
SOME REMARKS ON TEACHING MATHS:
TORSORS AND PRINCIPAL EQUIVALENCE RELATIONS

WOLFGANG BERTRAM

In our note on teaching affine spaces, the ternary map S(a, b, c) = a− b+ c was
one of the main actors. In the present note, we discuss its analog for general groups
G (written multiplicatively): to keep notation light, we abbreviate

(abc) := S(a, b, c) := ab−1c, (0.1)

and we call the map G3 → G, (a, b, c) 7→ (abc) the torsor law of G. We shall
explain that torsors are for groups what affine spaces are for vector spaces: they
are “groups with origin forgotten”. The torsor law can be characterized by two
identities: para-associativity (PA), and the idempotent law (IP):

(PA) (xy(zuv)) = (x(uzy)v) = ((xyz)uv),
(IP) (xxy) = y, (wzz) = w.

Indeed, checking that these laws give back a group with law xz = (xyz), for fixed y,
is a nice exercice for a first course in abstract algebra. As in the case of affine spaces,
the approach via a ternary map has clear advantages when introducing categorical
notions. In a second step, the same procedure leads to a (in my opinion) much
nicer formulation of the notion of (abstract) principal bundle: one works again with
a ternary product (xyz), which now is not everywhere defined – it is only defined
if x and y belong to the same equivalence class of some equivalence relation a; the
whole thing we call a principal equivalence relation (prev) (see [36]).

The only serious problem arising in this context is terminology: unfortunately,
there is no universally adopted convention for fixing the name of the child – what we
call here “torsor” can be found on the wikipedia page under the title heap. Earlier
terms are flock and pregroup. As mentioned there, Boris Schein also proposed the
term groud (which I used with Kinyon in a first version of [25]); but for various
reasons this term has not been generally accepted. An equivalent term is principal
homogeneous space, which is a bit clumsy and long. Thus we follow here the
popularization by John Baez and use the term “torsor”. One advantage is that one
can easily add the prefix “semi-”, or create other composed terms.

1. Torsors

Definition 1.1. A torsor is a set M with a map M3 → M , (x, y, z) 7→ (xyz)
satisfying (PA) and (IP). A torsor is called commutative if, moreover, (xyz) =
(zyx) for all x, y, z ∈ M . A morphism of torsors is a map f : M → M ′ between
torsors commuting with structure maps: f((xyz)) = (f(x) f(y) f(z))′.

Lemma 1.2. Let G be a group with group law (x, y) 7→ xy and unit e. Then G
with ternary law G3 → G, (x, y, z) 7→ xy−1z is a torsor.
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Proof. Direct check – exercise! �

Lemma 1.3. Assume M is a torsor. Then, for each element y ∈ M , the law
xz := (xyz) is a group law on M with unit element y.

Proof. Exercise: from (PA) we get associativity, from (IP) that y is neutral. To
prove existence of inverses, check that u := (yxy) satisfies (uyx) = y = (xyu). �

Theorem 1.4. The constructions from the preceding two lemmas are inverse to
each other.

Proof. One direction is trivial: starting with a group, constructing a torsor, we end
up with the same group. To prove the other direction, start with a torsor M , fix
o ∈ M and define the law [xyz] := xy−1z associated to the group (M, o). One has
to show that (xyz) = [xyz], that is, (xyz) = ((xo(oyo))oz). To prove this, apply
(IP) several times. �

Theorem 1.5. The preceding constructions define equivalences of categories be-
tween groups and torsors with base point, and between “groups after forgetting their
origin” and torsors. Here, commutative groups correspond to commuative torsors.

Proof. Just note that any morphism of groups preserves also the ternary product,
and conversely a torsor morphism is such that, for any y ∈ M fixed, the map
f : (M, y)→ (M ′, f(y)) is a group morphism. �

Example 1. The empty set is a torsor (the axioms do not require that a point
exists). The theorem has to be suitably interpreted, in this case.

Example 2. If A and B are two sets, then the set Bij(A,B) of bijections A → B
with law (fgh) := fg−1h, becomes a torsor. Of course, it may be emtpy.

Lemma 1.6. The torsor axioms (PA) ∧ (IP) are equivalent to (Ch) ∧ (IP):

(Ch) left Chasles relation: (xy(yuv)) = (xuv), and
right Chasles relation: ((xyz)zv) = (xyv);

(IP) idempotency: (xxy) = y = (yxx).

Proof. (IP) ∧ (Ch) implies (PA): (xy(uvw)) = ((xyu)u(uvw)) = ((xyu)vw), and
conversly (IP) ∧ (PA) implies (Ch) by taking y = z. �

Definition 1.7. In a torsor M we define maps Lx,y, Rz,y and Mx,z : M →M by

Lx,y(z) := Rz,y(x) := Mx,z(y) := (xyz),

called left, right and middle translations.

Using this notation, we rewrite (PA), (IP) and (Ch) in terms of left translations:

(PA’) Lxy ◦ Lzu = Lx,Lu,z(y) = LLxyz,u,
(IP’) Lx,x = idM , Lw,z(z) = w,
(Ch’) Lx,y ◦ Ly,u = Lx,u and Lx,y = LLx,y(z),z.

Theorem 1.8. Torsors are equivalent to principal homogeneous spaces:

(1) Let M be a torsor. Then the set L(M) = {Lx,y | x, y ∈ M} of all left
translations is a group acting simply transitively on M .
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(2) Conversely, a simply transitive group action G×M →M gives back a torsor
structure on M , via (xyz) = λx,y(z), where λx,y ∈ G is the unique element
such that λx,y(y) = x.

Proof. (1) From (IP’) and (PA’) we see that L(M) is a group. Fixing an origin
e ∈ M , this is the usual group of left translations on the group (M, e), and one
proves as usual that it acts simply transitively.

(2) Since λx,y ◦ λy,u sends u to x, we get the first relation of (Ch’), and since λx,y
sends z to λx,y(z), we get the second one. (IP) is obvious, hence, by Lemma 1.6,
we get a torsor. �

Moreover, L(M) acts by torsor automorphisms on M : this follows from

(xy(uvw)) = ((xyu)vw) = ((xyu)(yx(xyv))w) = ((xyu)(xyv)(xyw)).

2. Semitorsors

By definition, a semitorsor is a set M with a tenary map satisfying just (PA), but
not necessarily (IP). They are for torsors what semigroups are for groups: fixing
the middle element y, the law xz := (xyz) is a associative. However, it is in general
not possible to recover the ternary law from this product, nor is there an analog of
Lemma 1.6. The main example one should have in mind is an analog of the one
given above: if A and B are two sets, then the set M of all binary relations between
A and B, with law coming from relational composition and reverse relations via
(RST ) := R ◦ S−1 ◦ T, is a semitorsor, but not a torsor. See [25] for more on this.

3. Principal equivalence relations (prev’s)

A principal equivalence relation (abbreviated: prev) is an equivalence relation on
a set M that “acts” on M (from the left, or from the right), as follows:

Definition 3.1. An equivalence relation on M is a subset a ⊂M2 such that:

(1) ∀x, y ∈M : (x, y) ∈ a⇔ (y, x) ∈ a
(2) ∀x, y, z ∈M : (x, y) ∈ a, (y, z) ∈ a⇒ (x, z) ∈ a
(3) ∀x ∈M : (x, x) ∈ a.

Given such a, we define the left domain DL
a and the right domain DR

a ⊂M3 by

DL
a := a×M = {(x, y, z) ∈M3 | (x, y) ∈ a}, DR

a := M × a.

Recall that, given a, there is a quotient space M/a and a canonical projection
M → B := M/a, sending x to its equivalence class [x] = [x]a.

Definition 3.2. A (left, resp. right) principal equivalence relation on M is an
equivalence relation a on M together with partially defined ternary product maps,

M3 ⊃ DL
a →M, (x, y, z) 7→ (xyz),

M3 ⊃ DR
a →M, (x, y, z) 7→ (xyz),

respectively, such that the following holds:

(1) if (x, y) ∈ a and (u, v) ∈ a, then also (u, (xyv)) ∈ a (resp.: (u, (vyx)) ∈ a),
(2) the para-associative law (PA) is satisfied,
(3) the idempotent law (IP) is satisfied.
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Condition (1) guarantess that, if all terms on the right hand side of (PA) are defined,
then so are all terms on the left hand side, and hence it makes sense in (2) to require
that equality holds. The following lemma is proved like Lemma 1.6 above:

Lemma 3.3. A (left) prev on M can, equivalently, be defined by requiring that (1)
and (Ch) and (IP) hold. Similarly for right prev’s.

Definition 3.4. In a left prev, we define left translations for (x, y) ∈ a by

Lx,y : M →M, x 7→ Lx,y(z) := (xyz).

Similarly, right translations are defined in right prev’s.

Lemma 3.5. In terms of left translations, a left prev can be characterized as follows:

(1) each equivalence class [u]a is preserved under left translations Lx,y,
(2) Lx,y ◦ Lz,u = Lx,Lu,z(y) = LLxyz,u,
(3) Lx,x = idM and Lx,y(y) = x.

Proof. This is just a rewriting (see (PA’) and (IP’) above). �

Theorem 3.6. If a is a left prev on M , then the set of left translations

G := L(M,a) := {Lx,y | (x, y) ∈ a}
is a group that preserves equivalence classes of a and acts simply transitively on each
fiber. In other words, (M,G,M/a) is an abstract (left) principal bundle (where
“abstract” means that no topological conditions are imposed). Conversely, given
an abstract (left) principal bundle (M,G,B), the equivalence relation given by the
projection M → B and the law

(xyz) := λx,y(z),

where g := λx,y ∈ G is the unique element such that g.y = x, defines a left prev.

Proof. The arguments from the proof of Theorem 1.8 apply, mutatis mutandis. �

Remark on morphisms. Morphisms of prev’s are defined in the obvious way
(maps preserving equivalence relation and ternary product). The definition of mor-
phisms of principal bundles is less pleasant; but I hope the reader will see that the
correct definition is equivalent to the one of prev-morphism. Thus, finally, we get
an equivalence of categories between prev’s and principal bundles.

4. Assocoids

The postfix “-oid” signalizes that an algebraic structure need not be defined
everywhere. In [36], I define an associoid to be a set with partially defined ternary
product satisfying (PA) and (IP). Besides left or right prevs, the most important
examples come from groupoids: considering the not everywhere defined ternary
map (gh) = gf−1h on a groupoid, we get what Anders Kock calls a pregroupoid.
For instance, the set of local bijections f : A ⊃ U → U ′ ⊂ B between A and
B with product (fgh) = fg−1h defined if these three maps are composable, is a
pregroupoid. This may be a topic for another note.
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