SOME REMARKS ON TEACHING MATHS: DIFFERENTIAL CALCULUS

WOLFGANG BERTRAM

This note is the translation of a short text I had first written in French, and which later became the germ of the book [B3] (see list of papers). The general context of topological differential calculus is discussed here (Chapter 1). I concentrate in the following on the most basic items: in finite dimension, "topological" and "metric" calculus are equivalent, and the topological approach permits to give very simple, "algebraic" proofs of some basic facts: the first differential $D f(x)$ is a linear map; the chain rule and Schwarz' lemma hold, and there is a Taylor expansion.

1. Equivalence of calculi: first order

Let V and W be finite-dimensional real vector spaces, U a non-empty open subset of V and $f: U \rightarrow W$ a map. The (first) prolongation of U is the set defined by

$$
\begin{equation*}
U^{[1]}:=\{(x, v, t) \mid x \in U, v \in V, x+t v \in U\}, \tag{1.1}
\end{equation*}
$$

whichis open in $V \times V \times \mathbb{R}$. Recall that, in usual calculus, f is said to be continously differentiable, or: of class C^{1}, if all partial derivatives of f exist and are continuous. Equivalently, all directional derivatives

$$
\begin{equation*}
\partial_{v} f: U \rightarrow W, \quad x \mapsto \partial_{v} f(x)=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t} \tag{1.2}
\end{equation*}
$$

exist and are continuous.
Theorem 1.1. The following statements are equivalent:
(1) the map f is of class C^{1},
(2) the map f admits a continuous difference factorizer, that is, there is a continuous map $f^{[1]}: U^{[1]} \rightarrow W$ such that, for all $(x, v, t) \in U^{[1]}$,

$$
f(x+t v)-f(x)=t \cdot f^{[1]}(x, v, t)
$$

If this holds, the total differential of f is given by $D f(x) v=f^{[1]}(x, v, 0)$.
Proof. Assume (2) holds. Then $\lim _{\substack{t \rightarrow 0 \\ t \neq 0}} \frac{f(x+t v)-f(x)}{t}=\lim _{\substack{t \rightarrow 0 \\ t \neq 0}} f^{[1]}(x, v, t)=f^{[1]}(x, v, 0)$, by continuity of $f^{[1]}$. Thus all directional derivatives $\left(\partial_{v} f\right)(x)$ exist on U, they are given by $f^{[1]}(x, v, 0)$, hence are continuous. In particular, all partial derivatives exist and are continuous, hence f is C^{1}. Now assume that (1) holds and define a map

$$
f^{[1]}: U^{[1]} \rightarrow F, \quad(x, v, t) \mapsto\left\{\begin{array}{cl}
\frac{f(x+t v)-f(x)}{t} & \text { if } \quad t \in \mathbb{R}^{\times} \\
D f^{\times}(x) v & \text { if } \quad t=0 .
\end{array}\right.
$$

We must show that $f^{[1]}$ is continuous. Since f is continuous, it follows that $f^{[1]}$ is continuous on the set

$$
\begin{equation*}
U^{11[}:=\left\{(x, v, t) \in U^{[1]} \mid t \neq 0\right\} . \tag{1.3}
\end{equation*}
$$

Thus it remains to prove that $f^{[1]}$ is continous at all points of the form $(x, v, 0)$. To show this, note first that, whenever the line segment $[x, x+t v]$ belongs to U, then ${ }^{1}$

$$
\begin{equation*}
f^{[1]}(x, v, t)=\int_{0}^{1} D f(x+s t v) v d s \tag{1.4}
\end{equation*}
$$

Indeed, for $t=0$, this is obviously true, and for $t \neq 0$, it follows from the fundamental relation between differential and integral calculus, along with a change of variable $r=s t$,

$$
f(x+t v)=f(x)+\int_{0}^{t} D f(x+r v) v d r=f(x)+t \int_{0}^{1} D f(x+s t v) v d s
$$

which implies (1.4). Now, the right hand side is the integral of a continuous function, depending continuously on the parameter (x, v, t). Since integration carries over a compact interval, the continuity of the right hand side follows by elementary analysis (no need to invoke more powerful machinery like Lebesgue's theorem). ${ }^{2}$

2. Linearity of the differential

Theorem 2.1. Assume V, W are finite-dimensional vector spaces and $f: U \rightarrow W$ a map of class C^{1} defined on an open subset of V. Then its differential $D f(x)$: $V \rightarrow W$ at each point $x \in U$ is a linear map.
Proof. Let us show that $D f(x)(v+w)=D f(x) v+D f(x) w$ for $v, w \in V$. For $t \neq 0$, we have

$$
\begin{aligned}
f^{[1]}(x, v+w, t) & =\frac{f(x+t(v+w))-f(x)}{t} \\
& =\frac{f(x+t v+t w)-f(x x+t v)}{t}+\frac{f(x+t v)-f(x)}{t} \\
& =f^{[1]}(x+t v, w, t)+f^{[1]}(x, v, t) .
\end{aligned}
$$

Thus $f^{[1]}(x, v+w, t)=f^{[1]}(x+t v, w, t)+f^{[1]}(x, v, t)$ for all non-zero t in a neighborhood of 0 . Since, by Theorem 1.1, both sides are continuous functions of t, it follows that equality also holds for $t=0$, which directly implies the claim. Now we prove that $D f(x)(r v) r=r D f(x) v$. For $t \neq 0$ and $r \neq 0$,

$$
\begin{aligned}
f^{[1]}(x, r v, t) & =\frac{f(x+t(r v))-f(x)}{t} \\
& =r \frac{f(x+\operatorname{tr} v)-f(x)}{t r}=r f^{[1]}(x, v, t r) .
\end{aligned}
$$

Thus $f^{[1]}(x, r v, t)=r f^{[1]}(x, v, t r)$ for all non-zero t, r in a neighborhood of 0 . Again by Theorem 1.1, eqality still holds for $t=0: D f(x)(r v)=r D f(x) v$.

In finite dimension, $\operatorname{Hom}(V, W)$ carries a canonical topology, and it is now easily seen that $D f: U \rightarrow \operatorname{Hom}(V, W), x \mapsto D f(x)$ is a continuous map.

[^0]
3. Chain Rule

Theorem 3.1. If g and f are composable mappings of class C^{1} defined on open subsets of finite-dimensional vector spaces, then $g \circ f$ is again of class C^{1}, and its differential is given by

$$
D(g \circ f)(x)=D g(f(x)) \circ D f(x)
$$

Proof. We use again Theorem 1.1 and write $f(x+t v)=f(x)+t f^{[1]}(x, v, t)$. Then, for $t \neq 0$ the difference quotient is

$$
\begin{aligned}
(g \circ f)^{[1]}(x, v, t) & =\frac{g(f(x+t v))-g(f(x))}{t} \\
& =\frac{g\left(f(x)+t f^{[1]}(x, v, t)\right)-g(f(x))}{t}=g^{[1]}\left(f(x), f^{[1]}(x, v, t), t\right)
\end{aligned}
$$

Our assumptions imply that the right hand side is a continuous function of (x, v, t), and hence a continuous difference factorizer for $g \circ f$ exists, given by this formula. Taking $t=0$ now yields $D(g \circ f)(x) v=D g(f(x))(D f(x) v)$, as claimed.

4. Equivalence of calculi: higher order, and Schwarz' lemma

Theorem 4.1. With notation as above, the following statements are equivalent:
(1) f is of class C^{2}.
(2) f is of class C^{1} and $f^{[1]}$ is of class C^{1}.

Proof. Assume (2) holds. Since $D f(x) v=f^{[1]}(x, v, 0)$, and $f^{[1]}$ is C^{1}, it follows that $D f$ is also of class C^{1}, and thus f is of class C^{2}.

Assume (1) holds. According to theorem 1.1, the continuous difference factorizer $f^{[1]}$ exists. We have to prove that it is C^{1}. Since f is C^{1}, the difference factorizer is C^{1} on the set $U^{11[}$ defined by (1.3). Let us prove that it is C^{1} on a neighborhood of a point of the form $(x, v, 0)$. To this end, we use once more the integral representation (1.4) of $f^{[1]}$. As in the proof of theorem 1.1, elementary analysis shows that the function defined by the integral over the compact interval $[0,1]$ is continuously differentiable (integration and differentiation commute), by using the fact that the function in the integral is C^{1}, by our assumptions.

If f is C^{2}, we define the second order difference factorizer $f^{[2]}:=\left(f^{[1]}\right)^{[1]}$. By induction, we define $f^{[k]}:=\left(f^{[k-1]}\right)^{[1]}$, and arguments similar as above show:

Theorem 4.2. The following statements are equivalent:
(1) f is of class C^{k}.
(2) f is of class C^{k-1} and $f^{[k-1]}$ is of class C^{1}.
(3) f is C^{1} and $f^{[1]}$ is of class C^{k-1}.

Assume f is of class C^{2}. Let us give an explicit formula for the second order difference factorizer, assuming that the scalars by which we devide are non-zero:

$$
\begin{aligned}
f^{[2]}((x, v, t), & \left.\left(x^{\prime}, v^{\prime}, t^{\prime}\right), t^{\prime \prime}\right)=\frac{1}{t^{\prime \prime}}\left(f^{[1]}\left((x, v, t)+t^{\prime \prime}\left(x^{\prime}, v^{\prime}, t^{\prime}\right)\right)-f^{[1]}(x, v, t)\right) \\
& =\frac{f\left(x+t^{\prime \prime} x^{\prime}+\left(t+t^{\prime \prime} t^{\prime}\right)\left(v+t^{\prime \prime} v^{\prime}\right)\right)-f\left(x+t^{\prime \prime} x^{\prime}\right)}{t^{\prime \prime}\left(t+t^{\prime \prime} t^{\prime}\right)}-\frac{f(x+t v)-f(x)}{t^{\prime \prime} t}
\end{aligned}
$$

Theorem 4.3. Assume f is of class C^{2}. Then we have, for all $x \in U$ and $v, w \in V$,

$$
\partial_{v}\left(\partial_{w} f\right)(x)=\partial_{w}\left(\partial_{v} f\right)(x),
$$

and the second order differential at x is a symmetric bilinear map

$$
D^{2} f(x): V \times V \rightarrow W, \quad(v, w) \mapsto \partial_{v}\left(\partial_{w} f\right)(x)
$$

Proof. The formula given above yields, for $t^{\prime}=0, v^{\prime}=0$ and $t=t^{\prime \prime} \neq 0$,

$$
f^{[2]}\left((x, v, t),\left(x^{\prime}, 0,0\right), t\right)=\frac{f\left(x+t x^{\prime}+t v\right)-f\left(x+t x^{\prime}\right)-f(x+t v)+f(x)}{t^{2}} .
$$

Obviously, this is symmetric in v and x^{\prime}. Thus, for all $t \neq 0$,

$$
f^{[2]}\left((x, v, t),\left(x^{\prime}, 0,0\right), t\right)=f^{[2]}\left(\left(x, x^{\prime}, t\right),(v, 0,0), t\right)
$$

Since both sides are continuous functions of t, we have equality also for $t=0$. But

$$
\begin{equation*}
\partial_{v}\left(\partial_{w} f\right)(x)=\partial_{(v, 0,0)} f^{[1]}(x, w, 0)=f^{[2]}((x, w, 0),(v, 0,0), 0), \tag{4.1}
\end{equation*}
$$

whence the first claim, i.e., symmetry of $D^{2} f(x)$. Moreover, by Theorem 2.1, first differentials are linear maps, so this expression is linear with respect to v. By symmetry, it is then also linear with respect to w.

5. Second order Taylor expansion

Let $f: U \rightarrow W$ be of class C^{2}. Fix $x \in U$. If $(x, v, t) \in U^{[1]}$, we can write

$$
\begin{aligned}
f(x+t v) & =f(x)+t f^{[1]}(x, v, t) \\
& =f(x)+t\left(f^{[1]}(x, v, 0)+t f^{[2]}((x, v, 0),(0,0,1), t)\right) \\
& =f(x)+t D f(x) v+t^{2} f^{[2]}((x, v, 0)(0,0,1), 0)+t^{2} R_{2}(x, v, t)
\end{aligned}
$$

where the remainder $\left.\left.R_{2}(x, v, t)=f^{[2]}((x, v, 0),(0,0,1), t)\right)-f^{[2]}((x, v, 0),(0,0,1), 0)\right)$ depends continuously on t and satisfies $R_{2}(x, v, 0)=0$. The following lemma shows that this expansion coincides indeed with the second order Taylor expansion:
Lemma 5.1. If f is C^{2}, then $f^{[2]}((x, v, 0),(0,0,1), 0)=\frac{1}{2} D^{2} f(x)(v, v)$.
Proof. A conceptual proof is given in [17], [B2] or [B3, XIV.3.3]. Another, more "elementary" proof is proposed in Exercice B.7.7 of [B3]: first, observe that

$$
\begin{equation*}
\frac{\partial}{\partial t} f^{[1]}(x, v, t)=f^{[2]}((x, v, t),(0,0,1), 0) \tag{5.1}
\end{equation*}
$$

Deriving both sides of $f(x+t v)-f(x)=t \cdot f^{[1]}(x, v, t)$ partially with respect to t,

$$
f^{[1]}(x+t v, v, 0)=f^{[1]}(x, v, t)+t \cdot \frac{\partial}{\partial t} f^{[1]}(x, v, t)
$$

we see that $\frac{\partial}{\partial t} f^{[1]}(x, v, t)$ is a continuous difference factorizer, as follows:

$$
\begin{equation*}
\frac{\partial}{\partial t} f^{[1]}(x, v, t)=f^{[2]}((x, v, t),(v, 0,-1), t) \tag{5.2}
\end{equation*}
$$

Comparing (5.1) and (5.2) for $t=0$, and by (4.1) and linearity, the claim follows.

[^0]: ${ }^{1}$ In France, vector valued integrals like the following are hardly used in teaching - by some Bourbaki tradition, calculus is often taught in the Banach-setting, and there vector valued integrals are refused as kind of impure objects. But in \mathbb{R}^{n}, one may just define the integral componentwise, and prove (or not) that this doesn't depend on the choice of basis.
 ${ }^{2}$ In [B3], this elementary analysis is developed from scratch.

