RESEARCH TOPICS,
AND SOME REMARKS ON TEACHING MATHEMATICS

WOLFGANG BERTRAM

The aim of the following notes is to explain some of my research topics to non-
specialists. I shall try to keep the text as non-technical as possible — it is not meant
to be a scientific communication, but rather a personal and informal conversation
with a reader supposed to be interested in mathematics and in the way mathe-
maticians think. Thus I will allow myself to give some comments on related topics,
such as teaching mathematics, and to speak about my personal experience and mo-
tivation. In chronological order, my research developed along the following three
strands, which I shall explain in inverse chronological order:

(A) non-commutative harmonic analysis (section 3),
(B) the geometry of Jordan-, Lie- and associative structures (section 2),
(C) general differential calculus (section 1).

In the following, I shall give some (hopefully useful) hyperlinks, and I will refer
to the list of my papers as given on my homepage: research papers are labelled
[n], books [Bn|, theses [Tn], and others — proceedings, overviews, lecture notes —
labelled [On).

1. DIFFERENTIAL CALCULUS
References: [B2], [B3], main papers: [17, 19, 37, 40], others: [27, 30, 35, O5, O6]

1.1. Introduction. Quite early during my undergraduate studies, I became inter-
ested in the foundations of calculus: Detlef Laugwitz, who was an uncle of mine,
sent me a copy of his book Zahlen und Kontinuum — eine Einfihrung in die In-
finitesimalmathematik (Wissenschaftliche Buchgesellschaft 1986)." At that time, I
did not yet understand much of the mathematics, but I retained that the form of
“Analysis” is not fixed once and for all: it is a human endeavor which may change
shape and color during the time. Indeed, like every other student of physics and
maths, I made this experience: our physics teachers used “infinitesimal” quantities
as if there were no doubt about their existence, whereas, for our maths teachers,
their non-existence seemed so obvious that only supersticious people could believe
in their existence. So, who is right? Although I became a mathematician, most
often I continued to think like a physicist.

These questions worked on in my mind and suddenly came to light when, in
2002, Karl-Hermann Neeb was visiting professor in Nancy, and we started to work
on a joint project involving infinite dimensional symmetric spaces (see Section 2.10

1 “Numbers and continuum — an introduction to the mathematics of infinitesimals”; the book
is an introduction to non-standard analysis containing a wealth of historical remarks and thoughts
on pedagogical issues.
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below). I had learned from Bourbaki” that the “correct” setting for infinite dimen-
sional calculus is the Banach space setting; now Karl-Hermann explained to me that
general locally convex vector spaces (complete or not) are equally well suited, so I
wondered why to stop there: is there a “natural frontier” for generalizing calculus?
I consider the quest for answering this seemingly naive question one of the most
challenging intellectual adventures of my life. This work is not yet finished, but from
today’s perspective I would say that the answer is: as long as you are interested in
differential calculus, there is no frontier: it is, essentially, an algebraic, or formal,
theory, which makes sense under most general assumptions; however, if you wish
to combine it with integral calculus, then you must add more and more restrictive
assumptions (of “analytic”, or “topological” nature), according to the strength of
results that you expect.

Before explaining this answer in some more detail, I would like to mention two
other persons to whom I owe acknowledgement of decisive hints: first, I have read
with great pleasure the book “Analysis 27 by my former teacher in Géttingen, Horst
Holdgriin, who gives an elegant and rigourous mathematical presentation involving
some ideas to be explained below; and second, to my collegue Yannis Varouchas
(whose office was next to mine): when, in 2002, I was thinking about these things,
he knocked at my door, “t’as cinq minutes? — j’ai un joli truc de maths a te
raconter, peut-étre que cela t’interesserait...” — and what he told me was exactly
what I needed for understanding the problem I was thinking about! I probably
would not have told this here if Yannis had not died, suddenly and unexpectedly
for all us, some months later. We have had several stimulating discussions before
his death, and Yannis had been very enthousiastic about it. I always felt that the
work I continue here is kind of his legacy.

1.2. Topological differential calculus. References: [B2|, [B3], [17]. — Whereas,
both for teachers and students, explaining, respectively understanding, the notion
of derivative of a function of one variable is standard and comparatively easy, the
situation is quite different for functions of several variables: the literature on notions
such as differential, derivative, total derivative or class (', is both vast and often
confusing.” Thus, paradoxally,

e on the one hand, since its historical origins from Newton and Leibniz, the
success of calculus comes from the fact that it is simple, and that it has the
form of a calculus, i.e., that it provides a formal, algebraic, method to find
and to compute solutions to certain problems;

e on the other hand, the need for mathematical rigour and greatest generality
leads to a complicated structure on the conceptual level.

I claim that the approach started by the paper [17], and christianed Topological
differential calculus (Calcul différential topologique) in the book [B3], succeeds in
marrying simplicity on the level of the calculus with simplicity on the — extremely
general — conceptual level. To give you an idea of how simple it is: start with a
function f: U — W (think of U as an open part of V' =R" and W = R™), then

2 At that time I was not aware that Laugwitz also did pioneering work in this realm!
3 To limit quotes, I stick here to wikipedia; every reader may do her own web search.


http://en.wikipedia.org/wiki/Nicolas_Bourbaki
http://www.uni-math.gwdg.de/holdgrun/analitiko/a2-inf.php
http://www.uni-math.gwdg.de/holdgrun/
http://www.uni-math.gwdg.de/holdgrun/
http://en.wikipedia.org/wiki/Derivative#Rigorous_definition
http://en.wikipedia.org/wiki/Differential_(mathematics)
http://en.wikipedia.org/wiki/Derivative#Derivatives_in_higher_dimensions
http://en.wikipedia.org/wiki/Total_derivative
http://en.wikipedia.org/wiki/Smoothness#Multivariate_differentiability_classes
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(1) write up the difference quotient, for t an invertible real number,

fm(x,v,t) = %(f(m—i—tv) — f(:zc)), (1.1)

(2) in a second step, simplify (in whatever way you like) the expression of
(2, v,t) such that division by ¢ disappears,

(3) the resulting expression — still denoted by the symbol fl(z,v,t) — then
makes sense also for ¢ = 0, and this gives you the differential of f at x
applied to v, and denoted, according to context and to local habits, by

df (z)v := Df(z)v := D, f(x) := fH(z,v,0). (1.2)
On the conceptual side, the counterpart of the decisive step (2) is the following

Theorem 1. The map f : U — W is differentiable of class C* if, and only if,
the difference quotient map f extends to a continuous map defined for all triples
(xz,v,t) for which it makes sense, i.e., for x € U, v € V and t € R such that
x +tv € U; the differential of f then is the map defined by df (x)v := fl(z,v,0).

For convenience of the reader, I have written up here the very easy proof (see
Section VII of [B3] for an expanded and commented version); it generalizes for
arbitrary locally convex topological vector spaces (see [17]). What makes this the-
orem remarkable is that it is of purely topological nature: its condition is in terms
of continuous maps, as opposed to the usual notion of (Fréchet) differential, which
apparently is of metric nature, since its condition is in terms of normed (Banach)
vector spaces. Now, topological spaces are much more general than metric ones.
Thus we propose the following purely topological definition of “class C1”:

Definition 1. A map f : U — W s of class Ct if its difference quotient map
admits a continuous extension to a map fMN: UM — W defined on the set

s ={(z,v,t) | z€UveViteK:ax+tveU}. (1.3)
The differential of f then is defined by (1.2).

One of the purposes of [B3] is to sell this definition to an undergraduate reader. The
more advanced reader should appreciate that not only, V and W may be arbitrary
(Hausdorff) topological vector spaces, but K may be any good’ topological base
field or even -ring. For fields like K = C or K = Q, (the p-adic numbers), this
yields indeed the correct classical notions from complex analysis and p-adic calculus
(see [17] and [B3]); for rings that are not fields it leads to surprising and useful
new features of our calculus: namely, infinitesimal quantities appear naturally (see
section 1.5 below).

Topological differential calculus can now informally be defined as calculus, based
solely on the topological notion of continuity and on the above definition. It com-
bines simplicity of calculus with simplicity of the conceptual foundations. I shall not
hide that there is a price to be paid: this approach has a high degree of abstraction
and of “algebraization”. Let us say some words on this. First, a short digression:

4 By “good” I mean: the group K* shall be open-dense in K.


http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-diffcal.pdf
http://en.wikipedia.org/wiki/Frechet_derivative
http://en.wikipedia.org/wiki/P-adic_number
http://en.wikipedia.org/wiki/Several_complex_variables
http://www.maa.org/publications/maa-reviews/ultrametric-calculus-an-introduction-to-p-adic-analysis
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1.3. Digression on linearity of differentials. Reference: p. 47/48 in [B3]. —
It is very important for the whole structure of calculus that the first differential
at a point, df(x) : V. — W, v — df(z)v, is a linear map. Remarkably, in our
setting this a theorem: it is a consequence of the simple definition given above (see,
e.g., [B2], or here for the easy proof). This should be compared with the usual
definition of (Fréchet) differentiability, where it is part of the definition, that is,
an assumption: we do not need this assumption, hence, by Occam’s razor, this
comparison is a strong argument in favor of topological differential calculus! By the
way, beyond the French frontiers, many authors prefer defining the class C! by the
property that all partial derivatives exist and are continuous: indeed, this can be
seen as a purely topological condition; its drawback is that one uses a basis, so this
is not conceptual. Also, Lang’s generalization of Fréchet differentiability to general
topological vector spaces (where linearity still is an assumption) may be critisized
by the same argument, using Occam’s razor.

1.4. Conceptual differential calculus. References: main [37], [38], [40], see also
[39], [O6], and the “C°-concepts” from [17] and [B3] p. 129/30. — As said above, I
claim that differential (as opposed to integral) calculus is a purely algebraic theory.
To prove the claim, we have to cross a last frontier: we have to get rid of topology.
At a first glance, this seems to be impossible: topology and continuity are needed
to “extract” the value fI!(z,v,0) out of eqn. (1.1), given the function f. However,
already undergraduate students learn to distinguish “polynomials™ and “polyno-
mial mappings”. The same kind of distinction can serve to define “smooth laws”,
which need not be uniquely determined by their underlying set-map. To define this
correctly, we have to understand the algebraic nature of calculus: a first (not yet
quite stable) approach to do this, called “Conceptual Differential Calculus”, has
been given in [37, 38], a second, more polished, in [40] . Clearly, writing up a stable
version is a matter for another book; hopefully that will not take too long.

1.4.1. Motivation. Conceptual calculus arose from working on a couple of, appar-
ently elementary, problems (formulated in [O6]) about second and higher order
differentials: already on the level of topological differential calculus, it becomes nec-
essary to look a bit closer at higher order difference quotient maps f12 = (fI)1,
fBl= (fEHI ) f0 (see [B2], [B3]). These are among the most terrifying math-
ematical beasts that I have ever met: the number of arguments increases exponen-
tially, and already for f2 the “explicit formula” looks quite wild (see here, or [06]).
However, there must be some pattern behind this: what is it?

1.4.2. Algebraic shape of calculus. Let me give (following [40]) a very short, but nev-
ertheless complete, mathematical description of the shape of “conceptual calculus”
— the reader who really tries to fill in the missing details will find that all compu-
tations are elementary, not requiring any sophisticated mathematical knowledge,
but just a psychological prerequisite: you should not be afraid of (small) groupoids.
Indeed, there is no reason to be afraid of them — they are domestic animals, like
groups, rings, small cat’s... (see here, or these lecture notes).

Start. Fix a (commutative) base ring K, a K-module V| a non-empty subset
U c V, and define UMM, the “generalized tangent bundle of U”, by (1.3).


http://iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-diffcal.pdf
http://en.wikipedia.org/wiki/Fr�chet_derivative
http://en.wikipedia.org/wiki/Occam's_razor
http://en.wikipedia.org/wiki/Frechet_derivative#Generalization_to_topological_vector_spaces
http://en.wikipedia.org/wiki/Frechet_derivative#Generalization_to_topological_vector_spaces
http://en.wikipedia.org/wiki/Polynomial#Abstract_algebra
http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/WB-diffcal.pdf
https://ncatlab.org/nlab/show/groupoid
https://www.ecosia.org/images?q=small+cat+images
http://groupoids.org.uk/gpdsweb.html
http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram//WB-coursED.pdf
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Step 1. By direct computation, show that the following pair U{" is a groupoid:
Uttt .= (G, G%) := (UM, U x K), with source map a : G* — G°, a(x,v,t) = (,1),
target map f(z,v,t) = (z+tv,t), units 1, ) = (x,0,t), product (z, v, t)*(z', ", ') =
(2/,v +',t) and inversion (z,v,t)"! = (v — tv, —v, t).

Step 2. For each k € N, let {k} be a formal copy, called of k-th generation, of the
symbol {1}. So, U is just a copy of U}, and so on. Define by induction

VneN, UM = Ui2ent = (L (UOHE )i (1.4)

Theorem: U" is an n-fold groupoid. Well, to be honest, this is true almost by
definition. The main problem is just to get used to the definition of such (higher)
gadgets. The explanations given in [38], [40] are designed to be self-contained.

Step 3. Let f: U — U’ be a map. Theorem: under the assumptions of topologi-
cal differential calculus, f is C™ iff it extends to a continuous morphism of n-fold
groupoids f* : U™ — (U’)". When there is no topology, this property may define the
“property C*”: a smooth lawis given by a base map f = f°: U — U’ together with
a family (f")nen of morphisms of n-fold groupoids (having some extra properties
that are the formal analogs of certain properties from topological calculus).

Step 4 (optional). All properties and definitions carry over to the level of mani-
folds (defined in full generality in [39]). In fact, all key properties described above
are natural, that is, essentially chart-independent, and hence valid for manifolds
(and even will remain valid for “spaces” that are more general than manifolds).

This achieves our short description of the formal structure of differential calculus:
the n-fold groupoids U™ and their morphisms f" are the main actors of “conceptual
calculus”. They significantly generalize the n-fold iterated tangent bundles T"U
and tangent maps T"f : T"U — T"U’, heavily used in [19]. The only precursor
of the U" that I was able to find in the mathematical literature is Alain Connes’
tangent groupoid (Section IL.5 in his book "Non-Commutative Geometry”), which,
for K = R, is an analog of our U1, though given by a fairly unnatural construction.

1.4.3. Various versions of calculus. Now, we have to “unfold” these abstract def-
initions and properties, and to study their relationship with “usual” calculus and
differential geometry. The papers [37, 38, 40] are just a beginning, and a lot of
work remains to be done. The structure of the n-fold groupoids U" can be made
completely explicit, but still is very complicated. To make life easier, I introduce a
simplified version of these groupoids, called symmetric cubic. The symmetric cubic
calculus is remarkably close to usual calculus, by keeping certain interesting features
of the conceptual approach. However, the general, full cubic, definitions as given
above, are needed when we wish to keep full advantage of the calculus in case of
positive characteristic, and to make the link with methods from algebraic geometry:
namely, the simplicial differential calculus from [27] can be imbedded into the full
cubic calculus, but not always into the symmetric cubic one. Surprisingly, the most
subtle features are encoded in an apparently stupid object: namely, taking U = 0,
the zero set in the zero space, we get an n-fold groupoid 0", called the scaloid. The
scaloid is far from trivial — I like to see it as a kind of “elementary particle”, present
in the whole theory at a very fundamental level.


https://ncatlab.org/nlab/show/n-fold+category
https://ncatlab.org/nlab/show/n-fold+category
http://www.alainconnes.org/fr/downloads.php

6 WOLFGANG BERTRAM

1.4.4. Further comments. See the last sections of [40] : there are a lot of open
problems and further topics. I hope, in the end, that the reader may agree that
“differential calculus” s a topic of “serious” research, and not only, as many mathe-
maticians are made to believe, a topic for historians and educationists; it is a living
part of mathematics, still capable of being developed into new directions, and not
the finished and unalterable tool presented in undergraduate lectures. Conceptual
Calculus may be considered as an amplification of Charles Ehresmann’s program:
groupoids and higher categorical structures already appear before developing differ-
ential geometry, since they lie at the bottom of calculus.

1.5. Weil functors. References: [B2=19, 27, 30, 35]. — To finish this chapter, and
adressed to readers who are more expert in algebraic approaches to infinitesimal
calculus, T would like to discuss a series of papers that now appear to be somewhat
intermediate between the topological and the conceptual approach, namely those
dealing with the aspect of Weil functors and Weil bundles, named after an impor-
tant paper by André Weil from 1953, “Théorie des points proches sur les variétés
différentiables”. My interest in this approach started with Theorem 6.2 from [19],
and the reader who has followed me up to this point can safely be referred to the
ample explanations given in the introduction of [19]. To make a long story short,
in loc. cit. it is shown that if M is a manifold over a good topological base ring
K, then its tangent bundle T M is a manifold over the good topological ring TK.
The good topological ring TK, in turn, is naturally identified with the ring of dual
numbers over K, TK =2 K @ eK with € an element of TK satisfying €2 = 0. This
opens a way of implementing “infinitesimal quantities” in topological differential
calculus in a completely natural and elementary way — and in this way should be
compared to synthetic differential geometry. In [19], T have used this observation to
give an exposition of some classical topics of differential geometry (connections, Lie
groups, symmetric spaces) in a most conceptual and general way. Retrospectively, I
would say that the use, in [19], of higher order tangent rings, defined inductively by
T*K := T(T*'K), has turned out to be a very efficient tool to develop “conceptual
differential geometry” without having to tame the dreadful higher order difference
quotient maps (see above) — the rings T*K, and their cousins called “jet rings”,
contain all the purely infinitesimal information.

But, for a deeper understanding, working with 7*K is not enough; and already
on the infinitesimal level we have a slight loss of information, namely in the case
of positive characteristic. As an important step for such a deeper understanding
I consider the paper [27], where T show that the Weil functors corresponding to
the Weil algebras A = K[X]/(X™) can be “imbedded” into topological differential
calculus. Going even further, in his thesis, giving rise to our paper [30], Arnaud
Souvay then proved an analog statement for any Weil algebra (thus generalizing the
Covariant approach to Weil functors advocated by Ivan Kolar). It is even possible
to extend these results to an abstract approach of what I call Weil spacs (paper
[35]). This is a category of “spaces” satisfying the three requirements set out in
the introduction of Moerdijk’s and Ryes’ book Models for Smooth Infinitesimal
Analysis: (1) it is cartesian closed, (2) it contains singular spaces, and (3) it allows
a language taking account of infinitesimal quantities. However, to ensure fullness


http://www.ams.org/mathscinet/msc/msc2010.html?t=&s=differential+calculus&btn=Search&ls=s
http://www.im.p.lodz.pl/~kubarski/BCP76/
http://en.wikipedia.org/wiki/Differential_(infinitesimal)#Algebraic_geometry
http://en.wikipedia.org/wiki/Differential_(infinitesimal)#Algebraic_geometry
http://www.encyclopediaofmath.org/index.php/Weil_bundle
http://en.wikipedia.org/wiki/Andre_Weil
http://en.wikipedia.org/wiki/Dual_number
http://en.wikipedia.org/wiki/Dual_number
http://ncatlab.org/nlab/show/synthetic+differential+geometry
http://en.wikipedia.org/wiki/Tangent_bundle#Higher-order_tangent_bundles
https://eudml.org/doc/17497
http://www.math.muni.cz/~kolar/
http://projecteuclid.org/euclid.jsl/1183744197
http://projecteuclid.org/euclid.jsl/1183744197
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of imbedding of the usual category of manifolds into this big category, we will need
to refine it by using notions of conceptual calculus that are not yet present in [35].

2. GEOMETRY AND ALGEBRA

References: book [B1], papers [3, 4, 6, 7, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24,
25, 26, 28, 29, 31, 32, 33, 36] and [01, 02, 03, 04, 07, 08, 09], book review [1].

2.1. Jordan algebras: from physics to maths, from Goéttingen via Paris
to Clausthal. References: [B1], [3,4,6,7,11]. — Following a Géottingen tradition,
I started studying both mathematics and physics as “Hauptfach” (main subject).
After some time, I realized that I would not understand physics by studying physics,
so I did my Diplom in Mathematics, but I continued to feel attracted by mathemat-
ical structures related to foundational issues of physics. In this realm, one of the
highlights certainly is Lie theory, a beautiful theory relating a class of geometric
objects (Lie groups) with a class of purely algeraic objects (Lie algebras). Great
minds such as Hermann Weyl and FEugene Wigner stand for the intimate relation of
this theory with 20-th century physics. This was certainly the reason why I chose
to write my Diplom thesis in this domain.

Already at that time, in a lecture on quantum mechanics by Gerhardt Hegerfeldt,
I was somewhat puzzled when he mentioned the topic of Jordan algebras: around
1930, Pascual Jordan suggested to consider an algebra structure on the space of
observables in quantum mechanics (for simplicity, think of it as a space of symmetric
or Hermitian matrices) — this space is not stable under the usual associative matrix
product ab, but it is an algebra with respect to the symmetrized “Jordan” product

1
§(ab—|— ba). (2.1)
Now, this looks very similar to defining a Lie algebra by the commutator bracket,

aeb: =

[z, y] == zy — yz. (2.2)
So, I wondered if there were some analog of Lie theory, some kind of relation be-
tween hypothetical “Jordan groups” and Jordan algebras? Only several years later,
in Paris, when I started working on my phd thesis supervised by Jacques Faraut, 1
discovered that such a theory was indeed developing: Faraut and Koranyi were on
the way of finishing their book Analysis on Symmetric Cones, and by reading sev-
eral of its drafts, I learned about the work of people who significantly contributed
to the theory: Ernest Vinberg, Max Koecher, and Ottmar Loos, just to name some
of them. But, in discussions with Faraut, Koranyi, Gindikin, and others, I realized
that this theory was not yet finished: there was no general correspondence between
“Jordan algebraic” and “Jordan geometric” objects. Starting with seminar talks in
Paris, during the following years the problem of finding such a general correspon-
dence became one of the Leitmotifs of my work. My Clausthal Habilitation thesis
The Geometry of Jordan and Lie Structures (published as [B1]) summarizes a sort
of complete answer to this question — at least, as far as the case of finite-dimensional
real and complex structures is concerned. I still consider the introduction to [B1] a
comprehensive summary of that stage of the theory, and I recommend the interested
reader to have a look at it.


http://en.wikipedia.org/wiki/Lie_theory
http://www.theorie.physik.uni-goettingen.de/~hegerf/
http://en.wikipedia.org/wiki/Jordan_algebra
http://de.wikipedia.org/wiki/Pascual_Jordan
http://en.wikipedia.org/wiki/Commutator
http://webusers.imj-prg.fr/~jacques.faraut/
http://www.ams.org/journals/bull/1998-35-01/S0273-0979-98-00733-2/S0273-0979-98-00733-2.pdf
http://en.wikipedia.org/wiki/Ernest_Vinberg
http://de.wikipedia.org/wiki/Max_Koecher
http://molle.fernuni-hagen.de/~loos/homepage/
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2.2. The general coquecigrue problem. Going a bit ahead, let us state the
following general “coquecigrue problem”: given some class of algebras, defined in
the sense of universal algebra by “identities” — such as Jordan or Lie algebras —,
is there a class of geometric objects “integrating” it, in such a way that conversely
the algebra can be recovered by “differentiating” the geometric object at some base
point? 1 employ the word “coquecigrue” here in hommage a Jean-Louis Loday,
whose too early death has been a great loss to the mathematical community: Loday
had raised such a question in relation to a special class of algebras called [.eibniz
algebras, c¢f. Section 14 in Some problems in operad theory. As far as I know,
at present there is not even the slightest beginning of a theory solving the general
problem, and probably most mathematicians would qualify it as ill-posed. However,
for my research it turned out to be a very fruitful guideline, leading to interesting
mathematics in all special cases where I tried to understand examples. I believe
that, in the long run, this question, suitably formalized, might help to organize
some large fields of mathematics.

2.3. Associative algebras and associative geometries. References: [25, 26,
32], [09]. — If one takes the “general coquecigrue problem” seriously, then one can-
not avoid looking at the most prominent class of algebras, besides Jordan- and Lie
algebras, namely at associative algebras. Thus we ask: is there a geometric object
corresponding to an associative algebra, in a similar way as a Lie group corresponds
to a Lie algebra? In joint work with Michael Kinyon (who before had worked on
Loday’s original coquecigrue problem) we show that the answer is “yes”: we call
associative geometry this “associative coquecigrue”. I will try below to explain a
little bit more what kind of geometry this is; but let me just add here that, of
course, we not only want to define “objects”, but really categories, and all corre-
spondences should be functorial, and, at best, equivalences of categories. Now, since
the procedures of “symmetrization”, respectively “skew-symmetrization” obviously
define functors “associative algebras — Jordan algebras” and “associative algebras
— Lie algebras”, there shall also be functors pointing from the category of associa-
tive geometries to those of Jordan-, respectively Lie-geometries. And, indeed, this
is the case: hence an associative geometry is a very rich structure, it contains as
“underlying structure” a lot of Lie groups, as well as a Jordan geometry.

2.4. Digression on non-commutative geometry. Reference: introduction to
[09]. — At this point it is probably necessary to say some words on the relation
between our associative geometries and Non-Commutative Geometry. Indeed, 1
have often had occasion to listen to talks by mathematicians working in this domain
— especially, coming from the school of Alain Connes — and, usually, they stress
that, as soon as an associative algebra becomes non-commutative, the corresponding
object, a “non-commutative space”, is no longer a “space in the usual sense” (i.e.,
not a point set with some structure), and that the non-commuative, or “quantum”,
world cannot be described by the language of usual geometry. This seems to be in
contradiction with what I have said above, since associative geometries are “usual”
geometries.

My reply to this apparent contradiction is that both theories are mathematically
correct, and, to me, they seem to shed light on aspects of associative algebras


https://fr.wikipedia.org/wiki/Coquecigrue
http://en.wikipedia.org/wiki/Jean-Louis_Loday
http://en.wikipedia.org/wiki/Leibniz_algebra
http://en.wikipedia.org/wiki/Leibniz_algebra
http://arxiv.org/pdf/1109.3290.pdf
http://en.wikipedia.org/wiki/Associative_algebra
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that are complementary, in the philosophical way the term is sometimes used in
quantum physics. Namely, there are two different paradigms: Kinyon and I follow
the paradigm of the Lie group-Lie algebra correspondence, and Connes and his
school follow the paradigm of the manifold-function algebra correspondence (cf. the
overview by Pierre Cartier). Both paradigms are very important in mathematics,
and applied to non-commutative associative algebras they lead to very different
theories.

2.5. Geometry at last! References: [32, 33]. — When doing geometry, in “usual”
spaces, I draw figures — and reading great classics like Hilbert-Cohn Vossen or
Courant-Robbins, T use to somewhat regret that much of modern mathematics
seems to be too abstract to be rendered by figures... I was surprised and satisfied
when I realized that it is possible to visualize, at least low-dimensional, associative
geometries. Even better, by using dynamical software such as GGeoGGebra, one can
create dynamical figures. This is very easy — undergraduate, and even high-school
students can do it (here you may find a “travaux pratiques” session I did with
high-school students). For instance, using GeoGebra you draw the following figure:

The dynamic version allows to illustrate (at least) three basic mathematical ideas:
first, the idea of function of several variables: an object is “variable” if you can
freely move it in your GeoGebra file — there are 5 of such free objects: the points
x,y, 2 and the lines a, b may freely move, and the point w follows: it is a function
of the variables (z,a,y,b, z). To describe it by a mathematical formula, let us write
u V v for the line joining two points u, v, and e A ¢ for the intersection of two lines
e and ¢; then the formula describing w as a function of (z,a,y,b, z) is

w = (2Y2)ap = <((:c Vy)Aa)V z) A <((z Vy)Ab) \/x) ; (2.3)

second, the idea of a continuous such function: there are no “jumps”, and — sur-
prisingly — GeoGebra gives you a reasonable value (by continuous extension) even
when there should be an error message (e.g., when x,y, z are collinear); and third,
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the idea of symmetry. This last item makes the link with associative geometries —
indeed, what you see here is an image of the simplest non-commutative associative
geometry.” The underlying point set of the geometry is the real projective plane
X = P?R, and we have drawn an “affine picture” of it. As usual in projective geom-
etry, you may consider other affine pictures. A particularly useful one is obtained
by taking one of the two red lines, say a, as “line at infinity”:

When a = b, both lines are at infinity, and then w is nothing but the fourth point
in the parallelogram spanned by z, v, z, that is, w = 2 —y + z in the plane R%. Now,
what is truly remarkable here (and what characterizes associative geometries) is
that for a # b we get something similar, a sort of “non-commutative plane”: when
y is fixed, the law (z,z) — w is associative, and defines a group law, but— much
better indeed! — the whole ternary law (z,y, z) — w is what we call a torsor.” This
algebraic statement can be proved by geometric arguments — see [32, 33|, or (best)
make your own GeoGebra-files. To geometers, it will not come as a surprise that,
behind such geometric proofs, you find Desargues’ theorem. Indeed, the relation
between Desargues’ theorem and associativity is an important theme in foundations
of geometry. This leads us to the question: where does the associative law come
from? Some more words on this.

2.6. Exotic planes. Reference: [32]. — To understand the associative law, one
may compare it with laws that are non-associative but “nearly associative”. In
geometry, there are certain projective planes that are non-Desarguesian, that is
non-associative, but close to it — the best known examples are the Moufang planes.
Now, our formula (2.3) makes sense in any projective plane (and even in any lattice)
— for Desarguesian planes it defines a torsor; but what does it define for other planes
or lattices? In [32] we give an answer for the case of Moufang planes: the object

% To be more specific, this geometry corresponds to the “associative pair” (R2, (R?)*) of column
and row matrices, and not to an algebra of square matrices; it is degenerate — solvable rather than
semi-simple —, and thus still resembles much the usual commutative and flat geometry.

6 A torsor is for a group what an affine space is for a vector space — see here for some explana-
tions. The main problem is terminology: there are (too) many other names for this child.
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defined by (2.3) is what we call a Moufang torsor. But the general case remains
wide open — and also in the Moufang case a more systematic theory of “alternative
geometries” is still missing (work with Kinyon in progress).

2.7. Classical spaces, Grassmannians and “relational mathematics”. Ref-
erences: [31, 36]. — On the less exotic, classical side, the main source of associativity
in mathematics is associativity of composition of mappings, or, more generally, of
composition of binary relations. Indeed, all associative geometries are “classical
spaces”, that is, can be constructed from generalized Grassmannians, and their
geometric law is in general not defined by a lattice-theoretic formula of the kind
of (2.3), but by a linear algebra formula which is closely related to the ternary
composition Ro S~ o T of linear relations (see [25]). Since this construction seems
to be of some rather fundamental nature, I tried to understand what kind of gen-
eral mathematics might be behind it: first of all, one may replace the usual linear
Grassmannian by a non-commutative version that I call the projective geometry of
a group [31], and this then leads to looking at a completely general version dealing
with arbitrary binary relations [36]. By its generality, this belongs to the topic of
universal algebra: T call it universal associative geometry. In spite of this generality,
I do think of this geometry in terms of the two figures given above: the geometry
lives on a point set X, which carries as geometric structure a function of 5 variables,
(x,a,y,b,2) — w = (xYy2)aw, the structure map, denoted by

I:X° =X, (z,a,9,b,2) = w="0(2,0,y,b,2) := (2Y2)ap. (2.4)

This structure has nice features, just as for the associative geometries discussed
above: for a = b fixed, we get an analog of the “commutative spaces” (to be
more precise: a space with some “pointwise defined product”, like in usual function
algebras); in the opposite case (called “transversal”), we get an associative product
of the pure type “composition of mappings”; and between these two extremal cases,
we have various degrees of “deformation” or “contraction” of one kind towards the
other. I have the impression that this is only the beginning of some more general
story which so far remained hidden since mathematicians are too much used to
think in terms of mappings, and not in terms of general (binary) relations. (I got
the same impression also via conceptual differential calculus, cf. last section of [40].)

2.8. Jordan geometries. References: [B1], [13, 14, 15, 21, 34], [O1, O3, 04, O7,
09]. — It’s time to come back to Jordan algebras and “Jordan coquecigrues” — as
promised above, I shall now try to give some ideas about what this is. During the
time, my point of view changed, so there are several answers:

(a) in [B1], in terms of usual (finite-dimensional real) differential geometry, the
object is a symmetric space with some additional structure, called a twist,

(b) in [14], working in arbitrary dimension over (commutative) base fields or
rings containing %, the object is called a generalized projective geometry,

(c) in [34], for completely arbitrary (commutative) base fields or rings, the ob-
ject is called a Jordan geometry, defined by a family of inversions.

What the reader may retain, without being burdened with technical details: in
all three approaches, the “Jordan coquecigrue” is an animal that stems from the
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marriage of two respectable mathematical beings: projective geometries and sym-
metric spaces. Today, I believe that (c) is the most elegant presentation, and it
certainly is the most general — see introduction to [34]. It is axiomatic in nature,
and strongly motivated by the associative geometries discussed above: namely, just
as a “special” Jordan algebra can be obtained from an associative algebra with
product (x,y) — xy by retaining only the squaring map x — %, a “special” Jordan
geometry is obtained from an associative geometry by retaining from the map I’
given by (2.4) a kind of “squaring map” by restricting to the “diagonal z = 2”:

Ji X=X, (2,0,9,0) = TP (y) = (zya)e = D(z,a,y,b,2).  (2.5)

Now, for a fixed couple (a,b), the law (z,y) — (zyz)w is a symmetric space law,
and thus we see that a special Jordan geometry contains a large family of symmet-
ric spaces, parametrized by (a,b) € X x X. As above, when a = b, the spaces are
commutative; for a # b, we get non-commutative deformations. But we have more:
a quite amazing symmetry relation for associative geometries from [25] implies that
in this case the map J has two “dual” aspects: as said above, it describes families
of symmetric spaces, but it also describes families of abelian torsors. Axiomatiz-
ing these features leads to our definition of “Jordan geometries”. This class not
only includes special geometries, but also exceptional ones, closely related to the
above mentioned Moufang planes, as well as the semi-exceptional case of projective
quadrics.

I'm well aware that all this may sound rather abstract to readers who are used
to the finite dimensional theory as presented in [B1], or in books on the particular
cases of symmetric cones and bounded symmetric domains. However, one should
not forget that such books either use the full apparatus of Lie theory, or of algebraic
groups or of general algebraic geometry, whereas the abstract approach is both self-
contained and much more general, which in fine makes it simpler. The particular
cases mentioned above, with their wealth of particular and detailed results, remain,
of course, important instances of the general theory — just as the theory of compact
Lie groups remains a central chapter in general Lie theory.

2.9. A “Jordan dictionary”. References: [15, 21, O4, O7|. — Given that there is
an equivalence of categories between Jordan algebraic structures and Jordan geome-
tries, one may start to construct a “dictionary” — in analogy with the famous “Lie
group-Lie algebra dictionary” — translating algebraic properties from Jordan theory
into geometric properties which “globalize” them. Writing such a dictionary is by
no means an automatic translation procedure: in most cases one needs genuinely
new ideas and concepts; for reasons of time, this work is only in its very beginnings:

2.9.1. Inner ideals and intrinsic subspaces. Inner ideals play an important role in
Jordan theory, and in [21], with Harald Lowe, we define their geometric counterpart,
which we call intrinsic subspaces. Whereas ordinary subspaces “look linear from
inside”, the intrinsic ones “look linear both from the inside and the outside”.

2.9.2. Duality and self-duality. Duality is a fundamental meta-concept in mathe-
matics. One of its main incarnations is duality of vector spaces and another, closely
related, is duality in projective geometry. There is a profound link beween these
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concepts and Jordan-theory: vector spaces in duality (V,V’) are generalized by
Jordan pairs (V*, V7). Likewise, in geometry, the duality of projective spaces is
generalized by duality of Grassmannians. Inside the category of Jordan pairs, we
find again the one of usual (unital) Jordan algebras: they correspond to Jordan
pairs having invertible elements. Now, to complete our dictionary, we ask: among
the geometries corresponding to general Jordan pairs, what is the geometric charac-
terization of the geometries corresponding to unital Jordan algebras? Answer [15]:
they are the self-dual geometries among the general Jordan geometries. The concept
of self-duality is quite subtle, so we shall just give an example: every Grassmannian
Gras, 4(K) of p-spaces in KP*9 is isomorphic to its dual Grassmannian Gras, ,(K);
but only for p = ¢ there is a canonical isomorphism (since then they are “the same”;
for p = 1 it may be realized by the canonical symplectic form on K?). Correspond-
ingly, only for p = ¢, the Jordan pair of rectangular matrices (M, ,(K), M, ,(K))
comes from a Jordan algebra of square matrices. Geometrically, the self-dual spaces
are sort of generalized projective lines.

2.10. Models of Jordan geometries. References: [18], [O7, O9]. — Let’s now
make a junction with the topics from Chapter 1: with Karl-Hermann Neeb, we have
shown in [18, 20] that, under suitable assumptions, Jordan geometries are infinite
dimensional manifolds with smooth structure maps; in particular, all symmetric
spaces arising in this context are “smooth symmetric spaces”. On the analytic
side, at this occasion the calculus from [17] was developed (see Chapter 1), and on
the geometric level, we needed to construct a “universal” model for the abstractly
defined Jordan geometries. This construction is of independent interest.

2.10.1. The projective geometry of a Lie algebra. This is the title of our paper [18]
— its core is the study of the interplay between graded and filtered Lie algebras:
the space of all 3-filtrations of a Lie algebra is a model for a Jordan geometry, such
that the important transversality relation is modelled by a natural transversality of
filtrations — two 3-filtrations are transversal if, and only if, they fit together to a
grading. This leads to a very nice “universal model of Jordan geometries”, giving
explicit formulae for many of the abstractly defined objects and mappings. In the
subsequent part [20] this is used to show that structure maps are smooth and their
domains of definition are open.

2.10.2. Higher graded analogs. References: [16], thesis of Julien Chenal. — In his
phd-thesis, Géométries lices aur algebres de Lie graduées (arxiv), Julien Chenal has
shown that the construction of a Jordan geometry out of a Lie algebra generalizes
to higher Z-graded Lie algebras: one works with filtrations and grading of length
n, and again it can be used to construct smooth geometries associated to such
algebras. However, the geometric structure living on these spaces is much more
complicated, and, for the time being, we are quite far from understanding them
fully. The only case — apart from Jordan geometries — where a lot of work has been
done, is the 5-graded case, which is related to Freudenthal’s magic square — see [16]
for an overview.
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2.11. Symmetric spaces. References: [B1, B2|, [11, 22, 28, 29], thesis of Manon
Didry. — I have used above, at several occasions, the term “symmetric space”,
without really saying what I mean by this. In the tradition of Helgason’s important
book, most mathematicians think here of Riemannian symmetric spaces. However,
I speak of general symmetric spaces; and in my general expositions of this subject
in [B1, B2], T strongly advertise the beautiful approach given by Ottmar Loos in
his book Symmetric Spaces I (Benjamin, 1969) — it turned out to be best suited for
generalizing symmetric spaces both into the direction of infinite dimension and of
general base fields and -rings: see [B2], Chapters 1.5 and V.

Since my phd-thesis (see Chapter 3), much of my work is related to “symmetric
spaces with additional structures”. This is the point of view explained in [B1], [11],
[03]. Naturally, this leads to study general symmetric spaces, with the question
in mind: which symmetric spaces do carry a “Jordan structure”? in other words,
which are in the image of the Jordan-Lie functor [B1]? Here are two themes that
arise in this context:

2.11.1. Symmetric bundles. Reference: [24], thesis Manon Didry. — In her phd-
thesis Structures algébriques sur les espaces symétriques (see paper [24]), Manon
Didry studies symmetric bundles: these are “vector bundles in the category of sym-
metric spaces”, the geometric analog of the algebraic concept of “representation”.
Whereas every symmetric space admits an “adjoint symmetric bundle”, the Jordan
symmetric spaces also admit another, “twisted” symmetric bundle structure on the
tangent bundle.

2.11.2. Homotopy, contractions and deformations. References: [22, 28, 29]. — A
feature that clearly distinguishes “Jordan symmetric spaces” is that they come in
large families, which I call homotopes. The most conceptual and abstract version of
this has been explained above: Equation (2.5) defines families of products (xyx) s,
parametrized by pairs (a,b). My first approach to this, in [22], was more com-
plicated, but also more explicit. In a series of two papers [28, 29] with Pierre
Bieliavsky, we classify such homotopes for the classical Jordan-symmetric spaces.
The list is very long, and it can be seen as a sort of “analytic continuation” of
Berger’s famous list of simple symmetric symmetric spaces: namely, it shows that
Berger’s discrete list really is part of some “continuous list” of spaces. The first part
[28] gives an elementary and computationally very efficient construction of spaces
by commuting pairs of involutions, and in the second part [29] we show that the list
thus obtained is complete, by reducing the classification problem to an equivalent
one on classification of inner ideals (see above).

2.12. Liouville type theorems. References: [T2], [B1], [3, 4, 7, 15], [O1, O3].
— Starting with my phd-thesis, my first work on the geometry of Jordan algebras
was concerned with a local differential geometric characterization of the “conformal
group” of a Jordan algebra. There is a classical theorem of Liouville on conformal
mappings which can be seen as a particular instance of my general theorem from [3],
saying that the conformal group of a (simple) Jordan algebra (of dimension bigger
than 2) is generated by the translations, the structure group, and the Jordan inverse
map. Liouville’s classical theorem concerns the case V' = R™ with positive definite
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scalar product, where Jordan inversion essentially is inversion with respect to the
unit sphere. When R" carries a Lorentzian metric, the theorem serves to determine
the causal group of Lorentz space — a topic developed in [4] in greater generality.

In [7] and [B2], I present this theorem in a version that unifies it with another
classical theorem: the (second) fundamental theorem of projective geometry, in its
differential geometric version, saying that a local diffeomorphism preserving seg-
ments of straight lines must come from the (real) projective group (if the dimension
is bigger than 1). Whereas the Liouville theorem deals with unital Jordan algebras,
the fundamental theorem deals with Jordan triple systems: it arises for the triple
system R"™ of column matrices.

Jordan geometries, and in particular, projective spaces and conformal spheres,
are prime examples of parabolic geometries, and the differential geometric meth-
ods used in the theorems quoted above fit in the approach of considering them as
“conformally flat models” of general Cartan geometries. Certainly, using Jordan
geometric methods, the analysis of Cartan geometries having such model spaces
could be developped in great generality.

2.13. Back to physics ? References: [20, 23], [O8]. — At the end of this chapter,
be it permitted to add some words that surely can be qualified as “speculation”: a
more or less daring guesswork as an indispensable source of inspiration. As I told at
the beginning of this chapter, Jordan algebras owe their existence to physics; and
also the Lie group-Lie algebra correspondence has become a fundamental tool in
theoretical physics. Therefore, I wonder what role the Jordan geometry-Jordan al-
gebra correspondence, or other “coquecigrue-algebra correspondences”, might play
in foundations of physics? I have been thinking about such questions for quite a
while: maybe these things play no role whatsoever, but maybe they do — I have
written up some arguments supporting the latter option, in [23] and [O8]. For a
mathematician, the most convincing argument may be that, once you have realized
that certain structures are natural and belong to fundamental mathematics, it is
hard to believe that Nature did not “use” them.” For other people, probably this is
no argument at all, but I have no other one, and all I do in loc. cit. is to unfold it:
mathematically, if usual quantum mechanics can be formulated as a linear theory
(an aspect stressed by Penrose in loc. cit.) in the linear Jordan algebra of observ-
ables, and if you have an equivalence of categories of these Jordan algebras with
some non-linear and geometric category, then you can “translate” linear quantum
mechanics into a “non-linear” and geometric theory (as I said above, writing such
a “dictionary” is not a simple and automatic translation). Doing so might fill a
certain “gap” (also pointed out by Penrose, and by many others): it is unsatisfac-
tory that of the two theories that revolutionized physics in the beginning of the
20-th century, general relativity and quantum mechanics, the first is geometric and
non-linear, whereas the second is linear and ungeometric. This seems to be the
main reason why they appear to be incompatible in their present form. Of course
I know that it sounds utopian to propose a “coquecigrue-algebra” correspondence
as a tool of attack to this problem; but, since Non-commutative Geometry has

7 See Roger Penrose, Road to Reality, Section 34.2, for a thorough development of this phrase.
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been proposed as such a tool, shouldn’t it be possible that, taken together, these
two “complementary paradigms” (see Section 2.4 above) may help to draw a more
complete picture?

3. HARMONIC ANALYSIS

References: theses [T1, T2], papers [1, 2, 5, 8, 9, 10, 12]. — This work is more or
less directly related to my phd-thesis [T2], and I have not been actively working in
this direction for more than a decade. For this reason, I will only give some short
comments, complemented by (very uncomplete) links to newer developments. If
time is permitting, I would certainly like to return to work on these topics — the
domain of representation theory and harmonic analysis on (semisimple or reductive)
Lie groups and their homogeneous spaces contains so much beautiful and deep
mathematics; however, personally, I feel that I would like to have more profound
answers to the general questions outlined in the preceding two chapters, before
turning to more specialized topics.

3.1. Gottingen. I started mathematical research in Gottingen by reading Helga-
son’s books and by writing a Diplom thesis on a paper by Gestur Olafsson and Bent
Orsted, The holomorphic discrete series for affine symmetric spaces, I.

3.2. Paris. The principal topic of my phd-thesis dealt with a problem of “analytic
continuation of spherical harmonic analysis” between a compact symmetric space
and its non-compact dual, both seen as certain real forms of their common com-
plexification. I obtained results for the rank-one case (published in [2, 5]) and for
the case of symmetric cones [1]. In particular, the result in the latter case can be
seen as a non-commutative generalization of Ramanujan’s master theorem. Quite
recently, a result for the general case (confirming conjectures from my thesis) has
been obtained in the paper Ramanujan’s Master Theorem for Riemannian sym-
metric spaces by Angela Pasquale and Gestur Olafsson, who subsequently further
generalize their result in the framework of the hypergeometric Fourier transform.
The result for symmetric cones has, simultaneously, also been obtained by Ding.
Gross and Richards.

3.3. Clausthal. Parallel to geometric topics related to my habilation thesis, I in-
vestigated, with Joachim Hilgert who worked at that time at Institut fiir Mathe-
matik TU Clausthal, questions in representation theory and harmonic analysis on
symmetric spaces. Throughout, our point of view is as geometric as possible (e.g.,
explaining coincidences of function spaces by looking at them as spaces of sections
of vector bundles, [8], [10]). The topics of duality (compact vs. non-compact, com-
pactly causal vs. non-compactly causal,...), and of analytic continuation, already
present in my thesis, re-appear in various settings [9]. Especially in [9], we de-
velop a fairly complete Jordan-theoretic approach to harmonic analysis on certain
symmetric spaces that can be obtained by involutions of Jordan algebras. By now,
Jordan theory is a frequently used tool in representation theory and harmonic analy-
sis — the literature is far too rich for even trying to give here some sample links. The
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interested reader may do her own web-search by typing keywords such as “(general-
ized) Maslov index”, “minimal representations”, “analysis on symmetric domains”,
to realize that research in this realm is ongoing and active.

4. ON TEACHING AND RESEARCH

In an official research report, I would not talk about teaching mathematics — espe-
cially in France, where we have a strict organizational separation between research
business (“laboratoire”) and teaching business (“département d’enseignement”). In
the French system, investing your time in teaching has no payoff whatsoever for your
career, and mentioning teaching questions in research work is considered as being
not serious. In Germany, there used to be a tradition of marrying teaching and
research — e.g., the already mentioned books by Hilbert-Cohn Vossen, Laugwitz or
Courant-Robbins, which influenced very much my view on these things, stand for
this tradition. I don’t know if the German system still allows for such luxury goods;
the French certainly does not, but nevertheless I would not like to seperate my own
research from the question how its results can be communicated to non-specialists,
that is “taught”. After all, mathematics is produced and receipted by human brains,
and therefore the question “how do human brains digest mathematics?” should be
of considerable interest, both practically and theoretically.

Be it a pure coincidence or not, the research topics outlined in Chapters 1 and 2
correspond precisely to the two main courses of mathematics as taught in the Ger-
man (or at least: Gottingen) undergraduate curriculum: Differential and Integral
Calculus and Linear Algebra and Analytic Geometry.

4.1. Linear and affine algebra and geometry. References : [13, 33], [02, O9].
— Geometry is the big looser in all recent reforms of mathematical curriculae in
French high-schools and universities. No surprise, our students find linear algebra
a hard and difficult matter, as they no longer have the slightest geometric intuition
for understanding it. I don’t know if ever the tide will change, but here are three
remarks or proposals that, maybe, could be useful.

4.1.1. Use of dynamical software. 1think that the use of dynamical software such as
GeoGebra offers very interesting possibilites to do “linear geometry” — see [33] and
Section 2.5 above; as mentioned there, I did some “travaux pratiques” with high
school students based on this. It would be worth trying out to combine systemat-
ically the first course in linear algebra with “travaux pratiques” using dynamical
geometry software. In this first step, one should only use the “linear” or “lattice”
operations (intersection, line through two points), and only later, when introducing
metric notions, add other operations of Euclidean geometry.

4.1.2. Affine spaces and “affine algebra”. On the theoretical level, the usual ap-
proach to “affine spaces” makes things unneccessarily complicated and theoretical
— in France, the topic is considered to be difficult and hence is taught (in Nancy)
not before the 4th semester of studies! It is quite instructive to compare the Fng-
lish and the French wikipedia pages on “affine spaces”: the French approach is
very formal and notationally confusing by its heavy use of the traditional arrow-
notation. I propose in a short note that you can find here to turn the informal
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description from the English page into a rigourous mathematical definition, and to
do affine geometry by what I call “affine algebra”. In [13], I explain that this idea
can be continued further, to do projective geometry by “projective algebra”. This
has many advantages, all related to its excellent categorical properties (see below).
Moreover, it leads to a nice and transparent construction of the “universal space”,
and, preparing for more advanced topics, it naturally opens a conceptual view on
torsors, principal bundles and related topics.

4.1.3. “Reasonable” use of categories. 1 think that a “moderate use” of categorical
notions is beneficial for teaching maths: it seems to me that a “categorical” view of
mathematics is one of the ways the humain brain digests mathematics — you need
not anew re-state and re-write a lot of definitions, once the general organizational
pattern is sufficiently clear. In this respect, a big advantage of the approach on
affine spaces mentioned above is that it automatically leads to a nice category of
affine spaces: in this respect, the usual, “hybrid”, definition of affine spaces is rather
bad, and students do not really see what lesson it tells you. Similar things can be
said about topological differential calculus, compared to the usual “metric” one
(see below). At present, the tide is very much against abstract concepts and in
favor of applications and techniques; to some extent, this is a reaction to certain
exaggerations of the past; but, as often, people tend to throw out the baby with
the bathwater.

4.2. Differential and integral calculus. References: [B2, B3]. — Much has al-
ready been said above and in [B3] — especially referring to teaching in France —,
and I shall not repeat this here. Instead, two side remarks:

4.2.1. A cultural remark. It is quite amazing how stable certain “cultural tradi-
tions” are in our globalized world, where everything seems to change so quickly.
For instance, in France the topic of “développement limité” is considered very im-
portant when teaching analysis — but it is not even translated into any other lan-
guage! In Germany (and elsewhere, I guess) it is merged into the topic of Taylor
series. Perhaps the reader may find illuminating the discussion I give in [B3], of
the relation of these concepts with each other (and with the topic of analytic func-
tions, Chapter XVI in [B3]). Another French (and certainly Bourbaki) tradition is
to teach several variable analysis in general Banach spaces, since this is conceptual
and base-free. Although I appreciate thinking in concepts, the example illustrates
very well that the choice of concept is never totally innocent: here, it clearly is a
choice for a category of “metric” differential calculus, and hence closes the door for
explaining to students the idea of “topological” differential calculus.

4.2.2. Categories: bis. The categories defined by topological differential calculus are
much nicer and more natural than those obtained by “metric” calculus. Without
turning lectures into category courses, one can explain that this has numerous
advantages: the biggest is certainly to have a single concept covering real, complex,
p-adic, and many other more “exotic” instances of differential calculus, manifolds,
Lie groups, and so on. I also hope that “conceptual” differential calculus may help to
“tame” n-fold categories, which are considered even by specialists to be a difficult
topic. At the end, a conceptual and categorical approach to differential calculus
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should give new strength to the vision of Charles Ehresmann of a conceptual and
algebraic approach to the whole of differential geometry.

5. ON MATHEMATICS IN FRANCE

Without falling into paralyzing pessimism, one may say that the present situation
of mathematics in France is quite bad and becomes worse every year. There are
not enough students, except for some elite-schools, and both research and teaching
at universities suffer under hypercentralized bureaucracy and desastrous political
decisions. National and European politicians, who have no idea what science is, put
big money on certain domains they consider to be socially and economically useful,
by cutting off everywhere else. This is, of course, a far too big topic — I should come
back to this elsewhere.

In spite of this bad situation, it is important to encourage young people to learn
mathematics. Maths still is one of the best ways of keeping your mind fit and of
protecting it against pollution by the huge clouds of spam floating around every-
where. If, by chance, the reader were in the situation wanting to start a phd thesis
on one of the domains described above, s-he may write me an e-mail.

W.B., Nancy, march 2017
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