relational composition of their graphs:

Γg ◦ Γf = {(z, y) | z = g(y)} ◦ {(y, x) | y = f(x)} = {(g(f(x)), x) | x ∈ A} = Γg◦f .

Note: we’ll see below (“duality”) that one could write products also the other way
round, and then one should define graphs by {(x, y) | y = f(x)}, which might seem
nicer. However, our writing habits are determined by writing the source element
x on the right of the function symbol f , namely f(x). (Some algebraists prefer
to write xf instead of f(x), so the source element comes “first”, and formulae
can be read “from left to right”. Neither of these ways of writing can be defined
mathematically; the choice is a purely cultural and conventional matter.) □
Using language to be introduced next, we may say that cats of functions are subcats
of cats of binary relations. Moreover, if f is a bijective map, then Γf−1 = (Γf )

op.
Hence in this case, the opposite relation really is an inverse element. Thus the local
bijections form a subcat which is a subgroupoid.

https://en.wikipedia.org/wiki/Composition_of_relations
https://en.wikipedia.org/wiki/Composition_of_relations
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3. Third lecture: more on groupoids

3.1. Opposite cat, duality. Every mathematician fears “sign errors”: often there
is one chance out of two to put the wrong sign... likewise, when talking about
categories, there is one chance out of two to write composition “the wrong way”:

Theorem 3.1. For every (small) cat C = (M,B, π1, π0, ∗, δ), we get another
(small) cat, the opposite cat Cop: its sets of objects and morphisms are the same,
and so is δ, but we exchange source and target and the order in the composition:

πop
0 := π1, πop

1 := π0, g ∗op f := f ∗ g.

Proof. The main point is to check associativity of ∗op:
(f ∗op g) ∗op h = h ∗ (g ∗ f) = (h ∗ g) ∗ f = f ∗op (g ∗op h).

For the remaining properties: e.g., πop
1 (g ∗op f) = π0(f ∗ g) = π0(g) = πop

1 g, etc. □
Note that (Cop)op = C, so every statement about categories can be transformed into
another statement about categories by exchanging words “source” and “target”
and all terms related to these, and changing the order in all products. This is
sometimes called the duality principle for categories. It is closely related to duality
in projective geometry and is a manifestation of the general aspect of “dualities”
in mathematics. To quote again Atiyah [At07]: Duality in mathematics is not a
theorem, but a “principle”.

3.2. Functors. Functors are the morphisms between categories. Again, there is a
“general”, a “concrete”, and a “small” version:

Definition 3.2. A functor between two (general) cats C and C ′ is a rule assigning
to each object x of C an object ϕ(x) of C ′, and to each morphism f : x → y
of C a morphism Φ(f) (from ϕ(x) to ϕ(y)) such that always Φ(1x) = 1ϕ(x) and
Φ(g ∗ f) = Φ(g) ∗ Φ(f).

Example. There is a functor between the concrete cat C = VectR and its dual cat
C ′ = Copp, by assocating to a vector space V its dual space V ∗ and to every linear
map f : V →W its dual (or transposed) map f ∗ : W ∗ → V ∗.

Definition 3.3. A morphism of small cats, (M,B) and (M ′, B′), or functor, is a
pair of maps Φ :M →M ′, ϕ : B → B′ preserving all structures:

ϕ ◦ π0 = π′
0 ◦Φ, ϕ ◦ π1 = π′

1 ◦Φ, Φ ◦ δ = δ′ ◦ ϕ, Φ(h) ∗′ Φ(g) = Φ(h ∗ g).

The following result is kind of automatic (cf. linear maps: the composition of linear
maps is again linear, and so on), and the proof is by direct check:

Theorem 3.4. If (Φ, ϕ) is a functor from C to C ′ and (Ψ, ψ) a functor from C ′ to
C ′′, then (Ψ◦Φ, ψ ◦ϕ) is a functor from C to C ′′. Moreover, (idM , idB) is a functor
from C to itself. It follows that small cats with their morphisms form a concrete
category that we shall denote by Cat.

Remark 3.1. On a very formal level, in a concrete cat, every object is one “set
with some structure”, whereas a small cat is a pair (B,M) of “sets with structure”.
Therefore, to get things straight, let us say that the underlying set of the small cat

https://en.wikipedia.org/wiki/Duality_%28projective_geometry%29
https://en.wikipedia.org/wiki/Duality_%28projective_geometry%29
https://en.wikipedia.org/wiki/List_of_dualities#Mathematics
https://en.wikipedia.org/wiki/List_of_dualities#Mathematics
https://en.wikipedia.org/wiki/Duality_%28mathematics%29
https://en.wikipedia.org/wiki/Duality_%28mathematics%29
https://en.wikipedia.org/wiki/Dual_space
https://en.wikipedia.org/wiki/Transpose_of_a_linear_map
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(M,B, . . .) is, by definition, the disjoint union of sets C :=M ∪B, and (Φ, ϕ) then
corresponds to a single map C → C ′ (which is Φ on M and ϕ on B). In informatics
terms, instead of a pair (B,M) of “lists”, we put lists B and M together to get a
single list. With these definitions, the preceding theorem is formally correct: we
get a concrete category.

Example. In a groupoid, the pair of maps id : B → B and i :M →M (inversion)
is a functor from C to its opposite category. More generally:

Definition 3.5. An involution of a small cat C = (M,B) is a map f : M → M
such that

f ◦ f = idM , π1 ◦ f = π0, ∀a, b ∈M ×B M : f(a ∗ b) = f(b) ∗ f(a).

Then (idB, f) is a functor from C to Cop (which is an fact an isomorphism of
categories, that is, there is an inverse functor).

For instance, in the small cat of endorelations (P(Ω),P(Ω × Ω)), assigining to a
relation R its reverse relation Rop defines an involution.

Exercise. Show: If C = (C0, C1, . . .) is a small cat, the pair of maps

id : C0 → C0, C1 → C0 × C0, a 7→ (π1(a), π0(a))

defines a functor from C to the pair groupoid (C0, C0×C0). It is called the anchor.

3.3. Subcats, subgroupoids. Just as subspaces of vector spaces and subgroups
of groups, one defines:

Definition 3.6. A subcat of a small cat (M,B, . . .) is a pair of subsets (M ′, B′)
such that

∀a ∈M ′ : π0(a) ∈ B′, π1(a) ∈ B′, ∀(a, b) ∈M ′ ×B M
′ : a ∗ b ∈M ′.

A subgroupoid of a groupoid is defined in the same way, by adding the condition
that a−1 ∈M ′ if a ∈M ′.

Theorem 3.7. A subcat of a small cat is again a small cat, and a subgroupoid is
again a groupoid.

Proof. Again, the proof is kind of automatic (cf. vector spaces....) □

As alreay said there are many examples: e.g., cats of locally defined functions are
subcats of cats of endorelations, and so on.

Exercise. Caracterise the subcats of the pair groupoid (Ω × Ω,Ω), and then car-
acterize the subgroupoids of the pair groupoid.

3.4. Examples from topology (homotopy category, fundamental groupoid).
This will not be needed in the sequel, but it is certainly helpful to have seen the
main examples motivating category theory, in the middle of the 20-the century,
coming from topology. We assume that that the reader has some working knowl-
edge on continuity of maps (say, between M and N , supposed to be metric, or
general topological spaces, or subsets of some Rn).
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Definition 3.8. Two maps f : M → N , g : M → N are called homotopic if there
exists a continuous map

H : [0, 1]×M → N, (t, x) 7→ H(t, x) =: Ht(x)

such that H(0, x) = f(x) and H(1, x) = g(x) (so H0 = f,H1 = g).

We think of (Ht)t∈[0,1] as a “family of maps” interpolating continuously from f to g.
In homotopy theory, homotopic maps are considered to be “essentially the same”.
See here for some dynamic illustrations! Formally:

Lemma 3.9. Write f ∼ g if f and g are homotopic. Then ∼ is an equivalence
relation on the space of all continuous maps from M to N .

Proof. f ∼ g (via H1) and g ∼ h (via H2) implies f ∼ h: use homotopy

H(t, x) :=
{

H1(2t, x) if t ∈ [0, 1/2],
H2(2t− 1, x) if t ∈ [1/2, 1],

f ∼ f : use homotopy H(t, x) = x;
f ∼ g ⇒ g ∼ f : use homotopy H ′(t, x) := H(1− t, x). □
Example. The maps f : Rn → Rn, x 7→ 0 and g = idRn are homotopic: take
H(t, x) = tx, whence [f ] = [g].

Lemma 3.10. Homotopy is compatible with composition: let f1 ∼ f2 (from M to
N , via H1) and g1 ∼ g2 (from N to P , via H2), then g1 ◦ f1 ∼ g2 ◦ f2.

Proof. Take H(t, x) := H2(t,H1(t, x)). Note that this is again continuous! □
Definition 3.11. The lemmas imply that the following defines an (abstract) cat-
egory HTop, the homotopy category: objects are topological (or metric...) spaces
M,N, . . ., and morphisms are equivalence classes (for ∼) [f ] of continuous maps
f :M → N , with composition law [g] ∗ [f ] = [g ◦ f ].

Remark 3.2. This category is neither small nor concrete! But recall the concrete
cat Top. There is a functor from Top to HTop, assigning M to M and [f ] to f .

Theorem 3.12. In the homotopy category, all spaces Rn are isomorphic to R0 =
{0} (and hence are isomorphic among each other).

Proof. Let f : Rn → {0}, x 7→ 0 and g : {0} → Rn, 0 7→ 0. Then [f ] ∗ [g] = [id0],
and [g] ∗ [f ] = [idRn ] (by the example above!) □
One says that all real vector spaces have same homotopy type. However, in Top
the situation is different: one can prove (but that’s not easy!) that in Top, a space
Rn is isomorphic to Rm if, and only if, n = m. Turning now to more complicated
topological spaces, for instance, the homotopy type of spheres

Sn = {x ∈ Rn+1 | ∥x∥ = 1}
is much harder to understand. Here, an important tool is the following:

Definition 3.13. A path (from a to b) in a (metric or topological) space M is a
continuous map γ : [0, 1] → M such that γ(0) = a and γ(1) = b. If a = b, it is
called a loop.

https://en.wikipedia.org/wiki/Homotopy
https://en.wikipedia.org/wiki/Homotopy#Category
https://en.wikipedia.org/wiki/Invariance_of_domain
https://en.wikipedia.org/wiki/Invariance_of_domain
https://en.wikipedia.org/wiki/Homotopy_groups_of_spheres
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Lemma 3.14. If γ1 is a path from a to b and γ2 from b to c, then the following
defines a path from a to c:

γ2 ∗ γ1(t) :=
{

γ1(2t) if t ∈ [0, 1/2],
γ2(2t− 1) if t ∈ [1/2, 1].

Note that the “product” ∗ is not quite associative. Re-parametrizing will make it
associative:

Lemma 3.15. If γ1 ∼ γ′1 and γ2 ∼ γ′2 and γ1(1) = γ2(0) and γ
′
1(1) = γ′2(0), then

γ2 ∗ γ1 ∼ γ′2 ∗ γ′1.

Theorem 3.16. Assume M is a metric or topological space, and denote by F (M)
the set of all homotopy classes of paths in M (with respect to homotopies fixing end
points: ∀t : H(t, 0) = a, H(t, 1) = b). Then (F (M),M, ∗) is a groupoid, where
π0([γ]) = a = γ(0), π1([γ]) = b = γ(1), and δ(x) is the class of the constant path
t 7→ x, and composition [α] ∗ [γ] = [α ∗ γ] (well-defined according to the lemma).

There are several things to check: for a very detailed proof of the theorem, see here.
The theorem implies that, for any fixed point a ∈ M , the set Fa(M) of loops at a
is a group (the automorphism group of a), called the fundamental group of M at
a. A very important result in this context is:

Theorem. The fundamental group of the circle S1, and the one of R2 \ {(0, 0)}, at
any of its points, is the group of integers (Z,+).

Here are some ideas for further reading: Wikepedia page about general topololgy,
and more mathematical (but still quite pedagogical and with many figures): book
“Algebraic Topology” by A. Hatcher.

http://www-users.math.umn.edu/~bahra004/fund_grpd.pdf
https://en.wikipedia.org/wiki/Fundamental_group
https://en.wikipedia.org/wiki/Winding_number
https://en.wikipedia.org/wiki/Winding_number
https://en.wikipedia.org/wiki/Topology
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
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4. Fourth lecture: the Cat Family

Cats come in families: we have already seen that every cat has a twin (its dual
cat) and that most cats bear interesting subcats. In particular, recall from the
second lecture (Theorems 2.9 and 2.10) the small cat of endorelations on a set Ω,
which contains as subcats the small cat of locally defined functions, and hence also
the one of local bijections (which is a groupoid). We shall first give an important
generalization of such examples, and second look at other relatives of the cat familiy.

4.1. The power cat. Recall from Lecture 2 the small cat of binary relations on a
set Ω. We denote by P(A) the power set of a set A, and if f : A→ B is a map and
C ⊂ A, we denote the image of C under f by

(P(f))(C) := f(C) := {f(x) | x ∈ C} = {y ∈ B | ∃x ∈ C : y = f(x)}.
Thus we have defined a map P(f) : P(A)→ P(B).

Lemma 4.1. If g and f are composable maps, then

P(g ◦ f) = P(g) ◦ P(f), P(idA) = idP(A).

In order words, the symbol P is a functor (from the ccat Ens to itself).

Proof. This is just another way of writing (g ◦f)(C) = g(f(C)) and id(C) = C. □
Theorem 4.2 (The power cat). Asssume (M,B, . . .) is a small cat. Then the pair
of power sets of M , resp. of B, (P(M),P(B), . . .) is a small cat, with

πi(U) = {πi(x) | x ∈ U} = P(πi)(U), δ(K) = {δ(k) | k ∈ K} = P(δ)(K),

U ∗ V = {a ∗ b | a ∈ U, b ∈ V, π1(b) = π0(a)} = P(∗)(U ×B V ).

We call this the power cat of (M,B).

Proof. All properties follow easily with the help of the preceding lemma. For in-
stance, concerning associativity: computing (U ∗V )∗W and U ∗ (V ∗W ), both sets
agree with {a ∗ b ∗ c | a ∈ U, b ∈ V, c ∈ W,π1(c) = π0(b), π1(b) = π0(a)}. □
Example. Taking for (M,B) the pair groupoid (Ω× Ω,Ω), we get back the small
cat of binary relations with relational composition! Thus the “power cat” gener-
alizes binary relations. Likewise, we may generalize notions of function, injective,
surjective, bijective to this framework:

Definition 4.3. Let (M,B, . . .) be a small cat. A set U ⊂M is called

(1) local functional if ∀x, y ∈ U : π0(x) = π0(y)⇒ x = y,
(2) injective, if ∀x, y ∈ U : π1(x) = π1(y)⇒ x = y,
(3) everywhere defined if π0(U) = B,
(4) surjective if π1(U) = B,
(5) functional if it is both everywhere defined and local functional,
(6) surinjective if it is both injective and surjective,
(7) a local bisection if it is local functional and injective,
(8) a bisection if it is functional, injective, and surjective.

Here are “translations” how to read these definitions:

(1) local functional: each π0-fiber has at most one point in common with U ,
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(2) injective: each π1-fiber has at most one point in common with U ,
(3) everywhere defined: each π0-fiber has at least one point in common with U ,
(4) surjective: each π1-fiber has at least one point in common with U ,
(5) functional: each π0-fiber has exactly one point in common with U ,
(6) surinjective: each π1-fiber has exactly one point in common with U ,
(7) a local bisection: each π0-fiber and each π1-fiber has at most one point in

common with U ,
(8) a bisection: each π0-fiber and each π1-fiber has exactly one point in common

with U .

(By definition, for i = 0, 1, by πi-fiber are meant the sets {a ∈ M | πi(a) = x},
for x ∈ B, represented by lines in the following image.) Using this, the reader is
invited to inscribe into the following image sets U of the 8 types defined above.

π1

π0

B

Note that type (1) is dual to type (2) under exchanging source and targent, and so
are [(3) and (4)], resp. [(5) and (6)], whereas (7) and (8) are “self-dual”. If fibers of
π0 are drawn vertically and those of π1 horizontally, and B diagonally, then some
of these images coincide again with the usual way of representing functions.

Theorem 4.4. If Q1 ⊂ P(M) is the set of all locally functional (respectively:
injective; everywhere defined and surjective; functional; surinjective; local bisection;
bisection) subsets of M , and Q0 = P(B) (respectively, Q0 = {B} for the cases of
surjective and everywhere defined sets, and of bisections), then (Q1, Q0) is a subcat
of (P(M),P(B)), and hence is itself a small cat.

Proof. Let us show that Q is stable under the ∗-product. Assume U , V are local
functional and π1(V ) = π0(U), and let π0(u ∗ v) = π0(u

′ ∗ v′) with u, u′ ∈ U and
v, v′ ∈ V . Hence π0(v) = π0(v

′), so v = v′ since V is local functional. It follows
that π0(u) = π1(v) = π1(v

′) = π0(u
′) and hence u = u′ since U is local functional.

Summing up, U ∗V is local functional. In the same way we see that U ∗V is injective
if so are U and V .
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Aussume U , V are everywhere defined and π1(V ) = π0(U). Let x ∈ B. Since
U is everywhere defined, there is u ∈ U with π0(u) = x. Since V is everywhere
defined, there is v ∈ V with π0(v) = π1(u). Hence π1(u ∗ v) = x, and so U ∗ V is
everywhere defined. In the same way we see that U ∗ V is surjective if so are U
and V , and combining the preceding items, the same holds with respect to (local)
bisections.
Concerning units, for A ⊂ B let δA := {δ(x) | x ∈ A}. This is a locally functional

and injective subset of M . It is surjective iff A = B, iff it is everywhere defined
(and this explains why in this case we have only one object, Q0 = {B}). □
Theorem 4.5. Assume (M,B) is a groupoid and denote by Bloc(M) the set of local
bisections and by B(M) its set of (global) bisections. Then (Bloc(M),P(M)) is a
groupoid, and B(M), ∗ is a group (called the group of bisections of (M,B)) with
unit element δB, the unit bisection of the groupoid.

Proof. If (M,B) is a groupoid, for any set U ⊂ M , we may define the set U op =
{u−1 | u ∈ U}. In general, this will not be an inverse element of U in the power cat
(cf. the example of binary relations!). But note that U op is [local functional, resp.
injective, everywhere defined, surjective] iff U is [injective, resp. local functional,
surjective, everywhere defined]. Therefore, if U is a [local] bisection, then so is U op,
and thus U ∗ U op is also a [local] bisection. Moreover, it contains the bisection
δ(π1(U)) and hence must agree with it (since it has at most one element in common
with each π0 and each π1-fiber), so U ∗ U op = δ(π1(U)). Similarly we see that
U op ∗ U = δ(π0(U)), and hence U op indeed is an inverse of U . This proves the first
claim. It follows that B(M) is a groupoid with one object, i.e., a group. □
4.2. Marrying groupoids with torsors: pregroupoids. Recall from the first
lecture that, “forgetting” the unit element in a group, and replacing the binary
product xy by a ternary product (xyz), we get a torsor. In the same way, we may
“forget” the units of a groupoid, replacing ∗ by a ternary product. The resulting
concept is called (following A. Kock) a pregroupoid.

Lemma 4.6. In a groupoid (C0, C1, ...), the ternary product

[abc] := a ∗ b−1 ∗ c

is defined if, and only if, π0(a) = π0(b), π1(c) = π1(b) , and it satisfies:

(IP) [aab] = b, [abb] = a,
(PA) [[abc]uv] = [a[ucb]v] = [ab[cuv]].

Proof. Direct computation using properties of the inverse (cf. Lemma 2.5). □
Definition 4.7. Assume M is a set together with two projections (= surjective
maps) π0 :M → A and π1 :M → B and a ternary product

M ×π0 M ×π1 M →M, (a, b, c) 7→ [abc]

such that π0([abc]) = π0(c) and π1([abc]) = π1(a) and defined on the set

M ×π0 M ×π1 M :=
{
(a, b, c) ∈M3 | π0(a) = π0(b), π1(c) = π1(b)

}
.

We say that (M,π0, π1, [ ]) is a pregroupoid if the product satisfies the identities
(IP) and (PA), and we say that it is a semi-pregroupoid if it satisfies only (PA).



COURS “CONCEPTS GÉOMÉTRIQUES” 21

Example 1. Every groupoid gives rise to a pregroupoid, by the preceding lemma.
We then say that the pregroupoid comes from a groupoid.

Example 2. Binary relations form an important example of semi-pregroupoids:
let M = R(B,A) = P(B × A). For three relations R,S, T ∈ R(B,A), we define

[RST ] := R ◦ Sop ◦ T.
Then (M,π0, π1, [ ]), with the usual source and target maps, is a semi-pregroupoid
(but not a pregroupoid!). Indeed, it is easy to check (PA),

[U [RST ]V ] = U ◦ (R ◦ Sop ◦ T )op ◦ V ) = (U ◦ T op ◦ S) ◦Rop ◦ V = [[UTS]RV ].

It is not a pregroupoid since in general [RRT ] is much bigger than the set T (work
out an example: e.g., take R = B × A, the total relation).

Example 3. It is not true that every pregroupoid comes from a groupoid: let
M = B × A, π0(y, x) = x, π1(y, x) = y and[

(w, z), (y, z), (y, x)
]
= (w, x).

Easy check: this defines a pregroupoid. (Indeed, it is a subcat of the preceding
example: the subcat of “singleton relations”. Here, (IP) works well since for w = y
we obtain the element (y, x).) Note: when A = B, this comes from the pair
groupoid on A. But if A,B are sets of different cardinality, then it is not possible
that this pregroupoid comes from a groupoid (because in a groupoid both A and
B are identified with set of objects, or with the set of units). We call it the pair
pregroupoid (over A and B). Question: which pregroupoids come from groupoids?

Definition 4.8. In a (semi-) pregroupoid, (local) bisections, and all other of the 8
types of subsets of M , are defined exactly as in Definition 4.3.

Theorem 4.9. A pregroupoid comes from a groupoid if, and only if, it admits
a bisection. Then every bisection may serve as the set of units for a groupoid
law. Summing up, “groupoids are the same as pregroupoids together with some
distinguished bisection”.

Proof. One direction is trivial: if a pregroupoid comes from a groupoid, then its
set of units is indeed a bisection. The other direction is more interesting: we leave
the proof as an exercise – essentially, the arguments are the same as in the case of
groups (Theorem 1.1), modulo the technical complications coming from the fact that
instead of one unit there is now a whole set of units. To define the binary product,
with respect to a distinguished bisection U , one has to define it by a ∗ c = [auc]
where u ∈ U is the unique element with π0(u) = π0(a), π1(u) = π1(c), and then
check the groupoid properties. □
Exercise/further remarks. (1) If you are familiar with principal bundles: show
that a pregroupoid with B = {e} (singleton) is essentially (i.e., neglecting the
topological conditions) the same as a (left) principal bundle.

(2) State and prove an analog of Theorems 4.2 and 4.3 for (semi-)pregroupoids:
if (M, [ ], . . .) is a pregroupoid, then (P(M), . . .) is, in a natural way, a semi-
pregroupoid, and the set of (local) bisections is a pregroupoid. See here for solutions.

https://en.wikipedia.org/wiki/Principal_bundle
http://iecl.univ-lorraine.fr/%7EWolfgang.Bertram/torsors3.pdf
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5. Fifth lecture: first order differential calculus

5.1. Contraction. Differential calculus can be seen as a manifestation of the the
general idea of “contraction of mathematical structure”: structures often appear in
families, say (Sλ)λ∈I , where λ is a parameter. When λ is “regular”, or “generic”,
the structures Sλ are often also “regular”, or “non-degenerate”, whereas when λ
approaches a “singular” value (often denoted by 0), then the structure also somehow
becomes singular (it “contracts” to S0). Let’s look at an example:

Definition 5.1 (W. Blaschke: Geometrie der Gewebe). Let d ≥ 1 be a natural
number. A d-web in the plane (French: d-tissu) is given by d families of lines
(which may be “straight”, or “curved”) in the plane R2, such that

(1) each point of the plane belongs to exactly one line of each family,
(2) no two different lines of the same family intersect,
(3) any two lines of two different families intersect in exactly one point.

The following figure shows two illustrations of 2-nets: the grey lines form an “or-
thogonal” 2-net (two classes of straight lines, intersecting orthogonally), and the
colored lines form an “oblique” 2-net (classes of straight red lines and classes of
straight blue lines; the red lines are not parallel to the blue ones, hence each red
line intersects each blue line in exactly one point). For simplicity, we have chosen
“straight” lines for our figure, but one could also use families of “curved lines”.

Now imagine that the red lines become “more and more parallel” to the blue lines:
we will end up with a single family of parallel lines, i.e., a 1-web. Thus 2-webs
(regular configuration of 2 families of lines) may “contract” to 1-webs (singular
configuration). A general setting is the one of equivalence relations:

Equivalence relations. Fix a set Ω and recall the notion of an equivalence relation,
say α, on Ω. Instead of xαy we also write x ∼α y, and denote by [x]α = {y ∈ Ω |
y ∼α x} the equivalence class of x. Recall that the equivalence classes form a
partition of Ω, and the quotient set Ω/α or Ω/ ∼α is the set of all equivalence
classes (a subset of P(Ω)).

https://fr.wikipedia.org/wiki/Wilhelm_Blaschke
http://projecteuclid.org/download/pdf_1/euclid.bams/1183502080
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Partition_of_a_set
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Definition 5.2. Two equivalence relations α, β on Ω are called transversal if each
equivalence class of α intersects each equivalence class of β at exactly one point,

i.e., card([x]α ∩ [y]β) = 1 for all x, y ∈ Ω. We then write α⊤β .

Remark/exercise. Using notation from the preceding chapter, α⊤β if, and only
if [ α◦β = Ω×Ω (relational composition is the total relation) and α∩β = δ(Ω) (set
theoretic intersection is the diagonal)]. In particular, it follows that α ◦ β = β ◦ α
(we say that α and β commute).

Example 1. On Ω = R2, each 1-net defines a partition, hence defines an equiva-
lence relation. Two such equivalence relations are transversal if, and only if, they
form a 2-net.

Example 2. If Ω = A×B, we define

(x, y) ∼α (x′, y′) iff x = x′, and (x, y) ∼β (x′, y′) iff y = y′.

These are equivalence relations, and the equivalence classes are the “vertical”, resp.
“horizontal lines”. Each horizontal “line” intersects each vertical “line” at exactly
one element of Ω, so α⊤β. Indeed, every pair of transversal equivalence relations is
obtained in this way:

Proposition 5.3. Assume (α, β) is a pair of transversal equivalence relations on
Ω. Then Ω = A×B, as in the preceding example, with A = Ω/α and B = Ω/β.

Proof. Let A = Ω/α and B = Ω/β. The map

A×B → Ω, (a, b) 7→ a ∩ b
is well-defined since a∩b can be identified with the unique element it contains. This
map is bijective: an inverse map is given by

Ω→ A×B, x 7→ ([x]α, [x]β).

Identifying thus Ω with A×B, (α, β) are as in the example. □
However, on a single set Ω we may define plenty of very different pairs of equivalence
relations, and a regular (transversal) pair (α, β) may contract into a singular (non-
transversal) pair. Question: do other structures contract as well?

Exercise. Let (α, β) be a pair of transversal equivalence relations on Ω. Identifying
Ω with the direct product Ω/α × Ω/β, show that, for a triple of sets (X,Y, Z) ∈
P(Ω)3 the ternary composition W := [XY Z]α,β = X−1 ◦ Y ◦Z ⊂ Ω is given by the
following expression:

[XY Z]α,β =

{
ω ∈ Ω

∣∣∣ ∃ξ ∈ X, ∃η ∈ Y, ∃ζ ∈ Z :
ω ∼α ζ, η ∼α ξ, ω ∼β ξ, η ∼β ζ

}
.

Note that the result depends on α and on β. Next assume that (α, β) are no longer
transversal but still commute. Show that the same formula [XY Z]α,β still defines a
para-associative ternay product on P(Ω), and that P(Ω) with this product still is
a semi-pregroupoid. (See here (page 9) for solutions. This is closely related to the
associative geometries mentioned in the first lecture. If time is permitting, we shall
later in these lectures say more on generalized 3-webs, which are closely related to
loops and quasigroups.)

http://iecl.univ-lorraine.fr/%7EWolfgang.Bertram/torsors3.pdf
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5.2. First order differential calculus. Let V and W be finite-dimensional real
vector spaces, U a non-empty open subset of V and f : U → W a map. The
difference quotient or slope is defined for regular t ∈ R (i.e., t ̸= 0), by

f ]1[(x, v, t) :=
f(x+ tv)− f(x)

t
.

We view f ]1[ as a function of three variables (x, v, t) where x ∈ U, v ∈ V, t ∈ R× such
that x+ tv ∈ U . Differential calculus defines a contraction of this expression for the
singular value t = 0. (This idea has been developed in joint work with H. Glöckner
and K.-H. Neeb. See the book “Calcul différentiel topologique élémentaire” for a
detailed exposition of this approach, and here (Chapter 1) for some complementary
information.)

Theorem 5.4. The following statements are equivalent:

(1) the map f is of class C1 (i.e., continuously differentiable),
(2) the slope f ]1[ admits a continuous extension to a map f [1] : U [1] → W defined

on the set

U [1] := {(x, v, t)|x ∈ U, v ∈ V, x+ tv ∈ U} .

If this holds, the total differential of f is given by Df(x)v = f [1](x, v, 0).

Proof. Assume (2) holds. Then lim t→0
t̸=0

f(x+tv)−f(x)
t

= lim t→0
t̸=0

f [1](x, v, t) = f [1](x, v, 0),

by continuity of f [1]. In particular, ∂
∂i
f(x) = f [1](x, ei, 0), so all partial derivatives

exist and are continuous, hence f is C1. Now assume that (1) holds and define a
map

f [1] : U [1] → F, (x, v, t) 7→
{f(x+tv)−f(x)

t
if t ∈ R×

Df(x)v if t = 0.

We must show that f [1] is continuous. Since f is continuous, it follows that f [1] is
continuous on the set

(5.1) U ]1[ := {(x, v, t) ∈ U [1]| t ̸= 0}.
Thus it remains to prove that f [1] is continuous at all points of the form (x, v, 0).
To show this, note first that, whenever the line segment [x, x + tv] belongs to U ,
then

(5.2) f [1](x, v, t) =

∫ 1

0

Df(x+ stv)v ds.

Indeed, for t = 0, this is obviously true, and for t ̸= 0, it follows from the funda-
mental relation between differential and integral calculus, along with a change of
variable r = st,

f(x+ tv) = f(x) +

∫ t

0

Df(x+ rv)v dr = f(x) + t

∫ 1

0

Df(x+ stv)v ds

which implies (5.2). Now, the right hand side is the integral of a continuous function,
depending continuously on the parameter (x, v, t). Since integration carries over a
compact interval, the continuity of the right hand side follows by elementary analysis
(no need to invoke more powerful machinery like Lebesgue’s theorem). □

https://webusers.imj-prg.fr/~rached.mneimne/CM/fiches-representants/wolfgang-2011-10-05-press.pdf
http://iecl.univ-lorraine.fr/%7EWolfgang.Bertram/WB-page.pdf
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Comment. This theorem is important because it permits to explain differentiability
of f (1) in terms of continuity of f [1] (2). Condition (2) makes sense in any frame-
work where continuity is defined, e.g. in general (infinite dimensional) topological
vector spaces:

Definition 5.5. Assume V,W are arbitrary topological vector spaces. Then we say
that f is of class C1 if it satisfies the condition (2) from the theorem. The same
definition is given if V,W are topological vector spaces over the field K = C, or over
any other (non-discrete) topological field (such as the p-adic numbers Qp), or even
a topological module over a topological ring.

See the above mentioned references for motivation of this definition: the “classical”
definitions cannot be reasonably generalized to such general contexts (the main
reason is that the integral representation 5.1 does not always carry over). – The
proofs of the following classical results hold in this general framework:

Theorem 5.6. If f is C1, then the differential Df(x) : V → W at each point
x ∈ U is a linear map.

Proof. Let us show that Df(x)(v+w) = Df(x)v+Df(x)w for v, w ∈ V . For t ̸= 0,
we have

f [1](x, v + w, t) =
f(x+ t(v + w))− f(x)

t

=
f(x+ tv + tw)− f(xx+ tv)

t
+
f(x+ tv)− f(x)

t

= f [1](x+ tv, w, t) + f [1](x, v, t).

Thus f [1](x, v + w, t) = f [1](x + tv, w, t) + f [1](x, v, t) for all non-zero t in a neigh-
borhood of 0. Since, by Theorem 5.4, both sides are continuous functions of t, it
follows that equality also holds for t = 0, which directly implies the claim. Now we
prove that Df(x)(rv)r = r Df(x)v. For t ̸= 0 and r ̸= 0,

f [1](x, rv, t) =
f(x+ t(rv))− f(x)

t

= r
f(x+ tr v)− f(x)

tr
= r f [1](x, v, tr).

Thus f [1](x, rv, t) = rf [1](x, v, tr) for all non-zero t, r in a neighborhood of 0. Again
by Theorem 5.4, equality still holds for t = 0: Df(x)(rv) = rDf(x)v. □

Comment. In the approach often chosen in France, linearity of the differential holds
by definition, and therefore it is not realized that linearity is indeed a consequence
of other properties. See again loc. cit. for more comments on this.

Theorem 5.7. If g and f are composable mappings of class C1 defined on open
subsets of finite-dimensional vector spaces, then g ◦ f is again of class C1, and its
differential is given by

D(g ◦ f)(x) = Dg(f(x)) ◦Df(x).

https://en.wikipedia.org/wiki/Topological_vector_space
https://en.wikipedia.org/wiki/Topological_vector_space
https://en.wikipedia.org/wiki/Topological_ring
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Proof. We use again Theorem 5.4 and write f(x+ tv) = f(x) + tf [1](x, v, t). Then,
for t ̸= 0 the difference quotient is

(g ◦ f)[1](x, v, t) = g(f(x+ tv))− g(f(x))
t

=
g(f(x) + tf [1](x, v, t))− g(f(x))

t
= g[1](f(x), f [1](x, v, t), t).

Our assumptions imply that the right hand side is a continuous function of (x, v, t),
and hence a continuous difference factorizer for g ◦ f exists, given by this formula.
Taking t = 0 now yields D(g ◦ f)(x)v = Dg(f(x))(Df(x)v), as claimed. □
Definition 5.8. If f : U →W is of class C1, then the tangent map is defined by

Tf(x, v) :=
(
f(x), Df(x)v

)
.

Thus Tf : TU → TW is defined on the set TU := U × V .

The chain rule can be re-written

T (g ◦ f)(x, v) =
(
g(f(x)), Dg(f(x))(Df(x)v)

)
= Tg(Tf(x, v))

so T (g ◦ f) = Tg ◦ Tf , which means that the symbol T is a functor! Whenever

we have such a functorial rule, we may be pretty sure that this has an “intrinsic”,
or “geometric”, meaning. Indeed, in the present case, the notion of tangent map is
intrinsically defined for any differentiable manifold. It is also true, but less classical,
that already before taking the limit we get such a kind of “tangent map”:

Definition 5.9. If f is of class C1, then the extended tangent map is defined by

T̂ f(x, v, t) :=
(
f(x), f [1](x, v, t), t

)
,

on the set T̂U := U [1], so we have a map T̂ f : T̂U → T̂W .

The computation proving Theorem 5.6 can now be re-written

T̂ (g ◦ f)(x, v) =
(
g(f(x)), (g ◦ f)[1](x, v, t), t

)
=

(
g(f(x), g[1](f(x), f [1](x, v, t), t) = T̂ g(T̂ f(x, v)),

so again we have a functorial rule T̂ (g ◦ f) = T̂ g ◦ T̂ f . This supports the conjec-

ture that the set T̂U carries some “intrinsic structure”. Indeed, this is the case:

5.3. The tangent groupoid. In the following, one may read K = R, or K = C,
or some other field.

Theorem 5.10. The set T̂U = U [1] carries the structure of a groupoid, over the
object set U ×K, with source and target projections, product and units defined by

π0 : U
[1] → U ×K, (x, v, t) 7→ (x, t),

π1 : U
[1] → U ×K, (x, v, t) 7→ (x+ tv, t),

(x, v, t) ∗ (x′, v′, t′) := (x′, v + v′, t) if x = x′ + tv′, t = t′,

δ : U ×K→ U [1], δ(x, t) := (x, 0, t).

For every t ∈ R, we have a groupoid Ut = {(x, v) | (x, v, t) ∈ U [1]} over the base U .

https://en.wikipedia.org/wiki/Pushforward_%28differential%29
https://en.wikipedia.org/wiki/Differentiable_manifold
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Proof. First note that π0(x
′, v + v′, t) = x′ = π0(x

′, v′, t′) and π1(x
′, v + v′, t) =

x′ + t(v + v′) = x + tv = π1(x, v, t). Associativity of ∗ now follows directly from
associativity of + in V . Next, let’s check that (x, 0, t) is indeed a neutral element:
(x, 0, t) ∗ (x′, v′, t) = (x′, v′, t) and (x, v, t) ∗ (x′, 0, t) = (x′, v, t) = (x, v, t) (since
x′ = x here). An inverse of (x, v, t) is

(x, v, t)−1 = (x+ tv,−v, t).
Indeed, (x, v, t) ∗ (x + tv,−v, t) = (x + tv, 0, t), (x + tv, v, t) ∗ (x, v, t) = (x, 0, t).
Note that in the whole proof the variable t does not play an “active” role, hence all
arguments remain valid for t fixed, defining a groupoid Ut over U . □
We summarize the definition of T̂U by the diagram

T̂U ⇒ U ×K1

(x, v, t)
π07→ (x, t)
π17→ (x+ tv, t)

(x, 0, t)
δ↢ (x, t)

Remark. For t = 0, the groupoid U0 = TU is the tangent bundle: in this case
π1(x, v) = x + 0v = x = π0(x, v), Ie., π0 = π1, so we have a group bundle. Indeed,
each fiber of π then is a copy of V with its usual sum as group law (the tangent
space). Nowadays, the tangent bundle is recognized, in mathematics and physics, as
an important geometric object in its own right. For t ̸= 0, we get a “true” groupoid:

Proposition 5.11. For t ̸= 0, the groupoid Ut is isomorpic to the pair groupoid
U × U . More precisely,

Φ : Ut → U × U, (x, v) 7→ (x, x+ tv)

is an isomorpism of groupoids over the base map idU .

Proof. The map Φ is bijective: an inverse map is given by (x, y) 7→ (x, y−x
t
). By

direct compution, (Φ, idU) is a morphism of groupoids. (Indeed, it is the anchor
morphism, cf. the exercise p. 16 !) Note that (x, 0) is mapped to (x, x). □
Summing up, for invertible t, and in particular t = 1, π0 and π1 have transversal
fibers (they form a generalized 2-web), which for t → 0 become “more and more
parallel” and finally contract for t = 0 to the singular situation π0 = π1 (1-web).
Here a figure, where U is an interval, with same conventions as for the figure p. 19,

t = 1 t = 1
2

t = 0

Remark. The tangent groupoid defined by Alain Connes in Section II.5 of his
book Non-Commutative Geometry, essentially coincides with the one defined here:
Connes defines it as disjoint union

TU
∪

(U × U×]0, 1]),

http://www.alainconnes.org/fr/
http://www.alainconnes.org/fr/downloads.php
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gluing together the tangent bundle TU with copies of the pair groupoid. This
construction is somewhat artificial, and it does not reveal the purely algebraic nature
of the construction: indeed, our Theorem 5.10 is valid for any field (even, every base
ring), and topological properties are not used at this stage.

5.4. Morphisms: C1-maps revisted. The groupoid structure on T̂U really is
“natural”, because of the following

Theorem 5.12. If f : U →W is of class C1, then the pair of maps

(T̂ f, f × idK) : (T̂U, U ×K)→ (T̂W,W ×K)

is a (continuous) groupoid morphism. We indicate this by the diagram

T̂U
T̂ f→ T̂W

⇊ ⇊
U ×K f×idK→ W ×K .

Proof. The condition π0 ◦ T̂ f = (f × idK) ◦ π0 holds since

π0 ◦ T̂ f(x, v, t) = (f(x), t) = f × idK(x, t) = (f × idK)(π0(x, v, t)).

The condition π1 ◦ T̂ f = (f × idK) ◦ π1 holds since

π1 ◦ T̂ f(x, v, t) = π1(f(x), f
[1](x, v, t), t) = (f(x) + t · f [1](x, v, t), t)

= (f(x+ tv), t) = (f × idK)(π1(x, v, t)).

The condition T̂ f(x, 0, t) = (f(x), 0, t) holds since f [1](x, 0, t) = 0 for all t. Indeed,
f(x+0t)−f(x)

t
= 0 for all t ̸= 0, and by continuity also for t = 0. It remains to prove

that T̂ f preserves ∗. We compute

T̂ f((x′, v′, t′) ∗ (x, v, t)) = T̂ f(x, v′ + v, t) = (f(x), f [1](x, v′ + v, t), t)

T̂ f(x′, v′, t′) ∗ T̂ f(x, v, t) = (f(x), f [1](x+ vt, v′, t), t) ∗ (f(x), f [1](x, v, t), t)

=
(
f(x), f [1](x+ vt, v′, t) + f [1](x, v, t), t

)
.

Thus equality holds iff f [1](x, v′ + v, t) = f [1](x+ vt, v′, t) + f [1](x, v, t). But that is
exactly what we have seen in the proof of Theorem 5.6, and so is true (moreover,
we see that additivity of Df(x) is the special case t = 0 of this property). □
Summing up: a map f : U → W is C1 if, and only if, it “extends” continuously
to an “extended tangent map” T̂ f : T̂U → T̂W , which is a groupoid morphism.
As seen above, the construction is functorial, and hence the symbol T̂ is a func-
tor from the ccat of open subsets of vector spaces into the ccat of (topological)
groupoids with their (continuous) morphisms. Without going into details (that can
be found here), let us mention that this statement carries over to the ccat of dif-
ferentiable manifolds, instead of open subsets of vector spaces. The construction
of T̂U pursues similar aims as synthethetic differential geometry, but by different
(more elementary) methods.

Next, we have to look at second, and higher order differential calculus.

http://arxiv.org/abs/1503.04623
https://ncatlab.org/nlab/show/synthetic+differential+geometry
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6. Sixth lecture: second order differential calculus

Second and higher order calculus consist in iterating, in one way or another,
the procedure of deriving once. For functions of one (scalar) variable, iteration
is “easy”: since f ′ is again a function of one variable, let f ′′ = (f ′)′, and so on:
f (n+1) = (f (n))′. For functions of vector variables, this becomes more difficult: given
f : U →W , there are (at least) two variants of defining the differential:

(a) write the first differential as Df : U → Hom(V,W ), x 7→ (v 7→ Df(x)v).
Then D2f := D(Df) is a map U → Hom(V,Hom(V,W )), x 7→ D2f(x).
But one may identify Hom(V,Hom(V,W )) with the space Bil(V × V,W ) of
bilinear maps. By Schwarz’ theorem, the bilinear map D2f(x) is symmetric.

(b) writing the first differential as df : U × V → W , (x, v) 7→ Df(x)v, the
second differential will be a map d2f : U × V × V × V →W . This is a map
of four (vector) variables!

Generally speaking, the number of variables increases, at each step of the iteration
procedure. We will do even “worse”: iterating f [1], we will define (f [1])[1], the “slope
of the slope”, and look at a map of seven variables.

6.1. Second differential, and Schwarz’ theorem.

Definition 6.1. With notation as in the preceding lecture, a map f : U → W is
called of class C2, if: f is C1, and the map f [1] : U [1] → W is also C1. In this
case, we define f [2] := (f [1])[1]. We say that f is of class Cn if f is of class Cn−1,
and f [n−1] is of class C1. We then define f [n] := (f [n−1])[1]. We then also define,

inductively, T̂ nU := T̂ (T̂ n−1U), and

T̂ nf := T̂ (T̂ n−1f) : T̂ nU → T̂ nW.

Theorem 6.2. If V = Rk and W = Rm, then the preceding definition of class Cn

coincides with all other usual definitions.

Proof. Essentially, one uses the argument from the proof of Theorem 5.4 repeatedly.
See references given there for details. The main argument uses that in (5.2), one
can “derive under the integral”. □
Remark. The theorem also holds for Banach spaces. In more general situations,
most classical definitions fail, and our definition turns out to be strictly stronger.

Formulae for U [2], for f [2], and for T̂ 2f . Applying twice the definitions from the
preceding lecture, we get the following explicit formulae:

f [2]
(
(x, v, t), (x′, v′, t′), t′′)

=
1

t′′
(
f [1]

(
(x, v, t) + t′′(x′, v′, t′)

)
− f [1](x, v, t)

)
=
f(x+ t′′x′ + (t+ t′′t′)(v + t′′v′))− f(x+ t′′x′)

t′′(t+ t′′t′)
− f(x+ tv)− f(x)

t′′t

U [2] =

{
(x, v, t; x′, v′, t′; t′′)

∣∣∣ t, t′, t′′ ∈ K,
x∈U

x+tv∈U
x′+t′′x′∈U

x+t′′x′+(t+t′′t′)(v+t′′v′)∈U

}
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T̂ 2f
(
x, v, t;x′, v′, t′; t′′

)
=
(
f(x), f [1](x, v, t), t; f [1](x, x′, t′′), f [2](x, . . . , t′′), t′′

)
Exercise: write up a formulae for T̂ 3U , f [3] and T̂ 3f in a similar way! To be honest, I
never tried to do this myself; it seems indeed fairly hard to “understand” the iterated
slopes f [n]. As far as I know, not much work has been done in this direction. Here
is one classical result known as “Schwarz’ theorem” – in the following, we use the
directional derivative ∂vf(x) := Df(x)v = f [1](x, v, 0) of a function f in direction
v. Note that ∂vf is again a function U → W .

Theorem 6.3. Assume f is of class C2. Then we have, for all x ∈ U and v, w ∈ V ,

∂v(∂wf)(x) = ∂w(∂vf)(x),

and the second order differential at x is a symmetric bilinear map

D2f(x) : V × V → W, (v, w) 7→ ∂v(∂wf)(x).

Proof. The formula given above yields, for t′ = 0, v′ = 0 and t = t′′ ̸= 0,

f [2]((x, v, t), (x′, 0, 0), t) =
f(x+ tx′ + tv)− f(x+ tx′)− f(x+ tv) + f(x)

t2
.

Obviously, this is symmetric in v and x′. Thus, for all t ̸= 0,

f [2]((x, v, t), (x′, 0, 0), t) = f [2]((x, x′, t), (v, 0, 0), t).

Since both sides are continuous functions of t, we have equality also for t = 0. But

(6.1) ∂v(∂wf)(x) = ∂(v,0,0)f
[1](x,w, 0) = f [2]((x,w, 0), (v, 0, 0), 0),

whence the first claim, i.e., symmetry of D2f(x). Moreover, by Theorem 5.6, first
differentials are linear maps, so this expression is linear with respect to v. By
symmetry, it is then also linear with respect to w. □

6.2. Notational conventions. For understanding higher iterated structures, the
choice of good notation is very important. First of all, the rôle of a variable shall
be indicated by its index, and not by its position in a 7-tuple. For instance, instead
of

(
x, v, t; x′, v′, t′; t′′

)
, we shall write

(
v0, v1, v2, v12, t1, t2, t12

)
. At each step, a new

digit is adjoined to the indices:

Definition 6.4. Fix an integer j ∈ N. We denote by U{j} a copy (“of j-th gen-

eration”) of T̂U , and by f {j} a copy of T̂ f . Then we let U{1,2} := (U{1}){2},
f {1,2} := (f {1}){2}, and inductively (if f is of class Cn)

U{1,...,n} := (U{1,...,n−1}){n}, f {1,...,n} := (f {1,...,n−1}){n}.

The notational principle is that, at the k-th step, new variables are added whose
index is obtained from the preceding ones by joining everywhere the index k to the
old index. Moreover, for sake of clarity, we first gather “space variables” vα and
then “time variables” tβ. To get even shorter notation, we use sans serif letters

n := {1, . . . , n}, 2 := {1, 2}, 3 := {1, 2, 3}, . . .

to denote finite sets, so f 2 is another way of writing T̂ 2f , and fn for T̂ nf .

https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives#Schwarz.27_theorem
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For instance, instead of T̂ 2U we write

U{1,2} = U2 =

{(
v0, v1, v2, v12, t1, t2, t12

) ∣∣∣ v0∈U
v0+t1v1∈U
v0+t2v2∈U

v0+t2v2+(t1+t2t12)(v1+t2v12)∈U

}
.

By “deriving a map f : U → W at level j” we mean passing from f to its corre-
sponding groupoid morphism (where Kj is a copy of K):

(6.2)
U{j} f{j}

→ W {j}

⇊ ⇊
U ×Kj

f×idK→ W ×Kj.

Recall that this operation is functorial: (g ◦ f){j} = g{j} ◦ f {j}. By induction:

Theorem 6.5. When g and f are composable and of class Cn, then (g◦f)n = gn◦fn.

Example 1: linear maps. Assume α : V →W is a (continuous) linear map. The
slope of α is

α[1](x, v, t) =
α(x+ tv)− α(x)

t
=
α(x) + tα(v)− α(x)

t
= α(v),

whence is continous for t = 0 included, and hence α{j}(v, vj, tj) = (α(v), α(vj), tj)
is again a continuous linear map. By induction, α is Cn for all n ∈ N.

Example 2: constant maps. Assume f(x) = c is a constant map. Then
f [1](x, v, t) = 0, hence f {j}(x, v, t) = (c, 0, t) (sum of a constant and a linear term),
and hence f is C∞.

Example 3: bilinear maps. Let β : E×F → W be a (continuous) bilinear map.
We compute the difference quotient map of β:

β(e+ tjej, f + tjfj)− β(e, f)
t

= β(ej, f) + β(e, fj) + tjβ(ej, fj)

This is again continuous, for t = 0 included, and it follows that β is of class C1 and

β{j}((e, ej), (f, fj), tj) = (β(e, f), β(e, fj) + β(f, ej) + tjβ(ej, fj), tj).

For t = 0, we get the usual derivative. However, as a function of all variables, this
is of degree 3, and computing higher slopes, we will get polynomials of higher and
higher order. We don’t need the explicit formulae for the moment.

Exercise. Show that, if g and f are Cn, then so is f+g, and that (f+g)n = fn+gn.
Show that, if f is continuous polynomial (of degree k), then f is Cn for all n, and
fn is polynomial of degree 2k − 1.

6.3. The structure of U{1,2}. The set U{1,2} has a very significant structure: each
derivation procedure {j} produces a groupoid. If we apply it to another groupoid,
the groupoid structure therefore is kind of doubled: we get a double groupoid. More
precisely: the two projections π0, π1 : U

{1} ⇒ U ×K1 are linear, resp., of degree 2,
hence differentiable (by the preceding examples), and so we may “derive them at
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level 2”. So we apply (6.2) to f = π0 and f = π1. This gives rise to two diagrams
of the form (6.2) which together we denote by

U{1,2} ⇒ U{2} ×K1 ×K12

⇊ ⇊
U{1} ×K2 ⇒ U ×K1 ×K2

where K12 is another copy of K. Here we have used

Lemma 6.6. For a subset A ⊂ V , and i < j,

(A×Ki)
{j} = A{j} ×Ki ×Kij.

Proof. Identify an element ((ai, ti), (aij, tij), tj) with ((ai, aij, tj), ti, tij). □

Next we wish to compute explicit formulae for the maps appearing in this diagram.
Using computations from Example 1 and 3, we get (target first, source second):

U{1,2} ⇒ U{2} ×K1 ×K12

(v0, v1, v2, v12, t1, t2, t12)
π17→ (v0 + t1v1, v2 + t12v1 + t1v12 + t2t12v12, t1, t2, t12)
π07→ (v0, v2, t1, t2, t12)

↓π1↓π0 ↓π1↓π0

(v0 + t2v2, v1 + t2v12, t1 + t12t2, t2) (v0 + t2v2, t1 + t12t2, t2)

(v0, v1, t1, t2)
π07→ (v0, t1, t2)
π17→ (v0 + t1v1, t1, t2)

U{1} ×K2 ⇒ U ×K1 ×K2

Similarly there is a diagram of unit maps δ

U{1,2} ← U{2} ×K1 ×K12

↑ ↑
U{1} ×K2 ← U ×K1 ×K2

explicitly given by

(v0, 0, v2, t1, t2, t12) ↢ (v0, v2, t1, t2, t12)

(v0, v1, 0, t1, t2, 0) (v0, 0, t1, t2, 0)
↑ ↑

(v0, v1, t1, t2) (v0, t1, t2)

(v0, 0, t1, t2) ↢ (v0, t1, t2)

Finally we also can “derive” with respect to the index {2} the product map

∗ = ∗1 : U{1} ×U×K1 U
{1} → U{1}, (v0, v1; v

′
0, v

′
1; t1) 7→ (v′0, v1 + v′1; t1).
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This formula is linear, hence the derived map is easy to compute (since (t1, t2, t12) is
kept constant, we suppress it from the notation): whenever the matching conditions
hold,

(v0, v1, v2, v12) ∗{2}1 (v′0, v
′
1, v

′
2, v12) = (v′0, v1 + v′1, v

′
2, v12 + v′12).

On the other hand, the groupoid (U{1,2}, U{1}×K2) comes with another product ∗2
which we shall denote by • and given by, whenever defined,

(v0, v1, v2, v12) • (v′0, v′1, v′2, v′12) = (v′0, v
′
1, v2 + v′2, v12 + v′12).

Theorem 6.7. The four sets and the maps appearing in the “square” diagrams

U{1,2} ⇒ U{2} ×K1 ×K12

⇊ ⇊
U{1} ×K2 ⇒ U ×K1 ×K2

and
U{1,2} ← U{2} ×K1 ×K12

↑ ↑
U{1} ×K2 ← U ×K1 ×K2

together with the two products ∗ := ∗{2}1 and • = ∗2 on U{1,2}, and with the product
on U{1} and on U{2} from the preceding chapter, satisfy the following properties:

(1) each “edge data” of the square defines a groupoid,
(2) each pair of arrows ((π1, π1), etc.) defines a morphism of groupoids,
(3) the two products ∗ and • satisfy the following interchange law: whenever all

expressions are defined, then

(a ∗ b) • (c ∗ d) = (a • c) ∗ (b • d).

Proof. (1) The vertical edges form groupoids: this is a direct application of Theorem
5.10. Idem for the lower horizontal edge (where just a variable t2 is added in all
formulae from Theorem 5.10). Concerning the upper horizontal edge, the data form
a groupoid since we have applied the “functor of deriving with respect to {2}” to
the data of a groupoid, and hence we get again the data of a groupoid. (See next
chapter for more on this procedure.)

(2) For horizontal pairs of maps, this is a direct application of Theorem 5.12:
indeed, the horizontal pairs of arrows are all of the form (f {2}, f × id), where f is
one of the structure maps π1, etc., of the groupoid U{1}. For the vertical pairs of
maps, we use again that “deriving with respect to {2}” is a functor.

(3) A conceptual interpretation of the interchange law will be given in the next
chapter. Let’s give here a computational proof, based on the preceding formulae:

((a0, a1, a2, a12) ∗ (b0, b1, b2, b12)) • ((c0, c1, c2, c12) ∗ (d0, d1, d2, d12))
=(b0, a1 + b1, b2, a12 + b12) • (d0, c1 + d1, d2, c12 + d12)

=(d0, c1 + d1, b2 + d2, a12 + b12 + c12 + d12).

On the other hand, ((a0, a1, a2, a12) • (c0, c1, c2, c12)) ∗ ((b0, b1, b2, b12) • (d0, d1, d2, d12))
=(c0, c1, a2 + d2, a12 + c12) ∗ (d0, d1, b2 + d2, b12 + d12)

=(d0, c1 + d1, b2 + d2, a12 + c12 + b12 + d12).

Now, using commutativity of addition + in V , we have

a12 + b12 + c12 + d12 = a12 + c12 + b12 + d12,

and the interchange law follows. □



34 WOLFGANG BERTRAM

Definition 6.8. We say that the properties (1) – (3) define on U2 the structure of
a double groupoid. See next chapter for more on this!

Theorem 6.9. Fix t = (t1, t2, t12) ∈ K3 such that t12 = 0. Then the same formulae
as above define a double groupoid

U
{1,2}
t ⇒ U

{2}
t2

⇊ ⇊
U

{1}
t1 ⇒ U

and
U

{1,2}
t ← U

{2}
t2

↑ ↑
U

{1}
t1 ← U

having the additional property that it is edge-symmetric, in the sense that all for-
mulae remain unchanged under simultaneous exchange t1 ↔ t2 and v1 ↔ v2. In
particular, when t1 = t2 =: t, the flip or exchange v1 ↔ v2 defines an automorphism
of the double groupoid.

Proof. If t12 = 0, then in the explicit formulae from the preceding pages, we have
t1 + t2t12 = t1, and thus t becomes a “silent” variable (all maps are the identity in
the t-component). Hence all properties make sense for t fixed. Moreover, symmetry
under t1 ↔ t2 and v1 ↔ v2 is seen by direct inspection of the formulae. □
Note. Edge symmetry is the “conceptual” version of Schwarz’ theorem!

Example. If, in the preceding theorem, we let t1 = 0 = t2, then we get the double
tangent bundle denoted by

TTU = U
{1,2}
0 ⇒ TU = U

{2}
0

⇊ ⇊
TU = U

{1}
0 ⇒ U

See next chapter for more on this!

Example. If in the preceding theorem we let t1 = 1 = t2, then we get the double
pair groupoid: recall (Prop. 5.11) that U1

∼= U × U . Applying this twice, we get

U × U × U × U ∼= U
{1,2}
(1,1) ⇒ U × U ∼= U

{2}
1

⇊ ⇊
U × U ∼= U

{1}
1 ⇒ U

See next chapter for more on this!

Summing up, for (t1, t2) → (0, 0), we get a continuous “contraction” of the double
pair groupoid towards the double tangent groupoid. The gain of our apparently
more complicated definition of differential, invoking 7 variables, is that the higher
differential f 2 is highly structured and incorporates not only “infinitesimal” data,
but also “finite” ones.

https://en.wikipedia.org/wiki/Double_tangent_bundle
https://en.wikipedia.org/wiki/Double_tangent_bundle
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7. Seventh lecture: small n-fold cats and n-fold groupoids

The preceding chapter has furnished an example of a “higher order categorical
structure”. Historically, Charles Ehresmann was the first to define and use double
groupoids, which then, together with other “higher gadgets”, entered into other
theories – see the n-lab or [Br2] for more information on the historical development.
Let’s look at some more exemples, before giving general definitions and returning
to Un.

7.1. Example: the double pair groupoid. Let M be a set. Recall that the
pair groupoid PG1M of M is given by the two projections M × M ⇊ M , unit
section the diagonal map M → M ×M and product (x, y) ∗ (y, z) = (x, z) and
inverse (x, y)−1 = (y, x). Every map f : M → M ′ induces a groupoid morphism

PG1f = (f×f, f). Let PG{k} be a copy of PG{1}, “of k-th generation”. By definition,
the double pair groupoid is

PG{1,2}M := PG{2}(PG{1}M).

This is a pair of pairs of sets, ((M4,M2), (M2,M)), and a projection πσ :M2 →M

gives rise to a projection PG{2}πσ : M4 → M2. Together with projections π
{2}
σ ,

these fit into a diagram

M4 ⇒ M2

⇊ ⇊
M2 ⇒ M

,
(x0, x1, x2, x12) 7→ (x0, x2)

↓ π0 ↓
(x0, x1) 7→ x0

(x0, x1, x2, x12) 7→ (x1, x12)
↓ π1 ↓

(x2, x12) 7→ x12

and likewise we get a diagram of unit sections. Moreover, on M4 there are two
products given by (under the matching conditions)

(x0, x1, x2, x12) ∗{2}1 (y0, y1, y2, y12) = (x0, y1, x2, y12),

(x0, x1, x2, x12) ∗2 (y0, y1, y2, y12) = (x0, x1, y2, y12).

Applying PG{3} to these things, we get ((M8,M4,M4,M4), (M4,M2,M2,M)), a
“pair of pairs of pairs”, which can be represented by a cube of sets and maps.

7.2. Example: the double tangent bundle. LetM ⊂ V be a subset of a vector
space (or a smooth manifold). Recall that the tangent bundle is the groupoid with
π0 = π1 =: π and projection

π : TM =M × V →M, (x, v) 7→ x

and groupoid law (x, v) ∗ (x,w) = (x, v + w) and unit section δ(x) = (x, 0). If
f :M → N is of class C1, then Tf : TM → TN is a groupoid morphism. Hence we
can “derive” π and get Tπ : TTM → TM . As before, this gives rise to a diagram
(since π0 = π1, one gets what is called a double vector bundle):

TTM =M × V × V × V → TM =M × V
↓ ↓
TM → M

,
(x0, v1, v2, v12) 7→ (x0, v2)

↓ π ↓
(x0, v1) 7→ x0

Iterating, we get a hypercube of projections on the n-th order tangent bundle T nM .

https://en.wikipedia.org/wiki/Double_vector_bundle
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7.3. Notation: hypercubes. The n-dimensional hypercube is given by the vertex
set P({1, . . . , n}). An (oriented) edge of the hypercube is a pair (β, α) of vertices
such that α has exactly one element more than β. A face of the hypercube is
given by two different edges (β, α), (δ, α) at a common vertex α. See here for
more information on hypercubes, but mind that we are only interested here in its
combinatorial structure, not by realisations as “solids” in Rn. Exercise: show that
the n-dimensional hypercube has 2n vertices, n × 2n−1 edges and n(n − 1) × 2n−3

faces. Here is the image of a 4-cube, also called tesseract. As the image suggests, an
n-cube can be “generated” by taking an n− 1-cube, translating it (so we produce a
new copy of “next generation”) and then joining corresponding vertices by “new”
edges (in grey):
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7.4. Two definitions of higher gadgets. We shall now give two definitions of
n-fold categories and groupoids, and then prove that they are equivalent. The first
is abstract and conceptual, and the second algebraic and computable. As to the
first, it proceeds by induction – in fact, it is the short definition one finds on the
n-lab; but we shall care more about “smallness” questions than done there:

Definition 7.1. Let T be a concrete category. A small cat of type T is a set C
carrying both a structure of type T and the structure of a small cat (C0, C1, πσ :
C1 ⇊ C0, ∗), so C = C0∪̇C1, such that all structure maps of the small cat C are
compatible with the structure T . This includes the assumption that C0, C1 and
C1 ×C0 C1 also carry structures of type T , and hence it makes sense to require that
πσ, δ and ∗ are morphisms for T . A morphism between two small cats of type T ,
say C and C ′, is a map f : C → C ′ which is a functor (for the small cat-structures)
and a structure-preserving map for T . This defines a new concrete category T -Cat.
In the same way the concrete category T -Goid of groupoids ot type T is defined.

For n = 1, a small 1-fold cat is a small cat, and this defines the concrete category
Cat1 of small cats. A small n-fold cat is a small cat C of type Catn−1, and a
morphism of small n-fold cats is a functor f : C → C ′ which is also a morphism
with respect to the Catn−1-structures on C and C ′. This defines a concrete category
Catn. In the same way, the concrete category Goidn of n-fold groupoids is defined.

https://en.wikipedia.org/wiki/Hypercube
https://en.wikipedia.org/wiki/Tesseract
https://ncatlab.org/nlab/show/n-fold+category
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This definition is fairly abstract. To formulate it in more concrete terms, notice
that a small cat is a pair of sets (plus structure); a small double cat hence a pair
of pairs of sets (i.e., four sets), and so on: a small n-fold cat will be given by a
hypercube of sets, plus structure:

Definition 7.2. A small n-fold cat C is given by the following data:

(1) a family of sets (Cα)α∈P(n), indexed by vertices of the natural hypercube P(n),
(2) a structure of small cat (πe : Cα ⇊ Cβ, ∗e, ze), called edge-cat, for every

(oriented) edge e = (β, α; n) of the hypercube,
(3) such that for every face (β, α), (δ, α) of the hypercube, the edge categories

form a small double cat:

α → β
↓ ↓
δ → γ

gives a small double cat
Cα ⇒ Cβ

⇊ ⇊
Cδ ⇒ Cγ

which means that:
(a) each pair of maps (such as (π1, π1), (δ, δ)) is a morphism of small cats,
(b) the two laws ∗ := ∗β,α and • := ∗δ,α on the vertex set Cα satisfy the

interchange law:

(a ∗ b) • (c ∗ d) = (a • c) ∗ (b • d).
To shorten notation, we often write (Cα)α∈P(n) to denote the whole structure. Mor-
phisms of small n-fold cats are families of maps fα;n : Cα;n → C ′

α;n such that, for
each edge (β, α), the pair (fβ, fα), is a morphism of small cats. If all edge categories
are groupoids, then these data define an n-fold groupoid.

Theorem 7.3. Both preceding definitions are equivalent.

Proof. For experts in category theory, this may appear “trivial”: see the very short
proof in [FP10], Prop. 2.5. However, since I do not claim to be an expert, I have
written up a fairly detailed proof that one may find here (Theorem B.2). One
proceeds by induction. For n = 1, the claim is obviously true. Now assume it holds
for n ∈ N. In order to prove that it holds also on the level of n+1, assume first that
C is a small n + 1-fold cat in the sense of the first definition, that is C = (C0, C1)
with C0 and C1 small n-fold cats. By the induction hypotheses, both C0 and C1

are given by families indexed by an n-cube. Putting them together, we get a family
indexed by an n+1-cube (see the illustration). Conditions (2) and (3a) now follow
fairly directly from the definition. It remains to show that the interchage laws (3b)
must hold. This comes from the fact that the product map

A : C1 ×C0 C1 → C1, (a, b) 7→ a ∗ b
is also required to be a morphism (with respect to the product •), which means
that

A((a, b) • (c, d)) = A(a, b) • A(c, d).
But (a, b) • (c, d) = (a • c, b • d), whence A(a, b) • A(c, d) = A(a, b) • A(c, d), which
is precisely the interchange law. This proves one direction. But all arguments can
be reversed, so that also the second definition implies the first. □

http://iecl.univ-lorraine.fr/%7EWolfgang.Bertram/Smooth2.pdf
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Remark/exercise. Let (G, ·) be a group. Show that the group law: · : G×G→ G
is a group morphism, if and only if, the group is commutative (e.g., G = (V,+) a
vector space!). Note that this is the precise analog of the argument given above, in
case where both laws ∗ and • agree. Compare also with the proof of Part (3) p. 33.

7.5. Examples. The n-fold pair groupoid of a set M is defined inductively by

PGn(M) := PG{n}(PG{1,...,n−1}(M)).

Theorem 7.4. The n-fold pair groupoid is an n-fold groupoid.

Proof. The main point is that the symbol Q := PG is a “groupoid-rule”: a functor
from the ccat Set to the ccat Goid. Thus applying PG{2} to anything gives a
groupoid; but if the anything is itself a groupoid, then since PG is a functor, the
groupoid properties are transformed into properties of the same kind, so we get
a groupoid. Taken together, these structures define a groupoiod of type Goid.
Similarly for n > 2 ( see also Appendix C, loc. cit.). □
Exercise. For this example it is fairly easy to give explicit descriptions of the “ver-
tex sets” corresponding to a vertex α, and of the “edge projections” corresponding
to an edge (β, α). See Appendix C, loc. cit..

Theorem 7.5. Let M be an (open) subset of a real vector space V , or a smooth
manifold. The n-fold tangent bundle defined by T nM := T (T n−1M) is an n-fold
groupoid (where everywhere π0 = π1).

Proof. Same arguments as above. □
The double tangent bundle is frequently used in differential geometry. The higher
tangent bundles are useful too, but much less exploited. Recall that, for n = 1, the
“tangent groupoid”, defined as by Alain Connes, or as U{1} (lecture 5), gives a sort
of interpolation between the two preceding examples. This remains true for higher
structures: there is an n-fold groupoid interpolating between PGnU and T nU :

Theorem 7.6. Let V be a K-vector space and U ⊂ V a set. Then U{n}, as defined
in the preceding chapter, is an n-fold groupoid.

Proof. The proof goes as above: the symbol Q = Q{j} defined by

U 7→ (U{j}, U ×Kj), f 7→ (f {j}, f × id)

is a groupoid rule, hence iterating it we get an n-fold groupoid. There is just one
slightly technical point: one has to pay attention that Q is compatible with domains
of definitions of products ∗. To ensure this, one has to establish the property

Q(E ×F G) = QE ×QF QG.

The proof is not really difficult; for details we refer to Appendix E, loc. cit. □
The n-fold groupoid Un contains, in a sense, the whole information of (local)

differential geometry at order n. It contains even more information then what is
usually used, thus allowing for much greater generality. On the other hand, due to
this rich information contents, studying the structure of Un is a bit complicated. I
will try, in the following lectures, to explain more about the motivation, and about
topics related to this.

http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/Smooth2.pdf
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/Smooth2.pdf
https://en.wikipedia.org/wiki/Double_tangent_bundle
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/Smooth2.pdf
https://en.wikipedia.org/wiki/Differential_geometry
https://en.wikipedia.org/wiki/Differential_geometry


COURS “CONCEPTS GÉOMÉTRIQUES” 39

8. Eighth lecture: Concepts of infinitesimal geometry

What nowadays is called differential geometry, started with Gauss and Riemann,
who sort of combined “pure”, or synthetic, Euclide-style, geometry, with Descartes-
style analytic geometry, and in particular with Newton’s and Leibniz’s differential
and integral calculus. Until today, the interplay between between “analytic” and
“synthetic” ways of thinking is a major feature of geometry. In these lectures, I
would like to discuss some aspects of differential, or infinitesimal, geometry (without
pretention of being exhaustive, or even of being serious):

(1) What is a “manifold”, or a “space”? To be more precise, seen with a physi-
cist’s eye, the question can be put like this: what is an “invariant” object of geom-
etry, and what is merely dependent on our choice of coordinate system? what does
it mean that something is “independent of coordinates”? This question is funda-
mental for the very structure of physics, and even today it is not so easy to answer
it. Elie Cartan, in “Leçons sur la géométrie des espaces de Riemann” (Gauthier-
Villars 1928), writes: “La notion générale de variété est assez difficile à définir avec
précision. Une surface donne l’idée d’une variété à deux dimensions...” Indeed, it
is useful to start by looking at the surface of our terrestral sphere, and by looking at
the ancient topic of representing it by maps. However, be aware that (in contrast to
the sphere) we cannot “see from the outside” the four-dimensional universe where
we are living, and thus it is much harder to say what kind of “space” it really is.

(2) What does the term “infinitesimal” mean? Leibniz, Euler, Fermat, and many
other pioneers of “infinitesimal calculus”, used this term as if “infinitely small ob-
jects” really existed: e.g., in a letter from to Tschirnhaus, Leibniz writes: “Le calcul
infinitésimal consiste à considérer en plus des caractères x, y, etc., les infiniment
petits dx, dy, et des choses analogues.” Physics people still think in these terms,
whereas mathematics people usually say that infinitesimals do not really exist: only
limits really exist. But that’s not the whole story... Let’s start with this:

8.1. The infinitely small. It’s not easy to guess how mathematicians really thought,
over 200 years ago. For instance, they certainly have used two different aspects of
“infinitely small objects”, whithout, however, clearly distinguishing them:

(a) Euler has used infinitesimal quantities like dx, in the sense that it is a non-
zero number, whose inverse ω := 1

dx
is infinitely big (that is, bigger than any

natural number n ∈ N). We speak of invertible infinitesimals.
(b) Fermat used “very small” quantities ε, which are so small that ε2 can be

neglected – that is, in certain computations one may simply put ε2 = 0. We
speak of nilpotent infinitesimals. The differential of f is characterized by

f(x+ εv) = f(x) + εdf(x)v (F )

since all higher order terms in the Taylor expansion “are zero”. For instance,
if f(x) = x3, to show that f ′(x) = 3x2, i.e., df(x)v = 3x2v, proceed like this:

f(x+ εv) = (x+ εv)3 = x3 + 3x2εv + 3x(εv)2 + (εv)3 = x3 + ε(3x2)v.

After a period of despise, infinitesimals have been rehabilateed in the 20-th century:
there are rigourous theories using them. Since an invertible element can never be

https://en.wikipedia.org/wiki/Synthetic_geometry
https://en.wikipedia.org/wiki/Analytic_geometry
https://en.wikipedia.org/wiki/Map_projection
https://en.wikipedia.org/wiki/Infinitesimal
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nilpotent (ab = 1 implies ak ̸= 0, for all k ∈ N), this lead to two very different
approaches:

(a) Euler’s use is justified by non-standard analysis: one constructs a field ∗R
which contains R, along with elements like ω (it is a non-archimedian, or-
dered field extension of R). This is an interesting theory, but we won’t study
it in these lectures – see Chapter 12 of [Nu] for a good account.

(b) A quite influential paper [We53] by André Weil was the starting point for
using nilpotent infinitesimals in mathematics: on the one hand, they entered
into algebraic geometry (work of Alexander Grothendieck), and on the other
hand, via the so-called Weil functors, they entered also into differential
geometry. The most elaborated theory, combining all these things, is a
categorical approach, using model and topos theory, called (by Anders Kock
and others) Synthetic Differential Geometry (SDG). Among other things,
Fermat’s computations there are fully justified.

The following is inspired by SDG, though entirely independent of it.

8.2. Dual numbers. Everybody knows that the complex numbers C can be con-
structed from R by defining C = R2 = R⊕ iR, with addition as in R2 and multipli-
cation by respecting the rule i2 = −1. It is less well-known that, replacing i2 = −1
by other rules, one still obtains nice associative products on R2, which are in general
no longer fields, but still commutative rings. So let’s replace i2 = −1 by ε2 = 0:

Proposition 8.1. Let K = R, or any other field you like. Then the set K[ε] :=
K×K, with addition and multiplication defined by

(a, b) + (a′, b′) := (a+ a′; b+ b′),

(a, b) · (a′, b′) := (aa′, ab′ + a′b)

is a commutative ring with unit 1 = (1, 0). The element ε := (0, 1) satisfies ε2 = 0.

Proof. We give four proofs:

– first proof: direct computation – check associativity, etc. (straightforward),

– second proof (“algèbre 1”): this is the quotient ring K[X]/(X2) where ε := [X],

– third proof: identifying (a, b) with
(
a 0
b a

)
, check that it is a subring of M(2, 2;K),

– fourth proof: recall from Def. 5.8 the tangent map Tf of a map f . Now for f
take the product map m : K×K→ K, (x, y) 7→ xy, and compute Tm:

Tm((x, v), (y, v)) =
(
xy,

[(x+ tv)(y + tw)− xy
t

]
t=0

)
=

(
xy, xw + yv

)
Similarly, for the addition map a : K×K→ K, (x, y) 7→ x+y, we get Ta((x, v), (y, w)) =
(x + y, v + w). Thus K[ε] = TK, equipped with Tm and Ta. Properties such as
commutativity and associativity can be expressed by diagrams of maps, such as

K3 id×m→ K2

m× id ↓ ↓ m
K2 m→ K

,
(x, y, z) 7→ (x, yz)
↓ ↓

(xy, z) → xyz

Now recall that T is functor: applying T to such a diagram yields a diagram of
the same form, but everywhere K is replaced by TK, m by Tm and idK by idTK.

https://en.wikipedia.org/wiki/Non-standard_analysis
https://en.wikipedia.org/wiki/Andr�_Weil
https://en.wikipedia.org/wiki/Alexander_Grothendieck
https://en.wikipedia.org/wiki/Ring_(mathematics)


COURS “CONCEPTS GÉOMÉTRIQUES” 41

We conclude that Ta, Tm are again commutative and associative, etc., and hence
(TK, Ta, Tm) is again a ring. (Rk.: the property of being a field is not expressed
by such diagrams, and hence TK is not a field, even if K is one.) □
Definition 8.2. For any commutative ring K, the ring TK = K[ε] will be called
the tangent ring, or ring of dual numbers over K. We identify (a, b) with a+ εb.

The last proof exhibits a general method: if A is an algebraic structure such as a
ring, then its tangent object TA is a structure of the same kind. Recall that in a
ring A, an element a is called invertible if there exists a′ ∈ A with aa′ = 1 = a′a.
Let A× ⊂ A be the set of invertible elements.

Proposition 8.3. If K is a ring, then the map

π : TK→ K, a+ εb 7→ a

is a ring homomorphism. Moreover,

(TK)× = {a+ εb | a ∈ K×} = T (K×),

and then (a+ εb)−1 = a−1 − εa−2b. In particular, (1 + εb)−1 = 1− εb.

Proof. π((a + εb)(a′ + εb′)) = aa′ = π(a + εb)π(a′ + εb′), and for inversion, several
proofs possible: direct computation, or identifying a+εb with

(
a 0
b a

)
, this is Cramer’s

rule. Most conceptually: give a proof in the spirit of the fourth proof above! □
Corollary 8.4. If K is a field, then (TK)× = K2 \L, where L is the line a = 0. In
particular, for K = R, the set of invertible elements is open and dense in R[ε].

Proposition 8.5. If V is a vector space over a field K, then TV = V × V , with
addition and multiplication by elements from TK given by

(x, v) + (x′, v′) := (x+ x′, v + v′),

(a+ εb) · (x, v) := (ax, av + bx)

is a TK-module.

Proof. Recall that a module over a ring is defined in the same way as a vector
space, just by replacing the “base field” by a “base ring”. To check commutativity,
associativity, distributivity, etc., one uses the same arguments as in the preceding
two proofs. Formally, the computations are the same as before, by writing x + εv
instead of (x, v). □
Again, instead of (x, v) we may write x+ εv. All computations are “as usual”, and
just mind the relation ε2 = 0. For instance,

(r + εs)(x+ εv) = rx+ ε(rv + sx).

The main result justifying the use of such notation, and of nilpotent infinitesimals
in general, is the following:

Theorem 8.6. Assume K is a topological ring whose set of units K× is open and
dense in K, and V,W topological K-modules and U open in V . If f : U → W is of
class C2 over the ring K, then the tangent map Tf : TU → TW is of class C1 over
the ring TK.

https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Dual_number
https://en.wikipedia.org/wiki/Module_%28mathematics%29
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Proof. Saying that f is of class C1 over K can be expressed by a certain diagram of
maps. Applying the tangent functor T to this diagram yields a diagram of the same
form, where K is replaced by TK, U, V,W by TU, TV, TW and f by Tf . But this
means that Tf is of class C1 over TK. (See paper [19] on my homepage, Theorem
6.2, or book Calcul différentiel topologique élémentaire, Exercises B, for full details
and further comments.) □

The theorem implies that writing expressions like x + εv really has an “intrinsic
meaning”. Using this notation,

Tf(x+ εv) = f(x) + εdf(x)v (F ′)

which is very close to Fermat’s Formula (F) f(x+ εv) = f(x) + εdf(x)v.

8.3. Second and higher order tangent rings T nK. As in the previous lectures,
things start to get really interesting when iterating them. The second order tangent
ring is

(8.1) TTK = (K[ε1])[ε2) = K⊕ ε1K⊕ ε2K⊕ ε1ε2K,

where ε1, ε2 are elements with ε2i = 0 and ε1ε2 = ε2ε1. Computations are made
using these rules. For instance, let δ := ε1 + ε2 ∈ TTK. Then

(8.2) δ2 = (ε1 + ε2)
2 = 2ε1ε2, δ3 = 2ε1ε2(ε1 + ε2) = 0.

Likewise, all elements in ε1K⊕ ε2K⊕ ε1ε2K are nilpotent of order 3.

Definition 8.7. The n-th order tangent ring T nK is inductively defined by T nK :=
T (T n−1K). It can be identified with

K[ε1, . . . , εn] := (K[ε1, . . . , εn−1])[εn],

where all εi satisfy (εi)
2 = 0. For α = {α1, . . . , αk} ⊂ n, we write

εα := εα1 · εα2 · · · εαk
.

Theorem 8.8. The n-th order tangent ring T nK is a ring of dimension 2n over K,
given by a K-basis of elements (εα)α∈P(n), which are multiplied by the rule

εα · εβ =
{

0 if α ∩ β ̸= ∅,
εα∪β if α ∩ β = ∅.

Using these rules, computations are quite easy. For instance, the reader may com-
pute the powers δk of the element

δ := ε1 + . . .+ εn.

One gets δ2 = 2
∑

(i,j):i<j εiεj, and so on. Finally, δn = n!ε1 · · · εn and δn+1 = 0. In

fact, all elements of the form
∑

α ̸=∅ εαvα are nilpotent of order at most n + 1. By
induction:

Theorem 8.9. Let V be a K-module. Then T nV is a T nK-module.
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The reader may note that we are back in the context of Lecture 7: everything is
structured by the n-hypercube P(n). Indeed, we have here an n-fold groupoid with
“source = target”. More details can be found in reference [19] of my homepage,
where the whole theory of local differential geometry is based on the algebra of
T nK. I just mention here the formula for higher order tangent maps, iterating (F’):
let’s write elements of T nU in the form v =

∑
α∈P(n) εαvα with x := v∅ ∈ U and all

other vα ∈ V . Applying (F’) twice, we get

TTf(x+ ε1v1 + ε2v2 + ε12v12) =

= f(x) + ε1df(x)v1 + ε2df(x)v2 + ε12
(
df(x)v12 + d2f(x)(v1, v2)

)
.

In loc. cit. Theorem 7.5., this is generalized for arbitrary n: the sum carries over
all partitions Λ of α

T nf(
∑

α∈P(n)

εαvα) =
∑

α∈P(n)

εα

|α|∑
ℓ=1

∑
Λ

α=Λ1∪...∪Λℓ

dℓf(v∅)(vΛ1 , . . . , vΛℓ
).

To close this lecture, I would like to explain that the algebra of T nK can be used
to recover, in an elementary way, one of the central concepts of SDG:

8.4. The infinitesimal neighborhood relations. As A. Kock writes in [Ko10],
most of the “synthetic infinitesimal geometry” is encoded in the structure of k-th
order infinitesimal neighborhoods. In usual analysis courses, we learn the “basic
idea of differential calculus”: differentiating at x means to make a kind of “infintely
strong zoom” near x, and under this zoom, everything becomes linear: the differ-
erential df(x) is the linear map describing f when zooming at x, and the tangent
space TxM is the linear space describing the “first order infinitesimal neighborhood
of x”. However, it is rarely taught what happens when we iterate this procedure:
how does the second differential enter into the picture? Zooming once more around
x does not give anything new, since a linear space and a linear map, under a zoom,
remain the same (the differential of a linear map is the same map)! To understand
things, one needs the notion of second order infinitesimal neighborhood, which con-
sists of all the union of all first order neighborhoods of all points from the first order
neighborhood TxM . To explain this, first, a very general definition:

Definition 8.10. A neighborhood relation on a set M is a relation N ⊂ (M ×M)
which is reflexive and symmetric. We often write x ∼ y instead of (x, y) ∈ N
(although the relation is not supposed to be transitive!). The set

Ux := {y ∈M | x ∼ y}
is called the N -neighborhood of x. Reflexivity means that x ∈ Ux, and symmetry
that: y ∈ Ux ⇔ x ∈ Uy.

Example 1. OnM = Rn (or any other metric space, with distance d), define x ∼ y
iff d(x, y) < 1. Then Ux = B1(x) is the ball centered at x and with radius 1. This
relation is not transitive (in general) – make a drawing!

Example 2. On M = Kn, define x ∼ y iff ∃j ∈ n : xj = yj. For n = 2, Ux is the
union of the vertical and the horizontal line passing through x. For general n, Ux

https://en.wikipedia.org/wiki/Partition_of_a_set
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is the union of all n coordinate hyperplanes passing through x. This relation is not
transitive. Make a drawing!

Example 3. On M = Kn, define x ∼ y iff ∃j ∈ n : ∀i ̸= j : xi = yi. For n = 2,
this is the same as in Example 2, but not for n > 2, where Ux is the union of all
coordinate axes passing through x. Make a drawing (for n = 3)...

Definition 8.11. Given a “first order” neighborhood relation ∼1= N1, define the
“second and higher order neighborhood relations” ∼n= Nn by

x ∼2 y ⇐⇒ ∃z ∈M : x ∼1 z, z ∼1 y,

x ∼n y ⇐⇒ ∃z ∈M : x ∼n−1 z, z ∼1 y.

Note that these are again neighborhood relations, that N1 ⊂ N2 ⊂ . . ., and that

x ∼k y, y ∼ℓ z ⇒ x ∼k+ℓ z.

Example 0. If N happens to be an equivalence relation,then ∼n=∼1, for all n.

Example 1. In Example 1 above, with M = Rn, we have x ∼k y iff d(x, y) < k.
Exercise: prove this! (Hint: one should not make the error to believe that this holds
for any metric space. For instance, if the metric space is ultrametric, then show
that ∼1 is an equivalence relation, whence ∼n=∼1!)

Example 2. In Example 2, ∼2 is the “all-relation”. Indeed, if x, y ∈ Kn, let
z := (x1, y2, . . . , yn), then x ∼1 z and z ∼1 y.

Example 3. For N as in Example 3 above, for n = 3, ∼2 is not the “all-relation”,
but ∼3 is. Prove this! Generalize for any n ∈ N.
The neighborhood relation of infinitesimal geometry will be similar as in Exam-

ple 3, but takes account of the “hypercube structure”. For n = 2, the following
definition says that v = v0+ ε1v1+ ε2v2+ ε12v12 and w = w0+ ε1w1+ ε2w2+ ε12w12

are second order infinitesimal neighbors in TTV iff v0 = w0, and are first order
infinitesimal neighbors in TTV iff w0 = vv and [w1 = v1 or w2 = v2]. For fixed w0,
this can be represented by taking ε1V, ε2V, ε12V as three axes, and then the first
order neighborhood is the union of two planes intersecting along a parallel of the
third axis ε12V .

Definition 8.12. For v =
∑

α∈P(n) εαvα and w =
∑

α∈P(n) εαwα ∈ T nU define

v ∼1 w iff ∃j ∈ n : ∀β ∈ P(n \ {j}) : vβ = wβ.

In other words, there exists an index j such v and w have same image under the
j-th of the n projections T nU → T n−1U .

This is a neighborhood relation, called the first order infinitesimal neighborhood re-
lation: reflexivity and symmetry are obvious. Note that the relation is not transitive
(because if x ∼1 y and y ∼1 z, the j need not be the same for both).

Exercise: describe the k-th order neighborhood relation ∼k, and show that ∼n is
an equivalence relation, but ∼k for k < n is not.

One of the main goals of the synthetic theory is to give a geometric description
of notions such as affine connections and parallel transport – for more on this, see
Kock’s book.

https://en.wikipedia.org/wiki/Ultrametric_space
https://en.wikipedia.org/wiki/Affine_connection
https://en.wikipedia.org/wiki/Parallel_transport
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9. Ninth lecture: What is a manifold?

In this lecture I would like to give some kind of reply to Elie Cartan’s dictum
“La notion générale de variété est difficile à définir avec précision” – of course, there
is a by now standard definition of manifold, but it took very long to arrive at this
point. The “difficulty” appears constantly in the dialog between mathematicians
and physicists: let us take the example of the sphere M = S2, which may be
identified with the earth’s surface. This surface can be represented by an atlas,
that is, a collection of charts covering the whole surface. A chart is a bijection of
some part of the earth’s surface with some part of V = R2 (our drawing plane). On
chart overlaps, coordinate data tell us how to translate the image from one chart
into another. This, roughly, is the modern definition of manifold.

Mathematicians usually forget that it took a long time for humans to realize that
we are living on the surface of a globe, and not on a flat plane stretching infinitely
far into all directions. But as long as humans were not able to travel into space
and to see the globe from outside, this fact could only be explained indirectly, by
measurements, by comparing different observations, and finally proposing a better
model which leads to better predictions and explanations. In the same way, Einstein
proposed a better model for the whole universe – but so far nobody has been able
to “see it from outside”... That’s the way physics proceeds, but not mathematics!

In the same way, the notion of manifold has two sides: for a physicist, the “real
world” is what you can read in the charts, the measurements, the coordinate de-
scriptions, the observations by various observers – let’s call this the “gluing data”.
From this point of view, the “space M” definitely is a kind of idealization – the
“ideal world” that mathematicians prefer but that you cannot see directly. Mathe-
matically, the “ideal world” and the “real world” are equivalent – this is a theorem,
but as far as I know, its proof has never been written up in a completely formal-
ized way. I have tried to formalize it as far as possible – see here. Comments and
corrections are welcome!

As one may see, groupoids and double categories naturally enter the picture when
one wants to describe also morphisms between manifolds (= smooth maps) in a
formal way. This may help to better understand, formally, the distinction between
active and passive transformation, important in physics and engeneering.

https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Atlas_(topology)
http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/Mancat.pdf
https://en.wikipedia.org/wiki/Smoothness#Smooth_functions_between_manifolds
https://en.wikipedia.org/wiki/Active_and_passive_transformation
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10. Tenth lecture: Excursion into the non-associative world

The most natural property of product maps is associativity, as we have seen in
preceding lectures. Non-associative products often have an “exotic”, or “excep-
tional” flavor. Recall:

Definition 10.1. A product on a set M is a map M ×M →M , (a, b) 7→ a ⋆ b (or
any other notation: a · b, [a, b] or ab instead of a ⋆ b). A product may have, or not,
some of the following properties:

(1) it may be commutative, associative, or satisfy other “identies”; for instance:
(2) a product is called alternative if it satisfies, for all a, b ∈M ,

a(ab) = (aa)b, (ab)b = a(bb) ,

(3) it may have a neutral element e, that is, ∀a ∈M : a ⋆ e = a = e ⋆ a;
(4) it may be a latin square, or quasigroup: ∀a, b ∈ M , the equation x ⋆ a = b

has a unique solution x ∈M , and so has the equation a ⋆ y = b,
(5) it may be a loop [fr: boucle], that is, a quasigroup with a neutral element e.

Often, people are interested in bilinear products:

Definition 10.2. An algebra (over a field K) is a K-vector space A together with
a bilinear product map A× A→ A. It is called commutative (associative, alterna-
tive,...) if the product has the corresponding property. It is called a division algebra
if the set A \ {0} is a quasigroup. (Note that always 0 ·a = 0 = a · 0, by bilinearity.)

Two questions:

(1) Obviously, any associative algebra is alternative. Is the converse true? In
other words, give an example of an alternative, non-associative algebra!

(2) Obviously, fields like R and C are division algebras. Are there other division
algebras, that are not fields? Give an example!

It is not quite trivial to answer these questions, and, surprisingly, they are closely
related to each other. The most famous example, both for an alternative and for
a division algebra that is not a field, is the algebra of octonions. In this lecture,
we explain how to construct them. The octonions have many interesting relations
with geometry, see [Ba02, CS03, Fau14, Nu].

10.1. The Cayley-Dickson construction. The Cayley-Dickson construction is
the “doubling process” to construct

(1) the complex numbers C from R by C = R⊕ iR, i2 = −1,
(2) the quaternions H from C by H = C⊕ jC, j2 = −1,
(3) the octonions O from H by O = H⊕ fH, f 2 = −1.

At each stage, some properties change, and some remain:

(1) the complex numbers are associative and commutative,
(2) the quaternions are assocative, but no longer commutative,
(3) the octonions are no-longer associative, but they are alternative,
(4) each of the three algebras is a division algebra,
(5) at each step we have what is called an involution:

Definition 10.3. An involution of an algebra A is a map A→ A, a 7→ a∗ that

https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Quasigroup
https://en.wikipedia.org/wiki/Quasigroup#Loop
https://fr.wikipedia.org/wiki/Quasigroupe
https://en.wikipedia.org/wiki/Division_algebra
https://en.wikipedia.org/wiki/Octonion
https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
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(1) is of order two: ∀a ∈ A: (a∗)∗ = a,
(2) is an automorphism of addition: ∀a, b ∈ A, (a+ b)∗ = a∗ + b∗,
(3) is an anti-automorphism of the product: ∀a, b ∈ bA: (ab)∗ = b∗a∗, 1∗ = 1.

(Examples: a∗ = a when A is commutative; z∗ = z when A = C; X∗ = X t when
A =M(n, n;K).)

The Cayley-Dickson construction works also if we replace the conditions i2 = −1,
etc., by i2 = λ, with λ ∈ R, etc.: then properties (1), (2), (3), (5) remain true, but
in general we no longer have division algebras.

Definition 10.4. Assume A is an algebra over K with product ab and an involution
denoted by a 7→ a. Fix also λ ∈ K. Then the Cayley-Dickson extension of A is the
set B := KD(A, λ) := A× A with sum and product defined by

(a, b) + (a′, b′) := (a+ a′; b+ b′),

(a, b) · (a′, b′) :=
(
aa′ + λb′b, b′a+ ba′

)
We define also (a, b)∗ := (a,−b).

Example 1. Let A = R with a = a. Then:

(a) if λ = −1, then KD(R,−1) = C, and (a, b)∗ = (a,−b) its complex conjugate,
(b) if λ = 0, then KD(R, 0) = R[ε] = TR are the dual numbers over R,
(c) if λ = 1, then KD(R, 1) ∼= R[X]/(X2 − 1) ∼= R × R, sometimes called the

paracomplex numbers.

Theorem 10.5. Assume A is an associative algebra over K with an involution
a 7→ a such that a = a iff a ∈ K1, and let λ ∈ K. Then the Cayley-Dickson
extension B = KD(A, λ) satisfies:

(1) B is alternative if and only if A is associative,
(2) B is associative if and only if A is associative and commutative,
(3) B is commutative if and only if A has trivial involution.

Proof. We will not give here a full proof of this central result – see e.g., [Fau14] for
a clear and elegant presentation. Let’s illustrate the proof of (2) by the following
example: essentially, one can reduce things to a matrix computation. The proof of
(1) cannot be reduced to a matrix computation and must be done “by hand”; that
is the main reason why (1) is more difficult and longer. □

Example 2. Let A = C with a complex conjugation and λ real. Define the following
matrix M(a, b) =

(
a λb
b a

)
with a, b ∈ C, and compute, using commutativity of C (!),

M(a, b) ·M(a′, b′) =

(
a λb
b a

)
·
(
a′ λb′

b′ a′

)
=

(
c λd
c d

)
=M(c, d)

with (c, d) = (aa′ + λbb′, ab′ + ba′) = (a, b) · (a′, b′). The same computation always
works if A is commutative and associative, and this proves:

Theorem 10.6. Assume A is commutative and associative and λ = λ. Then
KD(A, λ) is an associative algebra which can be identified with the subalgebra B of
M(2, 2;A) of matrices of the form M(a, b) =

(
a λb
b a

)
with a, b ∈ A.

https://en.wikipedia.org/wiki/Split-complex_number


48 WOLFGANG BERTRAM

Now define Hamilton’s quaternions, H := H = C ⊕ jC = KD(C,−1), the Cayley-
Dickson extension with λ = −1. According to the preceding example it can be
realized as a matrix algebra. An R-basis is given by the four matrices 1 =M(1, 0),
i = M(i, 0), j = M(0, 1), k = M(0, i). The reader should compute the multipli-
cation table and check that it coincides with Hamilton’s famous relations, which
according to the folklore he carved into Broom Bridge.

Theorem 10.7. The quaternions form a division algebra.

Proof. More generally, in the situation of Theorem 10.6, for any matrix M =
M(a, b), the matrix M∗ coincides with the adjugate matrix (fr: comatrice) of M .
Hence an elementM =M(a, b) is invertible if, and only if, its determinant aa−λbb
is invertible in A, and then its inverse is M−1 = 1

detM
M((a, b)∗). In particular, if

A = C and a complex conjugation and λ = −1, then every non-zero element of B
is invertible, hence B is a division algebra. □
Definition 10.8. The algebra of octonions O is defined as O := KD(H,−1).

Theorem 10.9. The octonions are an alternative, non-associative division algebra.

Proof. See, e.g., [Fau14]. □
To see that the octonions are not associative, one may also consider the R-basis
e1, . . . , e8 as listed here and read off from the multiplication table: (e1e2)e4 = e3e4 =
e7, which is different from e1(e2e4) = e1e6 = −e7.

10.2. Link with geometry: three-webs. One of the many links of the octonions
with geometry can be described as follows (cf. [AG06, CS03, Pi55]). Recall from
Chapter 5 the notion of transversality of two equivalence relations: α⊤β iff each
equivalence class of α intersects each class of β in exactly one element (def. 5.2).
Recall that then M is equivalent to a direct product A × B with A = M/α and
B =M/β (prop. 5.3).

Definition 10.10. A (generalized) d-web on a setM is given by a family α1, . . . , αd

of equivalence relations on M such αi⊤αj for all i ̸= j.

The case d = 3 is most interesting. We shall write (α, β, γ) = (α1, α2, α3), and

A =M/α, B =M/β, C =M/γ .

When drawing pictures, we shall represent equivalence classes by “lines”, and call
them α-lines, β-lines, γ-lines. In principle, nothing distinguishes the three classes
from each other, but to introduce some artifiicial distinction, we shall give them
more fancy names: call α collector, β base, and γ emitter, and symbolize the 3-
web by the transistor symbol. In the following, we have represented several lines
of each type. The lines are “straight”, since this is easier to draw than “families
of curved lines”. To produce the geogebra-files (from which the following figures
are imported), just choose three directions (the three vectors labelled α, β, γ), and
then, in all following constructions, you are only allowed to use lines or segments
that are parallel to one of the three directions. Points lying on a line parallel to α
then represent points that are equivalent under α, etc.

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Broom_Bridge
https://en.wikipedia.org/wiki/Adjugate_matrix#2_.C3.97_2_generic_matrix
https://en.wikipedia.org/wiki/Octonion#Definition
https://en.wikipedia.org/wiki/Transistor
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α γ
β

Remark 10.1. To motivate the fancy terminology: by definition of a 3-web, each
class of the base β is a bisection of (α, γ), that is, it can be seen as the unit section
of the pair-pregroupoid A × C (cf. Section 4.2, Theorem 4.9). In other words, a
3-web can be seen as a “pair groupoid + some additional strucure” (where (α, γ)
represents the pair groupoid, and β the “additional structure”). Since a groupoid
is an algebraic structure, one may expect that the additional structure is an even
stronger algebraic structure. This is indeed true:

Definition 10.11. With notation as above, we define a product map

A× C → B, (a, c) 7→ a · c := [a ∩ c]β
(the β-line through the unique intersection element of a and c):

α γ
β

a · c

a

c

In the same way, we can define 5 other products C × A → B, A × B → C (all
denoted by a point ·), etc., called parastrophic with the first product.

Theorem 10.12. For each a ∈ A, b ∈ B, c ∈ C: the equation a ·x = b has a unique
solution x ∈ B, and the equation y · c = b has a unique solution y ∈ A.
Proof. Saying that a ·x = b amounts to saying that the unique intersection element
of a and x belongs to b, or, equivalently, that

a ∩ x ∩ b ̸= ∅.
This condition is symmetric in a, x, b, and so is equivalent to x = a · b (for the
parastrophic product A × B → C). Therefore the solution x exists, and it is
unique. Same for y · c = b. □
Definition 10.13. A dissociated quasigroup is given by three sets A,B,C, together
with a product A × B → C such that, for each a ∈ A, b ∈ B, c ∈ C, the equation
a · x = b has a unique solution x ∈ B, and the equation y · c = b has a unique
solution y ∈ A. (Note that then (a, b) 7→ x and (c, b) 7→ y defines other products,
called again parastrophic with the first one.)

Remark 10.2. Let us identify A×C with M via (a, c) 7→ a∩ c. Then α corresponds
to the projection onto A and γ to the projection onto C, and β is given by: (a, c) ∼β

(a′, c′) iff a ∩ c ∼β a
′ ∩ c′, iff a · c = a′ · c′.
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Theorem 10.14. Let A,B,C a dissociated quasigroup with product A × C → B.
Then the set M = A × C is a 3-web when equipped with the three equivalence
relations

(a, c) ∼α (a′, c′) iff a = a′, (a, c) ∼γ (a′, c′) iff c = c′,

(a, c) ∼β (a′, c′) iff a · c = a′ · c′.
Summing up, dissociated quasigroups and 3-webs are equivalent data.

Proof. We have already seen that α and γ are transversal equivalence relations.
Let’s show that β is an equivalence relation transversal to α: β is an equivalence
relation since it is the fiber of a map M → B. It is transversal to α: indeed, the
conditions [(a, c) ∼α (x, y), (x, y) ∼β (a′, c′)] are equivalent to [x = a and ay = a′c′],
which has exactly one solution (x, y), by definition of a dissociated quasigroup. In
the same way, β⊤γ. □

Remark 10.3. We invite the reader to define morphisms of dissociated quasigroups,
resp. of 3-webs, and to compare both notions.

10.3. Base points, loops and quasigroups. The game to be played next is:
under the equivalence described above, translate algebraic conditions into geometric
configurations, and vice versa! To play this game, we now need to identify the sets
A,B,C with each other, in order to define “usual” (not dissociated) products, of
the kind A × A → A, etc. The problem is that there are many identifications of
A with C, and none of them deserves to be preferred! In fact, each choice of base
point y ∈M gives us a bijection

A→ C, a 7→ c := a · [y]β = [(a ∩ [y]β)]γ.

which corresponds to the following figure: to the α-line a, we associate the γ-line c,

α γ
β

b

y

a

b

c

Let us fix the base point y ∈M . Using the various identifications given by y, there
are essentially 6 ways to define a product A× A→ A, (u, v) 7→ u • v coming from
the product A × B → C. Namely, to define u • v, we have 3 choices to identify u
with an element in A,B or C, and once this choice fixed, there remain 2 choices
to identify v with an element of the remaining two spaces; then take their product
as defined in the preceding section, and return to A. Again, we will call these 6
products parastrophic. Among these six products, two have [y]α as neutral element,
and the other four do not.
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Theorem 10.15. Let M be a 3-web and fix a base point y ∈M . Then the following
defines a loop on A with neutral element [y]α:

A× A→ A, (u, v) 7→ u • v := (u · [y]β) · (v · [y]γ).

Proof. The law defines a quasigroup since it comes from the dissociated quasigroup
A × B → C by identifying A = B and A = C as mentioned above. Let us show
that [y]α is a neutral element:

[y]α • v = ([y]α · [y]β) · (v · [y]γ) = [y]γ · (v · [y]γ) = v,

and, in the same way, it is seen that u • [y]α = u. □
Here is a figure illustrating the construction of u • v = ((u ∩ [y]β)γ ∩ (v ∩ [y]γ)β)α.

α γ

β

b

y

u

v

u • v

The theory of loops and quasigroups now starts by taking a closer look at this
product and how geometric properties of the 3-web M are translated into algebraic
properties of the product A × A → A. Each of the following algebraic properties
(which may hold, or not!) translates into a certain geometric “configuration”:

(1) commutativity into the so-called Thomsen figure,
(2) associativity into the Reidemeister figure,
(3) (left, middle or right) alternativity into the (left, middle or right) Bol figure,
(4) power associativity into the hexagon figure.

(1) Saying that u • v = v • u, amounts to saying that two different constructions
give the same line (the dotted segment below):

Thomsen

α γ

β

u v u • v
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(2) Saying that u • (v •w) = (u • v) •w, amounts again to saying that two different
constructions give the same (dotted) line. Note that the image looks like a view
onto a three-dimensional cube. This is indeed a hint towards profound links with
the “foundations of geometry” (cf. below):

Reidemeister

α
γ

β

u

v

uv

w

vw
uvw

(3) (Right) alternativity u • (w • w) = (u • w) • w is a special case of associativity.
To illustrate this, in the preceding geogebra-file, just move the lines v to agree with
the line w. This gives:

(right) Bol

α
γ

β

b

u

b

b

b b

u • w

b

w

w • w
u • w • w

(4) Finally, to illustrate u2 •u = u•u2, move the lines so that u = v = w, as follows:
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hexagon

α
γ

β

b

u

b

b

b b

b

u • u u • u • u

To close these lectures, some final remarks.

Remark 10.4. The product A×A→ A described here should be seen as a multipli-
cation of a “one-dimensional object”. Indeed, one may identify A with the γ-line
[y]γ, by taking intersection with this line. This is indeed how most authors inter-
prete such constructions – the reader should compare the preceding images with
those given in [AG06], pages 216 – 220 !

It is possible, and interesting, to extend the definition of such products to define
“two-dimensional products” (on M). For the more special context of projective
planes, see here. Projective planes occupy a central place in the story of “founda-
tions of geometry” (Grundlagen der Geometry, cf. Section 1.4). The close relation
between 3-webs and projective planes has already been noticed and used in the
classical textbook [Pi55] (Chapter 2); however, the presentation given there is very
old-fashioned and definitely needs to be updated.

As explained in Hilbert’s “Grundlagen”, in dimension bigger than 2, things be-
come more regular, and products tend to be always associative: the reason for this
is that certain configurations (Desargues theorem, or cubes like the one from the
Reidemeister configuration above) are always satisfied in 3-dimensional space, but
not always in 2-space. Thus 3-webs in 2-space are particularly important since they
allow to construct and describe “exceptional” geometries.

But the importance of 3-webs certainly goes beyond the construction of excep-
tional geometries, since they are naturally related to groupoids, and appear to be
a very natural language to describe connections and parallel transport.1

1 Cf. end of Chapter 8. The book Smooth quasigroups and loops, Kluwer Academic Publishers,
Dordrecht, 1999, by Lev Sabinin, contains very interesting material. The book is hard to read,
however, and it would certainly be worth to rewrite it in a more “synthetic” language.

https://en.wikipedia.org/wiki/Projective_plane
https://en.wikipedia.org/wiki/Projective_plane
http://iecl.univ-lorraine.fr/%7EWolfgang.Bertram/MoufangPlanes.pdf
https://en.wikipedia.org/wiki/Desargues's_theorem
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