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For every affine space A over a field K, there is a vector space Â, together with
a canonical imbedding A ↪→ Â, having the universal property that affine maps
f : A → B canonically extend to linear maps f̂ : Â → B̂:

A
f→ B

↓ ↓
Â

f̂→ B̂

(0.1)

The brute-force construction Â := A ⊕ K is unnatural since it requires the choice
of a base point in A. A natural construction of this universal space is described in
Chapter 3 of Marcel Berger’s book “Geometry I”. Berger qualifies this “a rather
technical chapter”. We would like to convince the reader that this need not be
so, and that, by the way, we get a little bit more than what is usually mentioned:
namely, the universal space is not only a vector space, but it is also, in a canonical
way, a semigroup, and the maps f̂ are, automatically, semigroup morphisms. Al-
though this property may be “folklore”, it seems that it has never really attracted
attention – my interest in this property arose from my joint work with Michael
Kinyon on associative geometries (see description of my research topics). The pre-
sentation given here is motivated by Section 1 of my paper [13], but is different and
more general.

1. Construction of the universal space

As in the preceding note on affine spaces, we take the point of view that an affine
space A over K is the same thing is a linear space over K with two structure maps,
S(a, b, c) = a − b + c and Pr(b, c) = (1 − r)b + rc. Since this causes no extra cost,
we allow K to be an arbitrary base ring with unit 1. By “linear space over K” we
mean left K-modules. Translations and translation group are defined by

Ta,b : A → A, x 7→ Ta,b(x) := S(a, b, x),

Tran(A) := {f : A → A | ∃u, v ∈ A : f = Tu,v}. (1.1)

The homothety with center b and ratio r is

ra : A → A, x 7→ ra(x) = Pr(a, x), (1.2)

and we denote by Ha, resp. H, the sets of homotheties

Ha := {ra | r ∈ K},

H(A) :=
∪
a∈A

Ha. (1.3)
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Note that Ha is a semigroup for usual composition, but H(A) is not. We denote by
Dil(A) the dilation semigroup which is the subsemigroup of Map(A,A) generated
by H(A) and Tran(A):

Dil(A) := ⟨H(A),Tran(A)⟩ (1.4)

Recall finally that the set of self-mappings Map(A,A) is an affine space, with respect
to pointwise defined structure maps. Since it has a canonical base point (the identity
map idA), it is in fact a K-module.

Theorem 1.1. The dilation semigroup Â := Dil(A) is an affine subspace of Map(A,A)
containing idA, hence is a linear subspace. With respect to the imbedding

A → Dil(A), a 7→ 0a,

it has the universal property (0.1). Moreover, there is a unique affine map

κ : Dil(A) → K such that κ(ra) = r, κ(Tb,c) = 1,

which admits the following splitting: for any choice of base point o ∈ A, Tran(A)
and Ho are submodules of Dil(A) whose sum is direct,

Dil(A) = Tran(A)⊕Ho.

Proof. Let g ∈ Dil(A). Because of the relation

ra ◦ Tb,c = Tra(b),ra(c) ◦ ra,
we can write g = T ◦ h where T is a translation and h a composition of elements of
H(A). With respect to some base point o ∈ A, we have

ra ◦ sb(x) = (1− r)a+ r(1− s)b+ rsx = T ′ ◦ (rs)o(x)
with some translation T ′, which shows that g can be written as g = T ′′ ◦ ro, so

Dil(A) = {Tb,o ◦ ro | b ∈ A, r ∈ K}.
The set of such mappings is obviously stable under the pointwise ternary operations
on mappings S(f, g, h) = f − g+h, Pr(g, h) = rg+(1− r)h (since this independent
of base point in Map(A,A), one may do the computation with respect to the “un-
natural” but more usual base point 0o, instead of the natural one). Thus Dil(A) is
a linear space, and with respect to 1o, Tran(A) and Ho are obviously direct sum-
mands. The map κ then can be defined as projection onto the second factor, and
it is necessarily of this form. Moreover, the map A → Dil(A), a → 0a is affine:

S(0a, 0b, 0c)(x) = 0a(x)− 0b(x) + 0c(x) = a− b+ c = 0S(a,b,c)(x),

Pr(0b, 0c)(x) = (1− r)0b(x) + r0c(x) = (1− r)b+ rc = 0Pr(b,c)(x).

To finish the proof, let us now prove the universal property. Assume f : A → B
is an affine map. We claim that there is a unique linear map f̂ : Dil(A) → Dil(B)
such that

f̂(ra) = rf(a), f̂(Tb,c) = Tf(b),f(c).

Indeed, if h(x) = rx + b, after temporary choice of a base pont o ∈ A and o′ :=

f(o) ∈ B, the map h 7→ f̂(h) defined by (f̂(h))y := ry+f(b), is linear since, for the
direct sum decompositions with respect to o and o′ it is given by the block matrix(
f 0
0 1

)
, and it sends ra to rf(a) and Tb,o to Tf(b),o′ = Tf(b),f(o), as required. Taking
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r = 0, we see that f̂ extends f in the sense of Diagram (0.1). Finally, f̂ preserves

the canonical base points: 1o is sent to 1o′ , hence f̂ linear with respect to them. □

Remark. If K is commutative, then homotheties are affine maps A → A, and
hence Dil(V ) is contained in the semigroup Aff(A,A) of affine self-maps of A.

2. Case of a (skew) field

If K is a (skew) field, then for every r ̸= 1, the map f(x) = rx + b has a fixed
point p, namely p = (1− r)−1b, and hence f = rp ∈ H(A). Thus

Dil(V ) = H(A) ∪ Tran(A), H(A) ∩ Tran(A) = {idA}.
Here is a figure: level sets of κ are horizontal lines, indexed by their level κ(h); the
translation group corresponds to level 1, whereas the canonical copy of A has level
0 (red). If 2 is invertible in K, the set with level −1 also has nice properties: it
realizes A as a set of point reflections (a point a is identified with its point reflection
(−1)a) which form a symmetric space.

b
1o = idA

b
0o b

0aκ = 0

b
2a b

2oκ = 2

Tran(A)

b
0b

b
2b

b
(−1)o

b
(−1)b

b
(−1)aκ = −1

Ha
Hb Ho

Next, we show that the complement of the red line is the group of invertible dilations:
its group structure is canonical with respect to the given data:

3. On the semigroup structure of the universal space

Definition 3.1. We let

Dil×(A) := κ−1(K×) = {Tb,o ◦ ro | b ∈ A, r ∈ K×}.

Theorem 3.2. If A,B are affine spaces over K and f : A → B is an affine map,
then its linear prolongation f̂ : Dil(A) → Dil(B) is a semigroup morphism, and so
is the canonical map κ : Dil(A) → K. It follows that Dil×(A) is a group, and that

the restriction of f̂ to Dil×(A), is a group morphism.
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Proof. Let g, h ∈ Dil(A). Fix a base point o ∈ A and let o′ := f(o) ∈ B and write
g(x) = sx+ w, h(x) = rx+ v, so g ◦ h(x) = srx+ (sv + w), whence

(f̂(g ◦ h))(y) = sry + f(sv + w).

Since f : (A, o) → (B, o′) is linear, we have f(sv+w) = sf(v)+f(w). On the other

hand, (f̂(g))(y) = sy + f(w) and (f̂(h))(y) = ry + f(v), so

(f̂(g) ◦ f̂(h))(y) = s(ry + f(v)) + f(w) = sry + f(sv + w) = (f̂(g ◦ h))(y),
and f̂ is a semigroup morphism. Taking for f the “final map” A → {0}, we see

that κ = f̂ is a semigroup morphism. The rest follows from this. □
Proposition 3.3. Left and right translations of the semigroup Dil(A) are affine
maps, and the ternary product (xyz) := xy−1z on the group Dil×(A) is given by a
rational formula. As a group, Dil×(A) is a semidirect product of Tran(A) with K×.

Proof. Identifying Â = A⊕K with respect to the origin 0o, the formula g ◦ h(x) =
srx+ (sv + w) translates to

(w, s) · (v, r) = (sv + w, sr) = s(v, r) + (w, 0) = s((v, r)− (0, 1)) + (w, s)

or: xz = z2(x − y) + z. All these are ways to write the product on the semidirect
product Tran(A)⋉K×. For the inverse of x in Dil×(A) we get x−1 = 1

x2
((0, 1)−x)+x,

which taken together leads to

(xyz) =
z2
y2
(x− y) + z.

This proves the claims. □

4. One step further

Now let us go the other way round: instead of Â, consider some linear space W
together with a non-trivial linear form ϕ : W → K. The reader may prove by direct
computation that, for e with ϕ(e) = 1 fixed,

x ·e z := ϕ(z)(x− e) + z

is a group law on W× := ϕ−1(K×), and more generally, the ternary product

(xyz) =
ϕ(z)

ϕ(y)
(x− y) + z,

defines a torsor structure on W×. But what is much more remarkable, the ternary
product may be defined by the simple geometric (lattice-theoretic) formula given
here (Section 2.5), or in [33] or there. Seen projectively, this translates as follows:
The set obtained by taking off two hyperplanes from a projective space carries a
canonical torsor structure; this structure can be defined in purely geometric terms.
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