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This note is the translation of a short text I had first written in French, and which
later became the germ of the book [B3] (see list of papers). The general context of
topological differential calculus is discussed here (Chapter 1). I concentrate in the
following on the most basic items: in finite dimension, “topological” and “metric”
calculus are equivalent, and the topological approach permits to give very simple,
“algebraic” proofs of some basic facts: the first differential Df(x) is a linear map;
the chain rule and Schwarz’ lemma hold, and there is a Taylor expansion.

1. Equivalence of calculi: first order

Let V and W be finite-dimensional real vector spaces, U a non-empty open subset
of V and f : U → W a map. The (first) prolongation of U is the set defined by

U [1] := {(x, v, t)|x ∈ U, v ∈ V, x + tv ∈ U}, (1.1)

whichis open in V ×V ×R. Recall that, in usual calculus, f is said to be continously
differentiable, or: of class C1, if all partial derivatives of f exist and are continuous.
Equivalently, all directional derivatives

∂vf : U → W, x 7→ ∂vf(x) = lim
t→0

f(x + tv)− f(x)

t
(1.2)

exist and are continuous.

Theorem 1.1. The following statements are equivalent:

(1) the map f is of class C1,
(2) the map f admits a continuous difference factorizer, that is, there is a con-

tinuous map f [1] : U [1] → W such that, for all (x, v, t) ∈ U [1],

f(x + tv)− f(x) = t · f [1](x, v, t).

If this holds, the total differential of f is given by Df(x)v = f [1](x, v, 0).

Proof. Assume (2) holds. Then lim t→0
t6=0

f(x+tv)−f(x)
t

= lim t→0
t6=0

f [1](x, v, t) = f [1](x, v, 0),

by continuity of f [1]. Thus all directional derivatives (∂vf)(x) exist on U , they are
given by f [1](x, v, 0), hence are continuous. In particular, all partial derivatives exist
and are continuous, hence f is C1. Now assume that (1) holds and define a map

f [1] : U [1] → F, (x, v, t) 7→
{f(x+tv)−f(x)

t
if t ∈ R×

Df(x)v if t = 0.

We must show that f [1] is continuous. Since f is continuous, it follows that f [1] is
continuous on the set

U ]1[ := {(x, v, t) ∈ U [1]| t 6= 0}. (1.3)
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Thus it remains to prove that f [1] is continous at all points of the form (x, v, 0). To
show this, note first that, whenever the line segment [x, x+ tv] belongs to U , then1

f [1](x, v, t) =

∫ 1

0

Df(x + stv)v ds. (1.4)

Indeed, for t = 0, this is obviously true, and for t 6= 0, it follows from the funda-
mental relation between differential and integral calculus, along with a change of
variable r = st,

f(x + tv) = f(x) +

∫ t

0

Df(x + rv)v dr = f(x) + t

∫ 1

0

Df(x + stv)v ds

which implies (1.4). Now, the right hand side is the integral of a continuous function,
depending continuously on the parameter (x, v, t). Since integration carries over a
compact interval, the continuity of the right hand side follows by elementary analysis
(no need to invoke more powerful machinery like Lebesgue’s theorem).2 �

2. Linearity of the differential

Theorem 2.1. Assume V,W are finite-dimensional vector spaces and f : U → W
a map of class C1 defined on an open subset of V . Then its differential Df(x) :
V → W at each point x ∈ U is a linear map.

Proof. Let us show that Df(x)(v+w) = Df(x)v+Df(x)w for v, w ∈ V . For t 6= 0,
we have

f [1](x, v + w, t) =
f(x + t(v + w))− f(x)

t

=
f(x + tv + tw)− f(xx + tv)

t
+

f(x + tv)− f(x)

t

= f [1](x + tv, w, t) + f [1](x, v, t).

Thus f [1](x, v + w, t) = f [1](x + tv, w, t) + f [1](x, v, t) for all non-zero t in a neigh-
borhood of 0. Since, by Theorem 1.1, both sides are continuous functions of t, it
follows that equality also holds for t = 0, which directly implies the claim. Now we
prove that Df(x)(rv)r = r Df(x)v. For t 6= 0 and r 6= 0,

f [1](x, rv, t) =
f(x + t(rv))− f(x)

t

= r
f(x + tr v)− f(x)

tr
= r f [1](x, v, tr).

Thus f [1](x, rv, t) = rf [1](x, v, tr) for all non-zero t, r in a neighborhood of 0. Again
by Theorem 1.1, eqality still holds for t = 0: Df(x)(rv) = rDf(x)v. �

In finite dimension, Hom(V,W ) carries a canonical topology, and it is now easily
seen that Df : U → Hom(V,W ), x 7→ Df(x) is a continuous map.

1 In France, vector valued integrals like the following are hardly used in teaching – by some
Bourbaki tradition, calculus is often taught in the Banach-setting, and there vector valued integrals
are refused as kind of impure objects. But in Rn, one may just define the integral componentwise,
and prove (or not) that this doesn’t depend on the choice of basis.

2 In [B3], this elementary analysis is developed from scratch.
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3. Chain rule

Theorem 3.1. If g and f are composable mappings of class C1 defined on open
subsets of finite-dimensional vector spaces, then g ◦ f is again of class C1, and its
differential is given by

D(g ◦ f)(x) = Dg(f(x)) ◦Df(x).

Proof. We use again Theorem 1.1 and write f(x + tv) = f(x) + tf [1](x, v, t). Then,
for t 6= 0 the difference quotient is

(g ◦ f)[1](x, v, t) =
g(f(x + tv))− g(f(x))

t

=
g(f(x) + tf [1](x, v, t))− g(f(x))

t
= g[1](f(x), f [1](x, v, t), t).

Our assumptions imply that the right hand side is a continuous function of (x, v, t),
and hence a continuous difference factorizer for g ◦ f exists, given by this formula.
Taking t = 0 now yields D(g ◦ f)(x)v = Dg(f(x))(Df(x)v), as claimed. �

4. Equivalence of calculi: higher order, and Schwarz’ lemma

Theorem 4.1. With notation as above, the following statements are equivalent:

(1) f is of class C2.
(2) f is of class C1 and f [1] is of class C1.

Proof. Assume (2) holds. Since Df(x)v = f [1](x, v, 0), and f [1] is C1, it follows that
Df is also of class C1, and thus f is of class C2.

Assume (1) holds. According to theorem 1.1, the continuous difference factorizer
f [1] exists. We have to prove that it is C1. Since f is C1, the difference factorizer is
C1 on the set U ]1[ defined by (1.3). Let us prove that it is C1 on a neighborhood of a
point of the form (x, v, 0). To this end, we use once more the integral representation
(1.4) of f [1]. As in the proof of theorem 1.1, elementary analysis shows that the
function defined by the integral over the compact interval [0, 1] is continuously
differentiable (integration and differentiation commute), by using the fact that the
function in the integral is C1, by our assumptions. �

If f is C2, we define the second order difference factorizer f [2] := (f [1])[1]. By
induction, we define f [k] := (f [k−1])[1], and arguments similar as above show:

Theorem 4.2. The following statements are equivalent:

(1) f is of class Ck.
(2) f is of class Ck−1 and f [k−1] is of class C1.
(3) f is C1 and f [1] is of class Ck−1.

Assume f is of class C2. Let us give an explicit formula for the second order
difference factorizer, assuming that the scalars by which we devide are non-zero:

f [2]
(
(x, v, t), (x′, v′, t′), t′′) = 1

t′′

(
f [1]
(
(x, v, t) + t′′(x′, v′, t′)

)
− f [1](x, v, t)

)
=

f(x + t′′x′ + (t + t′′t′)(v + t′′v′))− f(x + t′′x′)

t′′(t + t′′t′)
− f(x + tv)− f(x)

t′′t
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Theorem 4.3. Assume f is of class C2. Then we have, for all x ∈ U and v, w ∈ V ,

∂v(∂wf)(x) = ∂w(∂vf)(x),

and the second order differential at x is a symmetric bilinear map

D2f(x) : V × V → W, (v, w) 7→ ∂v(∂wf)(x).

Proof. The formula given above yields, for t′ = 0, v′ = 0 and t = t′′ 6= 0,

f [2]((x, v, t), (x′, 0, 0), t) =
f(x + tx′ + tv)− f(x + tx′)− f(x + tv) + f(x)

t2
.

Obviously, this is symmetric in v and x′. Thus, for all t 6= 0,

f [2]((x, v, t), (x′, 0, 0), t) = f [2]((x, x′, t), (v, 0, 0), t).

Since both sides are continuous functions of t, we have equality also for t = 0. But

∂v(∂wf)(x) = ∂(v,0,0)f
[1](x,w, 0) = f [2]((x,w, 0), (v, 0, 0), 0), (4.1)

whence the first claim, i.e., symmetry of D2f(x). Moreover, by Theorem 2.1, first
differentials are linear maps, so this expression is linear with respect to v. By
symmetry, it is then also linear with respect to w. �

5. Second order Taylor expansion

Let f : U → W be of class C2. Fix x ∈ U . If (x, v, t) ∈ U [1], we can write

f(x + tv) = f(x) + tf [1](x, v, t)

= f(x) + t
(
f [1](x, v, 0) + tf [2]((x, v, 0), (0, 0, 1), t)

)
= f(x) + tDf(x)v + t2f [2]((x, v, 0)(0, 0, 1), 0) + t2R2(x, v, t),

where the remainder R2(x, v, t) = f [2]((x, v, 0), (0, 0, 1), t))−f [2]((x, v, 0), (0, 0, 1), 0))
depends continuously on t and satisfies R2(x, v, 0) = 0. The following lemma shows
that this expansion coincides indeed with the second order Taylor expansion:

Lemma 5.1. If f is C2, then f [2]((x, v, 0), (0, 0, 1), 0) = 1
2
D2f(x)(v, v).

Proof. A conceptual proof is given in [17], [B2] or [B3, XIV.3.3]. Another, more
“elementary” proof is proposed in Exercice B.7.7 of [B3]: first, observe that

∂

∂t
f [1](x, v, t) = f [2]((x, v, t), (0, 0, 1), 0). (5.1)

Deriving both sides of f(x + tv)− f(x) = t · f [1](x, v, t) partially with respect to t,

f [1](x + tv, v, 0) = f [1](x, v, t) + t · ∂
∂t

f [1](x, v, t),

we see that ∂
∂t
f [1](x, v, t) is a continuous difference factorizer, as follows:

∂

∂t
f [1](x, v, t) = f [2]((x, v, t), (v, 0,−1), t). (5.2)

Comparing (5.1) and (5.2) for t = 0, and by (4.1) and linearity, the claim follows. �
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