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0. Introduction

In this work we study the interplay of Lie- and Jordan theory on an algebraic and on a
geometric level. We intend to continue it to a systematic study of the role Jordan theory plays
in harmonic analysis. In fact, the applications of the theory of Jordan algebras to the harmonic
analysis on symmetric cones (cf. the monograph [FK94]) were at the origin of the author’s work
in this area. Then Jordan algebras turned up in the study of many causal symmetric spaces
(see Section XI.3), and soon it became clear that “generically” all symmetric spaces have a
significant relation to Jordan theory. Since Jordan theory does not (yet) belong to the standard
tools in harmonic analysis, the present text is designed to provide a self-contained introduction
to Jordan theory for readers having some basic knowledge on Lie groups and symmetric spaces.
Our point of view is geometric: throughout we introduce first the relevant geometric structures
and deduce from their properties algebraic identities for the associated algebraic structures. Thus
our presentation differs from related ones (cf. e.g. [FK94], [Lo77], [Sa80]) by the fact that it is
nearly computation-free. Let us give now an overview of the contents. See also the introductions
given at the beginning of each chapter.

0.1. Lie algebras and Jordan algebras. If we decompose the associative product of
the matrix algebra M(n,R) in its symmetric and skew-symmetric parts,

XY =
XY + Y X

2
+
XY − Y X

2
, (0.1)

then the second term leads to the Lie algebra gl(n,R) with product [X,Y ] = XY − Y X , and
the first term leads to the Jordan algebra M(n,R) with product X · Y = 1

2 (XY + Y X).
Of fundamental importance in modern mathematics is the correspodence between Lie

algebras and Lie groups: there is a functor which we call the Lie functor for Lie groups assigning
to a Lie group its Lie algebra, and every (real, finite dimensional) Lie algebra belongs to some Lie
group. One may ask whether there is also a Jordan functor: can we find a “global” or “geometric”
object to which a given Jordan algebra is associated in a similar way as a Lie algebra to a Lie
group?

0.2. Lie triple systems and Jordan triple systems. Lie groups are generalized by
symmetric spaces. Correspondingly, Lie algebras are generalized by Lie triple systems (abbre-
viated LTS; cf. Def. I.1.1) which are nothing but the curvature tensor of a symmetric space,
evaluated at the base point. For example, when we consider a Lie group as a symmetric space,
we consider its Lie algebra as a LTS with the triple Lie bracket

[X,Y, Z] :=
1
4

[[X,Y ], Z]. (0.2)

The category of connected simply connected symmetric spaces is equivalent to the category of
(real, finite dimensional) Lie triple systems. This point of view has been systematically developed
in the monograph [Lo69a]. (We give a summary of the basic facts in Chapter I.)
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Just as Lie algebras are generalized by Lie triple systems, Jordan algebras are generalized
by Jordan triple systems (abbreviated JTS; cf. Def. III.2.5). For instance, the space M(n,R)
with the triple product

T (X,Y, Z) = XY Z + ZY X (0.3)

is a JTS. More generally, if x · y denotes the product of a Jordan algebra V , then

T (x, y, z) := 2(x · (y · z)− y · (x · z) + (x · y) · z) (0.4)

defines a Jordan triple product on V . Again one may ask whether there is a Jordan functor for
Jordan triple systems: is a JTS associated to a geometric object, just as a LTS is associated to
a symmetric space?

0.3. Symmetric cones, bounded symmetric domains, symmetric R-spaces and
“Makarevič spaces”. The problem of defining a “Jordan functor” is of considerable interest
because it is related to many topics in geometry and harmonic analysis on symmetric spaces.
Let us illustrate this by recalling some important special cases in which such a functor is indeed
known:

(a) By a result due to M. Koecher and E.B. Vinberg, Jordan algebras satisfying a certain
positivity condition (called formally real in [BK66] and Euclidean in [FK94]) correpond bijectively
to symmetric cones which are an important generalization of the cone of symmetric positive
definite matrices (cf. [FK94]). More general Jordan algebras (the semisimple ones) correspond
to other classes of non-convex cones which have been characterized in various ways; one of the
earliest versions of these concepts is the notion of ω -domain in [BK66]. However, it seems that
the first attempt to find a geometric object associated to a general Jordan algebra is the one
proposed by the author in [Be94] (cf. Chapter II).

(b) From the point of view of harmonic analysis, symmetric cones are very interesting
spaces (see [FK94]). Another particularly interesting class of symmetric spaces are the Hermitian
symmetric spaces. This is a class of symmetric spaces admitting an invariant complex structure,
generalizing the classical hyperbolic plane. M. Koecher discovered some thirty years ago an
“elementary” approach to these spaces by Jordan theory (cf. [Koe69a,b]); the theory was
developed more systematically by O. Loos ([Lo77]) who called the algebraic objects equivalent
to bounded symmetric domains positive Hermitian Jordan triple systems. Some parts of this
approach became known to a wider range of people working in harmonic analysis by the book of
I. Satake [Sa80].

(c) Symmetric R -spaces have been defined in [Tak65] as symmetric spaces which can also
be written as a quotient of a semisimple Lie group by a parabolic subgroup; in particular, they
are compact. It turns out that they are precisely the real forms of the compact Hermitian
symmetric spaces, and they correspond bijectively to positive or compact Jordan triple systems
(cf. [Lo85]). Yet another characterization of these spaces is due to D. Ferus ([Fe80]): they
are precisely the “immersed symmetric submanifolds” in Euclidean space; prime examples are
the n -sphere and the orthogonal group in their usual realizations. This leads to what is called
by Ferus the “extrinsic theory of symmetric spaces”, namely the study of their realizations as
submanifolds. Compared with the intrinsic theory, the second fundamental form comes in as
an additional structure. This extrinsic approach was generalized by H. Naitoh ([Nai83]) to the
pseudo-Riemannian case. His “pseudo-Riemannian symmetric R -spaces” correspond bijectively
to Jordan triple systems with some invariant non-degenerate form. Although we will mainly
be interested in an “intrinsic theory”, it is worth remarking here that Jordan structures (unlike
Lie structures) usually have several “different” geometric interpretations. The interplay between
“intrinsic” and “extrinsic” theory leads to interesting and mainly unsolved geometric problems
(see Chapter XI).

(d) A crucial point for the author’s investigations was a paper by B. O. Makarevič ([Ma73])
where “open symmetric orbits in symmetric R -spaces” were classified. The most important class
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of these orbits is defined by a construction using Jordan-algebras; in [Be96b] we called such
spaces Makarevič spaces and subsequently used them in the study of geometry and harmonic
analysis on some symmetric spaces, in particular on some causal symmetric spaces (cf. [Be98a],
[BeHi98]). However, the main lack in the concept of Makarevič spaces was that they were defined
by a construction and not by an intrinsic characterization. This was overcome in [Be97b] where
we replaced the notion of Makarevič spaces by the more general and more conceptual notion of
symmetric spaces with twist. They are precisely the geometric objects corresponding to general
Jordan triple systems, and the purpose of the present work is to develop their intrinsic theory in
this generality.

0.4. Symmetric spaces with twist and the Jordan-Lie functor: formal proper-
ties. A twist is an additional structure on a symmetric space. This additional structure can be
described in several ways. Before passing to a geometric description, let us first give its formal
properties: if a symmetric space with twist is a symmetric space with an additional structure,
then also a JTS must be a LTS with an additional structure. This is indeed true: every JTS T
defines a LTS RT via the formula

RT (X,Y, Z) := T (Y,X,Z)− T (X,Y, Z) (0.5)

(the notation RT for a LTS is used because of the close relation with the curvature tensor, see
above). The JTS T is called a Jordan extension of RT ; it is an additional structure on the LTS
RT . We call the correspondence

JTS → LTS, T 7→ RT (0.6)

the algebraic Jordan-Lie functor. This is the algebraic version of the forgetful functor from the
category of symmetric spaces with twist to the category of symmetric spaces which we call the
geometric Jordan-Lie functor. We visualize the situation by the following commuting diagram
of functors

JTS ← symmetric spaces with twist
↓ ↓

LTS ← symmetric spaces
(0.7)

where the left column is the algebraic and the right column the geometric Jordan-Lie functor.
The top line is the Jordan functor for Jordan triple systems and the bottom line is the Lie functor
for symmetric spaces. If we pass to the respective categories of germs of symmetric spaces, then
the top and the bottom line become equivalences of categories. The diagram (0.7) summarizes
the formal relations between Jordan- and Lie structures.

It is interesting to note the formal analogy of the additional structure given by a twist T on
a symmetric space with the additional structure given by an affine connection ∇ on a manifold
M : having in mind that R := RT is the curvature tensor of the associated symmetric space,
formula (0.5) can also be written

R(X,Y ) = T (Y,X)− T (X,Y ). (0.8)

This formula has a striking similarity with the formula

[X,Y ] = ∇XY −∇YX (0.9)

expressing the Lie bracket of vector fields on a manifold having the additional structure of a
torsionfree affine connection ∇ .
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0.5. Twisted complexifications and para-complexifications. Geometrically, the
additional structure given by a twist on a symmetric space M can be interpreted as a twisted
complexification or a twisted para-complexification of M . In order to illustrate what this means,
consider the example of the real projective space M = RPn which is a symmetric space M =
O(n+ 1)/(O(n)×O(1)). It has a natural complexification given by the complex projective space
CPn = U(n+ 1)/(U(n)× U(1)). We call this complexification “twisted” in order to distinguish
it from the “straight” complexification MC = O(n+ 1,C)/(O(n,C)×O(1,C)). Every symmetric
space M = G/H has (locally) a unique straight complexification MC = GC/HC . In contrast,
twisted complexifications are an additional structure of a symmetric space which in general need
neither exist nor be unique. Another important example is given by the general linear group
M = Gl(n,R) considered as a symmetric space. It has a twisted complexification given by the
space Gl(2n,R)/Gl(n,C) of complex structures on R2n .

If one replaces the condition J2 = −1 in the definition of a complex structure by J2 = 1 ,
one arrives at paracomplex structures or polarizations. A tensor field of this kind defines a
product structure on the tangent spaces of a manifold. Again we distinguish “straight” and
“twisted” polarizations. Straight polarizations lead to the trivial situation of a global direct
product structure, whereas twisted polarizations lead to an interesting class of symmetric spaces
(already investigated by S. Kaneyuki, cf. [KanKo85]) which as manifolds have locally, but not
globally a product structure. A familiar example of such a space is the one-sheeted hyperboloid
M = SO(2, 1)/ SO(1, 1) where the two transversal families of straight lines define the local
product structure. One can speak of straight and twisted para-complexifications; the former are
just direct products, and the latter are in a sense equivalent to twisted complexifications. For
example, the twisted para-complexification of Gl(n,R) equivalent to the twisted complexification
described above is the space Gl(2n,R)/(Gl(n,R)×Gl(n,R)) of para-complex structures on R2n .

The formal definition of “straight” and “twisted” is given in terms of the curvature tensor
R and the invariant almost complex structure J of the complexified space (Chapter III; cf. Def.
III.2.1).

0.6. Classification; existence and uniqueness problem. We now face two problems:
Existence problem: when does a symmetric space admit a twisted complexification?
Uniqueness problem: if a symmetric space admits twisted complexifications, how many in-
equivalent ones are there?

Equivalently, which Lie triple systems lie in the image of the Jordan-Lie functor (0.6), and
what do the fibers of this functor look like? General answers to these problems are not known,
and we are invited to speculations. The best one could expect is that the Jordan-Lie functor can
be imbedded into an exact sequence of functors which encodes in a sense the deeper algebraic
relations between Jordan- and Lie structures.

For the time being, we can give partial answers by classification of simple real Lie- and
Jordan triple systems. They are surprising enough: every irreducible symmetric space of classical
type admits a twisted complexification; the number of inequivalent twisted complexifications is
either 1,2 or 3, and in “most” cases it is 1. As for the exeptional irreducible symmetric
spaces, the situation is less clear. For example, an exceptional Lie group never admits a twisted
complexification. Thus we arrive at the surprising conclusion that a Lie group is “classical” if
and only if admits a twisted complexification. The algebraic version of all of these statements
goes back to the classification of simple JTS by E. Neher ([Ne85]). We present another type of
classification which is influenced by the paper of B.O. Makarevič [Ma73] mentioned above (Ch.
IV and XII). For every classical irreducible symmetric space, we specify all twists in all three
aspects: Jordan extension, twisted complexification and para-complexification. In our opinion,
this classification is much more appealing than the classification of irreducible symmetric spaces
given by M. Berger ([B57]) because Jordan theory provides a means to understand the wealth of
symmetric spaces, whereas Lie theory alone does not provide a satisfying organization principle.
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0.7. Conformal group, Liouville- and Fundamental theorem. Symmetric spaces
with twist have a rich geometric structure incorporating many elements of classical geometry
which cannot be understood in the framework of general symmetric spaces. An important
feature of symmetric spaces with twist is the existence of a conformal group which is much
bigger than the “affine group” G appearing in the expression M = G/H . For instance, if
M = O(n + 1)/(O(n) × O(1)) is the real projective space, then the conformal group coincides
with the usual projective group P Gl(n+1,R) operating on M , and if M = SO(n+1)/ SO(n) is
the n -sphere, then the conformal group coincides with the classical “conformal group” SO(n +
1, 1) operating conformally on M in the usual sense. Classical results of geometry allow to
characterize these groups: the projective group is precisely the group preserving “collinearity”
(the fundamental theorem of projective geometry), and the classical conformal group is precisely
the group preserving the Riemannian metric up to a scalar function (Liouville 1850). The
conformal group in our general set-up is (in the irreducible case) characterized by a similar
theorem which has aspects of both of the classical theorems mentioned above. It takes various
interesting forms in other particular cases; for example, it contains the determination of the causal
group of special relativity and of the causal group of the de-Sitter and the anti de-Sitter model
of general relativity. In fact, the determination of the causal groups of some causal symmetric
spaces was one of the starting points of the author’s investigations ([Be96a], [Be96b]).

0.8. Algebraic structures of symmetric spaces with twist. In general a Lie group or
a symmetric space is only locally determined by its Lie algebra resp. its LTS, and the canonical
chart of a symmetric space, namely the exponential map, is only a locally defined diffeomorphism
which is in general neither surjective nor has dense image.

For symmetric spaces with twist the situation looks much better: to any JTS belongs one
globally symmetric space with twist (which is defined using the theory of the conformal group),
and this space is entirely determined by its JTS (Chapter IX). Besides the exponential map, this
space has another canonical chart which we call Jordan coordinates. It is a bijection between
an open dense part of a vector space V (possibly non-connected) and an open dense part of
the space. This chart is the true generalization of the celebrated Harish-Chandra imbedding of a
Hermitian symmetric space whose most elementary example is the hyperbolic plane, imbedded
as the unit disc in the complex plane.

Compared with the usual exponential map, Jordan coordinates have many surprising
features. They are all related to the fact that Jordan coordinates are algebraic, whereas the
exponential map is only analytic. Thus, if M0 = G/H is the identity component of the global
space associated to a JTS, then elements of the group G are represented in Jordan coordinates
V by algebraic (i.e. birational) maps. Even more, the whole algebraic structure of the global
space can be described by a rational analog of the Campbell-Hausdorff formula. Recall that the
usual Campbell-Hausdorff formula expresses the group multiplication on a neighborhood of the
unit element of a Lie group in terms of the exponential map. It is a complicated analytic, but
non-algebraic formula. Generalizing the theory of Lie groups, the theory of symmetric spaces
M can be based on a multiplicaton map µ : M ×M →M replacing the group multiplication of
a Lie group ([Lo69a]; cf. Section I.4). Using the Campbell-Hausdorff formula, it is possible to
find an analytic and local formula for the map µ expressed in exponential coordinates; we may
call this a “Campbell-Hausdorff formula for symmetric spaces”. In contrast to this situation, the
expression for the multiplication map µ in Jordan coordinates is algebraic and global (it holds
almost everywhere). Summing up, the global space comes together with a natural algebraic
atlas such that the multiplication map is algebraic; we propose to call such spaces real algebraic
symmetric spaces (Def. I.4.4). The space M itself is described in Jordan coordinates by algebraic
conditions of the form

{x ∈ V | detB(x, x) 6= 0}, (0.10)
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where
B : V × V → End(V ), (x, y) 7→ B(x, y) (0.11)

is a polynomial map which plays an important role; we call it the Bergman operator because of
its close relation with the Bergman kernel function in the case of a Hermitian symmetric space
in Harish-Chandra realization.

Thus the integration of the infinitesimal theory to a local and global theory can be pushed
much further for Jordan structures than for Lie structures. In this sense our approach follows
the original line of Sophus Lie’s investigations: understand the geometric and algebraic context
in order to integrate differential equations.

0.9. The problem of the relations between algebras and triple systems. The
intrinsic theory of symmetric spaces with twist leads automatically to the extrinsic theory: every
such space has (by a construction following the one of D. Ferus in [Fe80]) a realization as a
“symmetric submanifold” in a vector space. This realization is very similar to a realization of
certain symmetric spaces studied first by K.H. Helwig ([Hw70]); let us call these spaces “Helwig
spaces” (cf. Section II.4). Classification shows that “generically” both realizations coincide. It
seems to be a quite hard problem to understand why this is the case. The algebraic heart of
the problem is the relation between Jordan algebras and triple systems (Ch. XI): in the Lie
category, it is almost trivial that triple systems have always a faithful imbedding into algebras as
−1-eigenspaces of an involution. In the Jordan category, the corresponding statement is false (cf.
[LoM77]), but “generically” it is true. Classification shows that a slightly modified construction
is always possible, although no general proof for this fact is known. We call this the extension
problem for Jordan triple systems. On a geometric level, the imbedding of a triple system into
an algebra (with unit) corresponds to the realization of the corresponding symmetric space with
twist as a Helwig-space. These spaces have very nice properties: they are imbedded in a bigger
space similarly as orthogonal groups are imbedded in Gl(n,R); but as long as the extension
problem remains open, one cannot develop a really satisfying theory of these spaces.

User’s guide

We have divided the text into two parts: the first part (Chapters I – V) contains the
theory of the Jordan-Lie functor; the main results are contained in Chapter III. The second part
(Chapters VI – XI) contains the theory of the conformal group and of the global spaces; here the
main chapter is Chapter X. In this part, the integrability of invariant almost complex structures
and polarizations on symmetric spaces is used in an essential way, whereas in the first part only
ordinary tensor calculus together with some basic theory of symmetric spaces (reviewed in Ch.
I) is needed. This makes the theory presented in the first part very easy and general at the
same time. Thus the reader looking for a rapid and easy-to-read introduction to Jordan triple
systems and Jordan pairs should start by reading Chapter III and then take a glance at the other
chapters of the first part. If he is not interested in Jordan algebras, he may skip Chapter II since
the theory of Jordan algebras is treated independently of the other Jordan structures – in fact,
in this chapter the integrability is already used in a somewhat hidden way.

The material presented in the second part is considerably more complicated and more ad-
vanced. In Chapters VI and VII we present two different ways of using efficiently the integrability:
the approach in Chapter VI is direct; it leads rapidly to “integrated versions” of Jordan pairs and
Jordan triple systems. Chapter VII is independent of Chapter VI; it uses the integrability only
on the Lie algebra level and leads to a geometric version of the well-known Kantor-Koecher-Tits
construction. In Chapters VIII and X we develop the analog of this construction on the group
level and on the level of the symmetric spaces; thus the reader interested in the basic material
of the second part should read Chapters VII, VIII and X. Chapters VI, IX and XI contain sup-
plementary information on geometric and algebraic aspects of the theory and are independent of
each other.
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Finally, Chapter XII contains the classification and basic structural information on the
classical simple objects (Jordan algebras, -triple systems and -pairs and the corresponding sym-
metric spaces). We hope that this chapter turns out to be useful in particular for non-specialists
since most of the material can only be found in specialized literature and usually is not given in
the concise form of tables.

In the following the reader interested in special topics finds a short guide how to get quickly
to the main results:

- Jordan algebras: II, V.4, XI
- symmetric submanifolds (“extrinsic theory”): II.4, XI.4
- (pseudo-) Hermitian symmetric spaces: III.2, V.2, VI.1, X
- (generalized) tube domains: X.5, XI.2
- causal symmetric spaces: V.5, IX.2, XI.3
- polarized and para-Hermitian symmetric spaces: III.3, V.2, VI.2, VIII.3
- Jordan pairs and 3-graded Lie algebras: III.3, VII
- examples: I.6, IV.1, VIII.4, IX.2, X.2, XI.5; in particular:

- the general linear groups: I.6.1, IV.1.1, X.2.7, XI.5.1
- Grassmannians, projective spaces: I.6.3, IV.1.2, VIII.4.3, IX.2.1, IX.2.4, X.2.8, XI.5.1
- orthogonal groups and Lagrangians: I.6.4, IV.1.3, VIII.4.2, XI.5.2
- spaces of complex structures (“Siegel-spaces”): I.6.3, IV.1.1
- spheres, quadrics and hyperbolic spaces: I.6.6, IV.1.5, VIII.4.4, IX.2.3, XI.5.3

- classification and tables: IV.2, XII

Let us finally give some comments for the more expert reader. A big portion of the results
presented here is known and holds in most cases for quite general base fields or even base
rings. However, the method we use seems to be new: the traditional approach starts with an
axiomatic definition of some algebraic structure; next one derives by algebraic manipulations such
as “polarization” new, often very complicated, identities (“Just as in case of Jordan algebras, a
long list of identities is required...”; [Lo75, p. viii]); only then one can start to develop a “structure
theory”. We have tried to completely avoid this way of presentation by starting with geometric
concepts (symmetric spaces, Lie groups) and adding additional geometric features (polarizations,
almost complex structures). In our opinion, the clear distinction of the parts of the theory where
integrability is used and where it is not used is an important gain of this method: it shows that
certain identities belong to different parts of the theory – the reader may compare e.g. with the
presentation from [Sa80], where the integrability enters only in a rather hidden way in loc.cit. p.
59, or from [Lo77] where it is assumed from the very beginning by considering spaces realized as
bounded domains in some Cn . Indeed, our method not only permits to derive many of the known
identities in a geometric way, but it also permits to find new ones – which are so complicated
that without a geometric interpretation they would be ununderstandable (cf. Cor. X.3.3).

Whereas the first part is at the same time completely general and more “functorial” than
the usual approach (compare e.g. with [Sa80], where a in a sense “non-functorial” construction
is used which by chance in the semisimple case turns out to be functorial), we introduce in the
second part a slight restriction of generality: in Chapter XI we develop the global theory for
spaces associated to “faithful” Jordan triple systems; this includes the semisimple case and the
case of unital Jordan algebras. The assumption of faithfulness makes the exposition a bit less
technical; it means that the “dual conformal group” is faithfully represented by its action on the
original space – in the example of the projective spaces this means that there is a one-to-one
correspondence between elements g+ of the “original” projective group P Gl(V ) and elements
g− of the projective group P Gl(V ∗) of the “dual” projective space of hyperplanes in the given
space, and fixing such a correspondence defines an automorphism Θ of the projective group. If
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we dropped the assumption of faithfulness, then g+ no longer determines the pair (g+, g−), and
the whole theory has to be formulated by using pairs. This is indeed the natural formulation
in the context of Jordan pairs. However, in harmonic analysis we usually consider one space as
“given” and the other, “dual” one to be a space of certain important objects on the given one;
we did not want to lose this viewpoint in a more conceptual but too formal presentation.

For an algebraist, the main lack of our approach is certainly that it seems to be limited to
the case of the base field of the real or complex numbers, and for a geometer, that the “geometry”
mentioned in the title is really only “differential geometry”. Our only excuse is that the present
text is not meant to be the definite version of a theory but rather presents the author’s personal
and incomplete view on this rich field of mathematics – in the final Chapter XIII we give some
comments on further topics and generalizations of our approach.
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Chapter I: Symmetric spaces and the Lie-functor

There are four definitions of a symmetric space M :
(1) The global one: M = G/H is a homogeneous space, where H is essentially the group

of fixed points of an involution σ of a Lie group G .
(2) The infinitesimal one: M is a real manifold with a torsionfree affine connection ∇

whose curvature is covariantly constant: ∇R = 0.
(3) The mixed one: M is a real manifold with an affine connection ∇ such that the geodesic

symmetry sp with respect to any point p ∈M is an automorphism of ∇ .
(4) The algebraic one, which reflects axiomatically the properties of the map µ : M ×M →

M given by µ(x, y) := sx(y) with sx as in (3).

The definitions can be suitably modified in order to distinguish globally and locally sym-
metric spaces or to define germs of such. The definition (1) is used throughout in research texts
on harmonic analysis on symmetric spaces, and therefore we will take it as starting point for our
presentation, too. However, (1) is not really a definition of a symmetric space but rather of a
symmetric pair (G, σ,H) which is not the same thing. Thus for a rigorous theory of symmetric
spaces the best starting points are indeed (2) or (4). The purpose of this chapter is to explain
(1) – (4), to discuss the relations between the various definitions and to draw some consequences.
Since it is easy to work with (1), we start with this definition and describe in a self-contained
way how to arrive at (2) – (4). The converse in either case requires considerably more work, and
we refer to [Lo69a] and [KoNo69] for this.

Each definition leads to a certain notion of homomorphisms and thus to a category. The
category corresponding to (1) is given by symmetric pairs and homomorphisms of Lie groups
compatible with involutions; following Satake ([Sa80]) we call such homomorphisms equivariant.
The second definition clearly leads to the notion of a homomorphism of symmetric spaces as
a map which is affine (i.e. compatible) with respect to the respective connections. The third
definition does not lead to a clear decision between these two possibilities. The fourth definition
leads to an algebraic definition of homomorphisms; in [Lo69a] it is shown that for connected
spaces it is equivalent to the notion of affine homomorphisms from (2). The categories (1) and
(2) are not the same. Already the simple example of a vector space shows that to one space M
in the sense of (2) one may associate several symmetric pairs (G, σ,H): a “small one” where
G is just the translation group, and a “big one” where G is the full affine group of the vector
space. But what is more serious, even if one chooses always the “smallest pair” (G(M), σ),
one gets a bijection of objects of categories, but not of the corresponding homomorphisms: in
fact, the equivariant maps from (1) are always homomorphisms for (2), but the converse is false.
Geometrically, this corresponds to the fact that smooth maps of manifolds do in general not
induce homomorphisms of groups operating on them. From this point of view, it is remarkable
that for semisimple symmetric spaces both notions of homomorphisms are indeed equivalent (see
Ch.V, Th. V.1.9).
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More important than the notion of homomorphisms is the infinitesimal object associated
to a symmetric space with base point o ∈ M . In the case of definition (1), it is the Lie algebra
g of G together with the involution Teσ ; (g, Teσ) is called a symmetric Lie algebra. In the case
of definition (2) the associated infinitesimal object is the tangent space ToM , equipped with the
trilinear map Ro obtained by evaluating the curvature tensor R at o ; it is called the associated
Lie triple system of M . In both cases we have a natural notion of homomorphisms, such that the
infinitesimal object depends functorially on the category in question, and moreover, germs in the
respective categories are entirely equivalent to the corresponding infinitesimal objects. We call
the respective functors the Lie functors for symmetric spaces. Again the categories of symmetric
Lie algebras and of Lie triple systems are not equivalent, but in the semi-simple case they are.
For our purposes, the category of Lie triple systems is the “good” one.

Having defined the category of symmetric spaces and its homomorphisms, we are led – as
in the category of groups – to the notion of a representation as a realization of a symmetric space
as a space of invertible linear operators (Section 5). The experience shows that most symmetric
spaces come along with a “natural representation”. This is the guiding point of view for our
presentation of examples (Section 6).

1. Lie functor: group theoretic version

1.1. The Lie functor for Lie groups. A (real) Lie group G is a topological group
having the structure of a (real) differentiable manifold such that multiplication and inversion are
smooth maps. The Lie algebra g = Lie(G) is the space of left-invariant vector fields on G ; it
is stable under the usual Lie-bracket of vector fields. Evaluation at the unit element e yields a
vector space-isomorphism g→ TeG . Then the differential at e of a homomorphism of Lie groups
becomes a homomorphism of Lie algebras; thus we get a functor

Lie : G 7→ g = Lie(G)

which we call the Lie functor for Lie groups. It is well-known that for any finite-dimensional real
Lie algebra g one can find a (unique) connected simply connected Lie group G with Lie(G) = g ,
and that in this sense the Lie functor is an equivalence of categories. If we don’t want to use
connected simply connected groups, we can replace them by the category of germs of Lie groups.

Complex Lie groups are defined as the real ones, but using the structure of a complex
manifold instead of a real one. The corresponding Lie functor is a functor from complex Lie
groups to complex Lie algebras. We may consider complex Lie groups as real Lie groups with an
additional structure; thus we consider its Lie algebra as an algebra of real vector fields.

1.2. Symmetric pairs and equivariant maps. A symmetric pair (G, σ,H) is given by
a Lie group G , a non-trivial involution σ of G and an open subgroup H of the fixed point group
of σ . An equivariant map of symmetric pairs is a Lie group homomorphism respecting the given
involutions and subgroups.

The infinitesimal version of a symmetric pair is a symmetric Lie algebra (g, σ̇), i.e. a Lie
algebra g together with a non-trivial involution σ̇ of g . The corresponding homomorphisms are
Lie algebra homomorphisms commuting with the respective involutions; we call them equivariant.

It is clear that the Lie functor yields a functor from symmetric pairs to symmetric Lie
algebras, and on the level of germs of symmetric pairs it is an equivalence of categories. In this
context we speak also of the homomorphisms as germs of equivariant maps.

1.3. Symmetric spaces and Lie triple systems. Following definition (1) mentioned in
the introduction of this chapter, we say that, if (G, σ,H) is a symmetric pair, a (homogeneous)
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symmetric space is the associated homogeneous space M = G/H . The point o := eH ∈ M is
called the base point.

Every Lie group G can be considered as a symmetric space: let G × G act on G by
(g, h) · x = gxh−1 ; then G ∼= G ×G/dia , where dia = {(g, g)|g ∈ G} is the diagonal subgroup,
which is the fixed point group of the involution (g, h) 7→ (h, g).

The Lie functor for symmetric spaces is defined as follows: let g = h ⊕ q be the decom-
position of g = Lie(G) under the differential σ̇ of the involution σ at the origin. Since σ̇ is
an involution of g , the space h = gσ̇ is a subalgebra of g (it is the Lie algebra of H ), and the
−1-eigenspace q = g−σ̇ satisfies the rules [q, q] ⊂ h , [h, q] ⊂ q . This implies that

[[q, q], q] ⊂ q.

For X,Y, Z ∈ q we let

[X,Y, Z] := [[X,Y ], Z], R(X,Y )Z := −[X,Y, Z].

(In the next section we will interprete R as a curvature tensor.) Then for all U, V,X, Y, Z ∈ q
the following holds:

(LT1) R(X,Y ) = −R(Y,X),
(LT2) [X,Y, Z] + [Y, Z,X] + [Z,X, Y ] = 0,
(LT3) R(U, V )[X,Y, Z] = [R(U, V )X,Y, Z] + [X,R(U, V )Y,Z] + [X,Y,R(U, V )Z] .

In fact, (LT1) is clear, (LT2) is just the Jacobi identity and (LT3) means that R(U, V ) is a
derivation of the trilinear composition [·, ·, ·] : q × q × q → q . This follows easily from the fact
that ad[U, V ] is already a derivation of the bilinear composition g× g→ g , (X,Y ) 7→ [X,Y ] .

Definition I.1.1. A vector space q together with a trilinear map [·, ·, ·] : q×q×q→ q (which
is equivalent to a bilinear map R : q × q → End(q) defined by R(X,Y )Z = −[X,Y, Z]) having
the properties (LT1), (LT2) and (LT3) is called a Lie triple system (LTS). A homomorphism of
Lie triple systems is a linear map compatible with the respective triple products.

Summing up, we have associated to a symmetric space M = G/H a LTS q . (We follow
here a notation widely used, although the notation m instead of q would be more consequent.)

Example I.1.2. (The group case.) We realize a Lie group G as the symmetric space G =
G×G/dia as explained above. Its LTS q is

q = {(X,−X)|X ∈ g} ⊂ g× g.

It is often convenient to identify this space with g via X 7→ 1
2 (X,−X); in other words, the LTS

q is identified with the LTS defined on g by [X,Y, Z] = 1
4 [[X,Y ], Z] . (The factor 1

2 is necessary
in order to make this identification compatible with the evaluation of vector fields at the base
point; cf. Section I.4).

Theorem I.1.3. If q is a finite-dimensional real LTS, then there exists a connected simply
connected symmetric space M with associated LTS q .

Proof. First we associate a Lie algebra g to a LTS q : Let h := Der(q) ⊂ End(q) be the space
of derivations of the Lie triple product on q ; this is a Lie algebra. On the direct sum

g := Der(q)⊕ q

we define a bilinear product [·, ·] by

[F,H] := F ◦H −H ◦ F, [H,X] := HX, [X,H] := −[H,X], [X,Y ] := R(X,Y )
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for F,H ∈ Der(q), X,Y ∈ q . It clearly is antiymmetric and satisfies the Jacobi-identity because
of (LT2); thus g is a Lie algebra. Property (LT3) assures that [q, q] ⊂ h ; since [h, h] ⊂ h and
[h, q] ⊂ q are clear, the linear map

σ : g→ g, (H,X) 7→ (H,−X)

is an involution of the Lie algebra g such that the abstract LTS q is realized as the sub-LTS g−σ

of g .
Now let G be the unique connected simply connected Lie group with Lie algebra g and lift

σ to an involution σ of G . Then the fixed point group H = Gσ is connected (cf. [Lo69a]), and
M := G/H is a connected simply connected symmetric space; clearly its associated LTS is q .

Definition I.1.4. If q is a LTS, then the algebra

g(q) := [q, q]⊕ q ⊂ Der(q)⊕ q

(cf. the preceding proof) is called the standard-imbedding of q . If M = G/H is a connected
symmetric space and q the associated LTS, then we call g(q) the displacement algebra of M .
The expression M = G/H is called prime if G is a connected Lie group with Lie(G) = g(q).

The space M constructed in the proof of Theorem I.1.3 becomes unique if we require
M = G/H to be prime. As an example of a non-prime expression one may take a vector space
V written as a quotient V = Aff(V )/Gl(V ) of the affine group modulo the general linear group.
The prime expression is simply V = V/{0} .

It is not advisable to restrict attention only to connected simply connected symmetric
spaces. Therefore we will give a local version of the preceding theorem.

Definition I.1.5. An equivariant map of symmetric spaces is given by an equivariant map of
the corresponding symmetric pairs (cf. Section I.1.2). Two symmetric spaces are called locally
isomorphic if the associated germs of symmetric pairs are isomorphic. Germs of symmetric spaces
are the isomorphism classes of symmetric spaces under the equivalence relation given by local
isomorphism. Equivariant maps of germs of symmetric spaces are the equivariant maps of the
corresponding symmetric Lie algebras.

Theorem I.1.6.
(1) The map associating to a symmetric space its LTS induces a bijection from the class of

germs of symmetric spaces in prime expression onto the isomorphism classes of finite-
dimensional real Lie triple systems.

(2) The correspondence from (1) is a functor from the category of germs of symmetric spaces
and their equivariant maps onto the category of equivalence classes of Lie triple systems.

Proof. (1) The map is well-defined: if two symmetric spaces are locally isomorphic, then
clearly the associated Lie triple systems are isomorphic. We construct an inverse map: given
a LTS q , let M be the germ of the connected simply connected space defined in the previous
theorem. It is easily checked that both constructions are inverses of each other.

(2) If ϕ is an equivariant map, then the differential ϕ̇ is a homomorphism of symmetric
pairs; in particular, its restriction to q is a homomorphism of Lie triple systems.

The bijection from Part (1) of the preceding theorem is not an equivalence of categories. In
other words, the converse of statement (2) does not always hold. We will see in the next chapter
that LTS-homomorphisms are in fact equivalent to affine maps M →M ′ of germs of symmetric
spaces. In general, maps between manifolds do not induce homomorphisms of groups operating
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on them, and nor do affine maps of symmetric spaces. It is all the more remarkable that they
“nearly” do (cf. Prop. I.3.4 below).

1.4. Complex symmetric spaces and c-duality. Complex symmetric spaces are defined
similarly as real ones, but using complex Lie groups and holomorphic involutions. Complex
Lie triple systems are C -trilinear maps satisfying (LT1) – (LT3). Then the complex analog of
Theorem I.1.6 holds.

If g = h ⊕ q is the decomposition of a symmetric Lie algebra, then one defines the c-dual
symmetric Lie algebra as the subalgebra gc := h⊕ iq of the complexified Lie algebra gC = g⊕ ig .
If g is the real form of gC fixed under the conjugation τ , then gc is the real form fixed under
τσC = σCτ where σC is the C -linear extension of σ . Since [iX, iY, iZ] = −i[X,Y, Z] in gC , the
LTS iq is isomorphic to the LTS q equipped with the negative of its original Lie triple product.
The germs of the symmetric spaces M and M c corresponding to the pairs g and gc can be
considered as different real forms of the complex germ MC corresponding to the complex pair
gC = hC ⊕ qC . Note that (although c-dual LTS can be realized on the same vector space) there
exists no canonical realization (not even locally) of c-dual germs of symmetric spaces on the same
underlying manifold. However, there is an important special case in which such a realization (the
so-called Borel-imbedding) exists. This will be generalized in Section X.1.

2. Lie-functor: differential geometric version

2.1. The canonical vector field extension and the canonical connection of a
symmetric space. A vector field extension of a tangent vector v ∈ TpM is a vector field v
such that vp = v (Def. I.A.1). If M = G/H is a symmetric space (assumed to be connected)
and p ∈ M , then every tangent vector v ∈ TpM has a canonical vector field extension denoted
by lpv which is defined as follows: for p = g.o ∈M denote by g = hp ⊕ qp the decomposition of
the Lie algebra g of G w.r.t the involution σp := g∗ ◦ σ ◦ g−1

∗ (g∗(x) = gxg−1 ) of G . Then the
evaluation map

evp : qp → TpM, X 7→ Xp

is bijective (in fact, since G operates transitively on M , the map G → M , g 7→ g · p is a
submersion; i.e. g→ TpM , X 7→ Xp is surjective, and hp is its kernel). We denote by

lp : TpM → qp ⊂ X(M)

its inverse; then lpv clearly is a vector field extension of v . Next we use the canonical vector
field extension in order to define the canonical connection of a symmetric space (cf. Appendix B
to this chapter for definition and elementary properties of affine connections on real manifolds).

Proposition I.2.1. Let M be a symmetric space and lp be defined as above. Then the formula

(∇XY )p := [lp(Xp), Y ]p, (X,Y ∈ X(M))

defines a torsionfree connection on M .

Proof. The defining relations of a connection are immediately verified. In order to prove that
the torsion tensor T∇(X,Y ) = ∇XY −∇YX − [X,Y ] vanishes at an arbitrary point p ∈M , we
use the tensor nature of T∇ : w.l.o.g. we may assume that X = lpXp , Y = lpYp . Inserting this
in the formulas for T∇ and ∇ , we get

(T∇)p(Xp, Yp) = (∇XY )p − (∇YX)p − [X,Y ]p = [X,Y ]p − [Y,X]p − [X,Y ]p = 0

since [X,Y ] ∈ hp and thus [X,Y ]p = 0.
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(Remark: The principle of the proposition can be generalized – in fact any affine connection
can be defined by a formula of the kind (∇XY ) = [lpXp, Y ]p with a suitable family (lp)p∈M of
vector field extensions defined by adapted vector fields, cf. [Hel78, p.36], [Lo69a, p.105].)

Recall from Appendix B.4 that a diffeomorphism g is called affine if g∗∇ = ∇ , and a
vector field X is called affine if X · ∇ = 0.

Lemma I.2.2. The group G is a group of affine diffeomorphisms, and the Lie algebra g is a Lie
algebra of affine vector fields w.r.t. the canonical connection defined in the previous proposition.

Proof. The second statement is just the differentiated version of the first one, which is proved
by a straightforward calculation, using that lgp(Tpg ·Xp) = g∗(lpXp):

((g∗∇)XY )p = Tg−1pg · (∇Tg−1pg·Xpg
∗Y )g−1p

= Tg−1pg[lg−1pTg−1pg ·Xp, g
∗Y ]g−1p

= Tg−1pg[g∗(lpXp), g∗Y ]g−1p

= (g∗[g∗(lpXp), g∗Y ])p
= [lpXp, Y ]p = (∇XY )p.

2.2. The curvature tensor and the Lie functor. We continue to assume that M is a
homogeneous symmetric space and ∇ its canonical connection defined by Prop. I.2.1.

Lemma I.2.3. The covariant derivative of a tensor field S is given by

(∇XS)p = ((lpXp) · S)p,

where Z · S is the ordinary Lie derivative.

Proof. Recall from [Hel78, p.42] that the covariant derivative ∇X is uniquely determined by
its values on X(M) and on C∞(M) and by the property that it is a derivation of the mixed tensor
algebra preserving types and commuting with contractions. It is clear that the right hand side of
the stated formula has these properties; it coincides with the covariant derivative on X(M) and
on C∞(M) and thus coincides with the covariant derivative on the whole tensor algebra.

Lemma I.2.4. For all smooth functions f on M , p ∈M and X,Y ∈ qp ,

(∇df)(X,Y )p = (∇df)(Y,X)p = (XY f)(p),

(∇∇df)(X,Y, Z)p = (XY Z f − [Y, [X,Z]] f)(p).

Proof. By the rules of the covariant derivative, (∇df)(X,Y ) = (XY −∇XY )f (cf. Appendix
B.2), and (∇df)(X ⊗ Y − Y ⊗X) = T∇(X,Y )f . Thus the first equation follows from the fact
that ∇ is torsionfree. For the second one, we use directly the definition of ∇ in Prop. I.2.1:

(XY −∇XY )p = (XY )p − [X,Y ]p = (XY )p

since [X,Y ]p ∈ hp = 0. Using the same argument and Lemma I.2.3 along with lpXp = X , we
get further

(∇∇df)(X,Y, Z)p = Xp(∇df)(Y,Z)− (∇df)p([lpXp, Y ]p ⊗ Zp + Yp ⊗ [lpXp, Z]p)
= (X(Y Z −∇Y Z))pf + 0
= (XpY Z − [X,∇Y Z]p)f
= (XpY Z − [Y, [X,Z]]p)f.
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For the last equality we have used that X ·∇ = 0 (Lemma I.2.2; note that X ∈ g), and therefore

[X,∇Y Z]p = (∇[X,Y ]Z +∇Y [X,Z])p = 0 + [lpYp, [X,Z]]p = [Y, [X,Z]]p.

In a more global way, the preceding lemma may be written

(∇df)(X,Y )p = (∇df)(Y,X)p = Xp(lpYpf),

(∇∇df)(X,Y, Z)p = Xp(lpYp ◦ lpZp)f − [lpYp, [lpXp, lpZp]]pf

for all X,Y, Z ∈ X(M) and p ∈ M . These formulas permit to calculate the curvature tensor
R(X,Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z (cf. Appendix B.3).

Corollary I.2.5. The curvature tensor at p ∈M is given by

(R(X,Y )Z)p = −[[lpXp, lpYp], lpZp]p.

Proof. For any torsionfree connection we have the equation

(∇∇df)(X ⊗ Y ⊗ Z − Y ⊗X ⊗ Z) = −R(X,Y )Z · f,

cf. Appendix B.3. By the preceding lemma, the left hand side, evaluated at p for X,Y, Z ∈ qp ,
equals

(XY Z − Y XZ)p − ([Y, [X,Z]]− [X, [Y,Z]])p = [X,Y ]p ◦ Z − [[Y,X], Z]p = [[X,Y ], Z]p,

whence (R(X,Y )Z)p = −[[X,Y ], Z]p .

Comparison with the definition of the associated LTS of a symmetric space shows now that
the curvature tensor at a fixed point defines a LTS on the corresponding tangent space. If we
fix a base point o , then the Lie functor from the preceding section can now be interpreted as
assigning to M the tangent space ToM together with the Lie triple product −Ro .

Proposition I.2.6. The curvature tensor is covariantly constant:

∇R = 0.

Proof. From the equation g∗∇ = ∇ it follows immediately that g∗R = R . This holds for all
g ∈ G , and differentiating we obtain X ·R = 0 for X ∈ g . But then, using Lemma I.2.3,

(∇XR)p = (lpXp ·R)p = 0

since lpXp ∈ qp ⊂ g .

Definition I.2.7. A manifold M with an affine connection ∇ is called affine locally symmetric
if ∇ is torsionfree and the condition ∇R = 0 holds.

Summing up, we have shown that every symmetric space with the canonical connection
from Prop. I.2.1 is an affine locally symmetric space. Conversely, every affine locally symmetric
space is locally isomorphic to a symmetric space (cf. [KoNo69, Ch.XI., Th.1.1 and Th.1.5],
[Lo69a, Th.II.4.9]).

2.3. Homomorphisms of symmetric spaces.
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Definition I.2.8. A homomorphism of symmetric spaces is a smooth map between symmetric
spaces which is affine w.r.t. the corresponding canonical connections (cf. Def. I.B.7); if the
spaces in question have base points, then homomorphisms are required to preserve them. Homo-
morphisms of germs of symmetric spaces are defined as germs of homomorphisms of symmetric
spaces.

Since the composition of affine maps is again affine, symmetric spaces and germs of sym-
metric spaces with their homomorphisms form a category.

Theorem I.2.9.
(i) The category of connected simply connected symmetric spaces with base point is equivalent

to the category of finite dimensional real Lie triple systems. The equivalence is given by
evaluating the curvature tensor at the base point.

(ii) The category of germs of symmetric spaces is equivalent to the category of finite dimensional
real Lie triple systems.

Proof. Evaluation of the curvature at the base point is a functor since affine maps are
compatible with the respective curvature tensors. According to Theorem I.1.3, for any LTS
(q, Ro) we can find a connected simply connected symmetric space whose curvature tensor has
value Ro at the base point. This space and the corresponding germ are uniquely determined
by Ro . It only remains to be shown that any LTS-homomorphism ϕ̇ : ToM → To′M

′ has an
extension to an affine map ϕ : M →M ′ of the corresponding (germs of) symmetric spaces.

In [Lo69a, Th.II.4.6] (cf. also [Hel78, Lemma IV.1.2]) it is proved that, since ϕ̇ is compatible
with the respective curvature tensors, the formula

ϕ(Exp v) := Exp′(ϕ̇v)

(where Exp and Exp′ are the exponential maps of ∇ resp. ∇′ at o resp. o′ ) defines a local
extension of ϕ̇ to an affine map. This proves part (ii). In order to prove part (i), one shows that,
if M is connected simply connected, ϕ extends to a global affine map M → M ′ (cf. [Lo69a,
Th.II.4.12]).

Corollary I.2.10. Any automorphism of a LTS q has a unique extension to an automorphism
of the corresponding germ of a symmetric space.

Corollary I.2.11. Under the correspondence (ii) of the preceding theorem, equivariant maps
of germs of symmetric spaces are precisely the LTS-homomorphisms q→ q′ having an extension
to a Lie algebra homomorphism g(q)→ g(q′) of the corresponding standard-imbeddings.

3. Symmetries and the group of displacements

We are going to explain definition (3) of a symmetric space mentioned in the introduction
of this chapter.

Lemma I.3.1. If M = G/H is a symmetric space, then the symmetry

so : M →M, g.o 7→ σ(g).o

is an automorphism of M .

Proof. We note first that so is well-defined; in fact, σ(gh).o = σ(g).o for all h ∈ H . Now
the property so(g.x) = σ(g).so(x) shows that so is equivariant. According to Cor. I.2.11, it is a
homomorphism M →M .
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The symmetry sp w.r.t. the point p = g.o ∈M is defined by

sp = g ◦ so ◦ g−1;

it is again affine w.r.t. the canonical connection. It is an extension of the tangent map −1p :=
− idTpM in the sense of Definition I.A.1.

Theorem I.3.2. For an affine connection ∇ on a manifold M the following are equivalent:
(1) ∇ is affine locally symmetric (cf. Def. I.2.7).
(2) For all p ∈M the tangent map −1p extends to a locally defined affine diffeomorphism sp

of M .
Proof. Assume (2) holds. Since sp is affine, the induced action (sp)∗ of sp on the mixed
tensor algebra preserves the torsion, the curvature R and the tensor field ∇R . In particlar,
the tangent map Tp(sp) = −1p is an automorphism of these tensor fields at the point p . The
induced action of −1p on a tensor Sp : ⊗k(TpM)→ ⊗lTpM is given by

−1p · S = ⊗l(−1p) ◦ Sp ◦ ⊗k(−1p) = (−1)k+lSp.

If S is the torsion tensor, then l = 1, k = 2, and thus −1p preserves Sp iff Sp = 0, and similarly
with S = ∇R ( l = 1, k = 4). Since this holds for all p ∈M , it follows that ∇ is torsionfree and
that ∇R = 0, whence (1).

Assume (1) holds. Since clearly −1p is an automorphism of Rp , Cor. I.2.10 shows that
−1p has an extension to a local affine diffeomorphism.

Definition I.3.3. If M is a symmetric space, the group G(M) generated by all spsq ,
p, q ∈M , is called its group of displacements.

Proposition I.3.4. Assume M = G/H is a connected globally symmetric space such that G
acts effectively on M . Then G(M) is a subgroup of G acting transitively on M . Its Lie algebra
is the standard imbedding [q, q]⊕ q of the associated LTS q .
Proof. If p = g.o, q = h.o , g, h ∈ G , then

spsq = gsog
−1hsoh

−1 = gσ(g)−1σ(h)h−1 ∈ G.

Taking q = o and g = exp(X), X ∈ q , we get spso = exp(2X), proving that exp(q) ⊂ G(M).
Moreover, since the subgroup generated by exp(q) is transitive on M , it is easily seen that
G(M) is this subgroup (and is thus transitive on M ). On the other hand, standard arguments
(cf. [Lo69a, Lemma I.3.2]) show that the analytic subgroup of G whose Lie algebra is the
standard imbedding of q is the group generated by exp(q) and is thus equal to G(M).

As pointed out already several times, homomorphisms of symmetric spaces do in general
not induce homomorphisms of the corresponding groups of displacements, but a weaker statement
holds:

Proposition I.3.5.
(i) If ϕ : M →M ′ is a homomorphism of symmetric spaces, then for all p ∈M ,

ϕ ◦ sp = sϕ(p) ◦ ϕ.

(ii) If ϕ : M → M ′ is a homomorphism of connected symmetric spaces and g ∈ G(M) , then
there exists g′ ∈ G(M ′) such that

ϕ ◦ g = g′ ◦ ϕ.

Proof. (i) Both sides of the stated equation are affine maps sending p to ϕ(p) and having
tangent map −Tpϕ at p . By the uniqueness of affine extensions, they coincide.

(ii) Just write an element of G(M) as a composition of symmetries and apply (i).
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Note that the decomposition of an element g ∈ G(M) is not unique, and therefore the
element g′ from part (ii) is in general not uniquely determined. If it is unique for all g , then it
follows immediately that g 7→ g′ is indeed a well-defined homomorphism G(M)→ G(M ′). The
failure of uniqueness can in the general case be measured by introducing the group

G(ϕ) := {(g, h) ∈ G(M)×G(M ′)| ∀x ∈M : ϕ(g.x) = h.ϕ(x)} ⊂ G(M)×G(M ′).

Part (ii) of the preceding proposition says that projection onto the first factor yields a surjection
of G(ϕ) onto G(M).

Finally we mention that the map sp can be interpreted as geodesic symmetry w.r.t. the
point p . Recall from Appendix I.B.6 the definition of the exponential map Exp = Expp : TpM →
M of the connection ∇ w.r.t. the point p .

Corollary I.3.6. For all v ∈ TpM ,

sp(Exp(v)) = Exp(−v).

Proof. Note that the symmetry s0 of the symmetric space R is just change of sign and apply
part (i) of the preceding proposition to the affine map R→M , t 7→ Exp(tv).

4. The multiplication map

We explain definition (4) of a symmetric space. To any symmetric space M we associate
its multiplication map

µ : M ×M →M, (x, y) 7→ µ(x, y) := sx(y),

where the symmetries sx as are as in the preceding section.

Example I.4.1. If M = G is a Lie group and o = e , then we have so(y) = y−1 and thus

µ(x, y) = sx(y) = lxsol
−1
x (y) = x(x−1y)−1 = xy−1x.

Lemma I.4.2. The following holds for all x, y, z ∈M :
(M1) µ(x, x) = x

(M2) µ(x, µ(x, y)) = y

(M3) µ(x, µ(y, z)) = µ(µ(x, y), µ(x, z))
(M4) x is an isolated fixed point of µ(x, ·) .

Proof. (M1) rephrases that x is a fixed point of sx ; (M4) follows from the fact that
Tx(sx) = −1x ; (M2) is just (sx)2 = idM , and (M3) is equivalent to
(M3’) µ(sxy, sxz) = sxµ(y, z),
which means that sx is an automorphism of µ . But it is clear that every affine diffeomorphism
of M is an automorphism of µ , and since sx is affine, (M3’) holds.

From Prop. I.3.5 (i) it follows that homomorphisms ϕ of connected symmetric spaces are
compatible with multiplication maps, i.e.

ϕ ◦ µ = µ′ ◦ (ϕ× ϕ).

The following theorem is due to O. Loos (cf. [Lo69a, Chapter II]):
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Theorem I.4.3. A connected manifold M with a smooth multiplication map µ having
properties (M1) – (M4) carries a natural structure of a symmetric space such that µ coincides
with the multiplication map defined above. Homomorphisms ϕ : M → M ′ between connected
symmetric spaces are precisely the smooth maps compatible with multiplication maps.

The main step in the proof of this theorem is the construction of a canonical connection
associated to a multiplication map and the verification that this connection is affine symmetric
(cf. Def. I.2.7); then a version of Theorem I.2.9 becomes available in order to prove that the
group generated by the sxsy (where sx(y) := µ(x, y)) is a Lie group acting transitively on M .

The theory of symmetric spaces based on the product µ can be developed similarly to
the theory of Lie groups based on the ordinary product, cf. [Lo69a]. In [Lo67] the more
general situation obtained by omitting (M4) is considered. The spaces thus obtained, called
Spiegelungsräume (reflection spaces), are fiber bundles over symmetric spaces.

Summarizing, one may give the following definitions:

Definition I.4.4.
(1) A topological symmetric space is a topological space M together with a continuous map

µ : M ×M →M satisfying (M1) – (M4).
(2) A symmetric space is a manifold M with a smooth map µ : M ×M →M satisfying (M1)

– (M4).
(3) A real algebraic symmetric space is a manifold M with a rational atlas (i.e. the transition

functions are rational) and a map µ : M ×M →M which is rational w.r.t. this atlas and
satisfies (M1) – (M4).

(4) Complex symmetric spaces and complex algebraic symmetric spaces are defined similarly,
using complex manifolds and holomorphic (resp. complex-rational) charts and multiplica-
tion maps.

Our definition of an algebraic symmetric space may seem a bit unusual from the point of
view of contemporary algebraic geometry. However, we do not intend to develop a general theory
of algebraic symmetric spaces. Rather, we are interested in a class of symmetric spaces defined
by Jordan structures; they have a canonical algebraic atlas, and the algebraic formula for the
multiplication map can be calculated explicitly (cf. Prop. II.2.9 and Th. X.3.2). The definition
of algebraic symmetric spaces we have chosen is adapted to this situation.

If G is a group and we let µ(g, h) := gh−1g , then the properties (M1), (M2) and (M3)
are easily verified. Thus any group with the discrete topology is a topological symmetric space,
and any subset closed under µ is again a topological symmetric space. Subspaces are defined
analogously to subgroups of groups. For instance, if g 7→ g∗ is an anti-automorphism of a group
G , then it is an automorphism of G as a symmetric space, and therefore the space of ∗-symmetric
elements

S := {g ∈ G| g = g∗}
is a subspace of G . Spaces of this kind play an important role.

Lemma I.4.5. Assume G is a Lie group and ∗ an involutive anti-automorphism of G . The
group G acts on S by the formula g.x = gxg∗ . Then every connected component of S is
homogeneous under this action.
Proof. The action is well-defined since (gxg∗)∗ = gxg∗ . Let So be a connected component
of S . Since it is a connected symmetric space, Prop. I.3.4 shows that the group G(So) acts
transitively on So . Since

sxsy(z) = xy−1zy−1x = (xy−1)z(xy−1)∗ = (xy−1).z

and G(So) is generated by the sxsy with x, y ∈ So , So is contained in the orbit G.z for any
z ∈ So .
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5. Representations of symmetric spaces

Definition I.5.1. A representation of a symmetric space M on a topological vector space V
is a homomorphism π : M → Gl(V ) (i.e., we have π(µ(xy)) = π(x)π(y)−1π(x) for all x, y ∈M )
such that the map

M × V → V, (x, v) 7→ π(x)v

is continuous. A self-adjoint representation of a symmetric space is a homomorphism of M into
the symmetric space of self-adjoint (w.r.t. to a suitable bilinear form) elements of Gl(V ). More
generally, if ∗ is an involution of the symmetric space Gl(V ), then a ∗-representation of M is
a homomorphism into the space S = {g ∈ Gl(V )|g = g∗} . Intertwining operators are defined in
the obvious way; we call them also M -homomorphisms.

It is clear that group homomorphisms are also homomorphisms of symmetric spaces (in
fact, one may verify that they are even equivariant maps of symmetric spaces), and thus we get

Lemma I.5.2. A representation π : G → Gl(V ) of a Lie group is a representation of G
considered as a symmetric space.

The quadratic map. This map plays a similar role as the adjoint representation in the
theory of Lie groups. Recall that, multiplied by a factor 2, the standard-imbedding q → g =
[q, q]⊕ q is a homomorphism of Lie triple systems when we consider g as in Ex. I.1.2 as a LTS.
The global version of this homomorphism is as follows:

Proposition I.5.3.
(i) For any symmetric space M , the map

Q : M → G(M), p 7→ spso

is a Aut(M)-equivariant homomorphism of symmetric spaces. Its image is contained in
the space

S := {g ∈ G(M)| g−1 = σ(g)},

and Q : M → S is a local isomorphism.
(ii) If we identify g with the antidiagonal in g× g via X 7→ 1

2 (X,−X) , then the differential of
Q at the origin is the standard-imbedding multiplied by a factor 2 :

Q̇ : q→ g, X 7→ 2X.

Proof. (i) We show that Q is Aut(M)-equivariant and hence a homomorphism: The in-
volution of Aut(M) is given by σ(g) = sogso , and the involution of Aut(M) × Aut(M) by
σ′((g, h)) = (h, g). Since for all g ∈ Aut(M),

Q(g.x) = sg.xso = gsxg
−1so = gsxsoσ(g)−1 = gQ(x)σ(g)−1,

the map Q belongs to the homomorphism

Q̃ : Aut(M)→ Aut(M)×Aut(M), g 7→ (g, σ(g))

which clearly satisfies Q̃ ◦ σ = σ′ ◦ Q̃ , and therefore Q is equivariant.
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The calculation

σ(Q(x)−1) = so(spso)−1so = s−1
p so = spso = Q(x)

shows that Q(M) ⊂ S . Since the tangent space of S at the identity is precisely the subspace q
of g , the last statement will follow from part (ii).

(ii) We differentiate Q̃ at the origin and restrict to q . We obtain

Q̇ : q→ g× g, X 7→ (X, σ̇(X)) = (X,−X).

Under the identification given in the lemma, this proves the claim.

Part (i) may also be verified by proving that M → Aut(M), x 7→ sx is a homomorphism
of symmetric spaces; Aut(M) → Aut(M), g 7→ g so is also a homomorphism, und Q is the
composition of these two. Note further that the identification given in (ii) is more natural than
the one given by X 7→ (X,−X). In fact, when we view all spaces as spaces of vector fields on
G(M), then the term (X,−X) corresponds to (Xr+X l), where X l is the left-invariant and Xr

the right-invariant vector field corresponding to X ∈ g . We have 1
2 (Xr +X l)e = X l

e = Xr
e , i.e.

our identification is compatible with identifying g ⊂ (g× g) with TeG via the evaluation map.

Corollary I.5.4. If π : G(M)→ Gl(V ) is a group representation, then

π′ := π ◦Q : M → Gl(V )

is a representation of a symmetric space. If π is finite-dimensional and π̇ is the differential of
π at the origin, then

π̇′ : q→ gl(V ), X 7→ 2π̇(X)

is the differential of π′ at the origin.

Proof. This follows immediately by combining Lemma I.5.2 and Prop. I.5.3.

In particular, we may compose Q with the adjoint representation Ad : G(M)→ Gl(g) and
then get a representation Ad ◦Q : M → Gl(g). It is clear that an intertwining operator for π is
also one for π′ ; thus π 7→ π′ is a functor Rep(G(M))→ Rep(M) of categories of representations.
There is no general functor in the other direction. However, if π : M → Gl(V ) is an equivariant
representation, then the group homomorphism π̃ : G(M) → Gl(V ) × Gl(V ) combined with the
projection onto the first factor yields a group representation π̂ : G(M)→ Gl(V ).

Definition I.5.5. The map Q : M → G(M), p 7→ Q(p) = spso is called the quadratic map of
M (w.r.t. the base point o). The powers of an element x ∈M (w.r.t. o) are defined for n ∈ Z
by

x2n := Q(x)no, x2n+1 := Q(x)nx.

(In [Lo69a, p.64] the map Q is called the “quadratic representation”; we have changed the
terminology since Q is not a representation in the sense of Def. I.5.1. However, this is true in the
case of a Jordan algebra, see the next chapter. Note further that x2 and µ(x, x) have different
meanings.)

Lemma I.5.6. For all x, y ∈M and m,n ∈ Z ,
(i) Q(Q(x)y) = Q(x)Q(y)Q(x) ,
(ii) µ(xn, xm) = x2n−m ,
(iii) (xm)n = xmn .
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Proof. (i) Clearly the quadratic map commutes with base-point preserving homomorphisms
ϕ : M →M ′ in the sense that

ϕ(Q(x)y) = Q′(ϕ(x))ϕ(y).

Applying this to the homomorphism Q : M → G(M) itself and observing that Q′(g)h = ghg in
the group case, we get (i).

(ii) We note first that so(xk) = x−k holds for all k . Now we have to distinguish two cases.
Using that Q(x)k is for all k an automorphism of µ , we get

µ(x2k, xm) = µ(Q(x)ko, xm) = Q(x)kµ(o,Q(x)−kxm)

= Q(x)ksoQ(x)−ksoso(xm) = Q(x)2kx−m = x4k−m

and, observing that sxQ(x)n = sxsxsoQ(x)n−1 = Q(x)1−nso ,

µ(x2k+1, xm) = µ(Q(x)kx, xm) = Q(x)kµ(x,Q(x)−kxm)

= Q(x)ksxQ(x)−kxm = Q(x)kQ(x)k+1so(xm) = x4k+2−m.

(iii) Using part (i), we get (x2m)2n = Q(Q(x)me)ne = Q(x)2mne = x4mn , and similarly for
other exponents.

Proposition I.5.7. For all v ∈ ToM ,

Exp(v) = exp(lov).o,

where exp : g→ G(M) is the usual exponential map of the Lie group G(M) .

Proof. The quadratic map is a local isomorphism onto the space S of symmetric elements
(Prop. I.5.3). The latter is a sub-symmetric space of G . Its geodesics are given by the formula
exp(tX) for X ∈ q because the usual exponential map of a Lie group agrees with the exponential
map corresponding to its symmetric space structure. By equivariance of the quadratic map,

Q(exp(tX).o) = exp(2tX).

It follows that γ : R→M , t 7→ exp(tX).o is a geodesic. Deriving we obtain γ̇(0) = Xo , whence
Exp(Xo) = exp(X).o .

6. Examples

6.1. The classical groups. By “classical group” we mean the general linear groups
Gl(n,F) over the base field F = R or C or over the skew-field F = H of quaternions and the
orthogonal and unitary groups in the most general sense (which includes the symplectic groups);
special linear groups will appear less frequently (actually, their role will be taken later by the
projective groups). The classical groups are, in a natural way, subgroups of a group Gl(n,R)
for some n (thus for us the term “classical group” will not mean an abstract group, but a
group together with a distinguished representation), and as a special case of Ex. I.4.1, they are
symmetric spaces with multiplication map

µ(X,Y ) = XY −1X. (6.1)
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In order to fix some notation, let us recall the basic definitions.
Orthogonal and symplectic groups. Let F = R or C and assume a non-degenerate bilinear

form on V = Fn be given by (x|y) = xtAy , A ∈ Gl(n,F); then A−1XtA is the adjoint of X
w.r.t. this form. The A-orthogonal group is the group

O(A,F) := {g ∈ Gl(n,F)|A−1gtA = g−1}. (6.2)

Standard forms are given by the following matrices

Ip,q :=
(

1p 0
0 −1q

)
, J := Jn :=

(
0 1n
−1n 0

)
, F := Fn :=

(
0 1n
1n 0

)
. (6.3)

We use also the classical notation

O(p, q) := O(Ip,q,R), O(n) := O(n, 0), Sp(n,F) := O(J,F). (6.4)

Note that the notation O(A,F) not only describes the classical group as an abstract group,
but also its distinguished realization as a subgroup of Gl(n,F). A “base change” induces a
conjugation of the corresponding group via the formula

O(T tAT ) = T−1O(A)T. (6.5)

For instance, we define the “real Cayley transform” by

R :=
(

1n −1n
1n 1n

)
. (6.6)

Then Rt = 2R−1 , and for all A ∈ Gl(n,F), the transformation formula

R

(
0 A
A 0

)
R−1 =

(
−A 0
0 A

)
(6.7)

and the corresponding group isomorphisms hold. In particular, R−1O(F,F)R = O(n, n). We
define the spaces of A-(skew-)symmetric matrices by

Sym(A,F) := {X ∈M(n,F)|A−1XtA = X}, (6.8)

Asym(A,F) := {X ∈M(n,F)|A−1XtA = −X}. (6.9)

The space Asym(A,F) is the Lie algebra of O(A,F) (and may also be denoted by o(A,F)). It
is a sub-LTS of the LTS gl(n,F) with Lie triple product defined by

[X,Y, Z] =
1
4

[[X,Y ], Z] =
1
4

(XY Z + ZY X − (Y XZ + ZXY )). (6.10)

Unitary groups. Let F = C or H and ε an anti-automorphism of F ; it is identified with the
corresponding map defined componentwise on Fn and on M(n,F). We consider the sesquilinear
form (x|y) = xtAε(y) defined by a matrix A ∈ Gl(n,F). Then

X∗ = ε−1(A−1XtA) (6.11)

is the adjoint of X ∈M(n,F) w.r.t. this form. The (A, ε)-unitary group is defined by

U(A, ε,F) := {g ∈ Gl(n,F)|A−1gtA = ε(g)}. (6.12)
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If ε is the standard-involution of the base field (i.e. complex conjugation of C , resp. conjugation
of H w.r.t. the center Z(H) = R), then it may be omitted in the notation. We use also the
classical notation

U(p, q) := U(Ip,q,C), U(n) := U(n, 0),
Sp(p, q) := U(Ip,q,H), Sp(n) := Sp(n, 0).

(6.13)

The groups U(J,C) and U(n, n) are isomorphic; in fact,

C−1U(n, n)C = U(J,C), (6.14)

where

C =
(
−1 −i1
i1 1

)
(6.15)

is the Cayley transform. The H-unitary groups can be realized as subgroups of Gl(2n,C): the
identification Hn = Cn ⊕ Cnj = C2n (we let scalars act from the right on Hn ) defines an
imbedding

M(n,H) = {Z ∈M(2n,C)|Z = JZJ−1}

= {
(
a b
−b a

)
| a, b ∈M(n,C)}.

(6.16)

Then Gl(n,H) is identified with the corresponding matrices Z having non-zero determinant over
C . If ε is the canonical involution of H , then the ε -sesquilinear form on Hn with matrix Ip,q
corresponds to the sesquilinear form on C2n with matrix

(
Ip,q

0
0
Ip,q

)
; from this we get

Sp(p, q) ∼= U(2p, 2q) ∩M(n,H) ∼= U(2p, 2q) ∩ Sp(2n,C). (6.17)

If ϕ is conjugation with the quaternion j , composed with the standard-involution, then the ϕ -
sesquilinear form on Hn with matrix 1n corresponds to the C -bilinear form on C2n with matrix
12n , and we get

U(1n, ϕ,H) = O(2n,C) ∩M(n,H) =: O∗(2n). (6.18)

This group is also isomorphic to U(Ip,q, ϕ,H) (p+ q = n) and to U(J,H). We denote by

Herm(A, ε,F) = {X ∈M(n,F)|A−1XtA = ε(X)}, (6.19)

Aherm(A, ε,F) = {X ∈M(n,F)|A−1XtA = −ε(X)}, (6.20)

the spaces of A-(skew-)Hermitian matrices. The space Aherm(A, ε,F) is the Lie algebra of
U(A, ε,F) and may therefore also be denoted by u(A, ε,F). It is useful to keep in mind that
the equation iHerm(n,C) = Aherm(n,C) has quaternionic analogues: the involutions ε and
ϕ = j∗ε = εj∗ of H being as above, we have

j1n ·Herm(n, ϕ,H) = Aherm(n,H), j1n ·Aherm(n, ϕ,H) = Herm(n,H). (6.21)

In fact, for any quaternionic matrix X we have ε(j1nX)t = ε(Xtj) = −ε(Xt)j = −ϕ(Xt).

6.2. Spaces of symmetric and of Hermitian matrices. The map “adjoint” g 7→ g∗

is an automorphism of the symmetric space Gl(n,F). The corresponding space of symmetric
elements is

M = Gl(n,F) ∩ Sym(A,F), resp. M = Gl(n,F) ∩Herm(A, ε,F). (6.22)
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In general, M is not connected. The connected component containing the identity is homoge-
neous under the natural action of Gl(n,F) by g.X = gXg∗ , and

M1
∼= Gl(n,F)/O(A,F), resp. M1

∼= Gl(n,F)/U(A, ε,F) (6.23)

as a homogeneous symmetric space. Spaces of this kind will be considered in more detail in
Chapter II.

6.3. Spaces of elements of order 2 and Grassmannians. For any Lie group G , the
space Gj := {g ∈ G| g2 = e} of elements of order 2 is a subsymmetric space, namely it is the
space fixed under the automorphism j : g 7→ g−1 of the symmetric space G . Let us exhibit the
geometric significance of this space in case G is one of the classical groups defined above.

Case of the general linear groups. G = Gl(n,F),

M = {X ∈ Gl(n,F)|X2 = 1n}. (6.24)

Note that the multiplication map of M takes the form sXY = µ(X,Y ) = XY −1X = XYX−1 ,
and sX is induced by a linear map. The space M is not connected; its connected components
are the spaces

Mp,q := {X ∈ Gl(n,R)|X2 = 1n, sgn(X) = (p, q)} (6.25)

for p, q with p + q = n , where p is the dimension of the +1-eigenspace E1(X) and q the
dimension of the −1-eigenspace E−1(X) of X . Associating to an element X ∈ Mp,q the pair
(E1(X), E−1(X)), we obtain a bijection of Mp,q onto the open dense subset of elements (E,F )
in the direct product Grp,n(F)×Grq,n(F) of Grassmannians such that E ∩ F = 0.

Since elements with X2 = 1 can be diagonalized over F , the action of Gl(n,F) by
conjugation on Mp,q is transitive. W.r.t. the base point Ip,q ∈Mp,q , we write

Mp,q = Gl(p+ q,F)/(Gl(p,F)×Gl(q,F)) (6.26)

as a homogeneous symmetric space. The corresponding involution σ of G = Gl(p+q,F) is given
by conjugation with Ip,q . The tangent space of Mp,q at the base point is given by

q = {X ∈M(n,F)| Ip,qX = −XIp,q} = {
(

0 a
bt 0

)
| a, b ∈M(p, q; F)}; (6.27)

the Lie triple product is given by Eqn. (6.10) without the factor 1
4 (it is not needed since we are

not in a group case). As a vector space, q is a direct product of M(p, q; F) with itself.

Case of orthogonal groups. We consider the subspace fixed under the automorphism
g 7→ g−1 of the symmetric space O(A,F). Since the conditions X2 = 1 and X∗ = X−1

are equivalent to X2 = 1 and X = X∗ , this space can be described as

M = {X ∈ O(A,F)|X2 = 1n} = {X ∈ Gl(n,F)|X2 = 1n, X∗ = X−1}
= Gl(n,F)j ∩ Sym(A,F);

(6.28)

it is the subspace of (6.24) fixed under the automorphism τ(X) := X∗ . The condition X = X∗

implies that the eigenspaces E1(X) and E−1(X) are orthogonal; in particular the restriction
of the form given by A is non-degenerate on the eigenspaces. In fact, the map X 7→ E1(X)
defines a bijection of M onto the (open dense) set of elements E in the Grassmannian Gr(Fn) =
∪pGrp,n(F) such that the form given by A is non-degenerate on E .

If M is not empty, we fix a base point in M ; replacing A if necessary by an equivalent
matrix, we may assume that the base point is Ip,q . Then since AIp,q = Ip,qA , we can write
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A =
(
B
0

0
C

)
. According to Lemma I.4.5 the action of O(A,F) by conjugation on the corresponding

connected component is transitive:

MIp,q = O(
(
B 0
0 C

)
,F)o/(O(B,F)×O(C,F))o. (6.29)

Again the corresponding involution of the group is given by conjugation with Ip,q . The tangent
space q at the base point is given as the subspace of the space given by (6.27) fixed under
τ(X) = X∗ :

q = {
(

0 X
BXtC−1 0

)
|X ∈M(p, q; F)}. (6.30)

As a vector space this is isomorphic to M(p, q; F). The most important special case is F = R
and A = 1p+q ; then

MIp,q = O(p+ q)/(O(p)×O(q)) (6.31)

is the whole Grassmannian Grp,p+q(R). For F = R , the choice B = Ik,l , C = Ii,j leads to
the space O(l + j, k + i)/(O(k, l) × O(i, j)) and the choice B = Jr , C = Js to MI2r,2s =
Sp(r + s,R)/(Sp(r,R)× Sp(s,R)). One may call these spaces “of real Grassmannian type”.

Case of unitary groups. The spaces of elements of order 2 in unitary groups can, similarly
as above, be interpreted as open dense subsets of Grassmannians. The most important cases are
here A = 1p+q in combination with the standard involutions of C resp. of H which yield the
complex resp. quaternionic Grassmannians:

MIp,q = U(p+ q)/(U(p)×U(q)), resp. MIp,q = Sp(p+ q)/(Sp(p)× Sp(q)). (6.32)

As above, other choices for B and C lead to the spaces U(l + j, k + i)/(U(k, l) × U(i, j)),
Sp(l+j, k+i)/(Sp(k, l)×Sp(i, j)) and SO∗(2n)/(SO∗(2p)×SO∗(2q)) which are open dense in the
complex resp. quaternionic Grassmannians and which may be called “of complex (quaternionic)
Grassmannian type”.

6.3. Spaces of complex structures. We say that an element g of a classical group
G ⊂ Gl(n,R) is a complex structure if g2 = −1n . All classical groups (leaving apart the special
linear ones) are stable under the involution g 7→ −g−1 . The fixed point space of this involution,

G−j = {g ∈ G| g2 = −1}, (6.33)

is a subsymmetric space, the space of complex structures in G .

Case of the general linear groups: G = Gl(2n,R);

M = {X ∈ Gl(2n,R)|X2 = −12n} (6.34)

is the space of complex structures on R2n . The space M is connected: by linear algebra, every
complex structure can be transformed to the normal form given by the matrix J = Jn which we
choose as base point in M . Thus

M = Gl(2n,R)/Gl(n,C) (6.35)

as a homogeneous symmetric space. Note that conjugation by the matrix In,n transforms J into
the opposite complex structure −J . The tangent space TJM is naturally identified with the
space

q := {X ∈M(2n,R)|JX = −XJ} = {
(
a b
b −a

)
| a, b ∈M(n,R)} (6.36)
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of anti J -linear maps. For F = C we may define a space M by the same formula, but since
(iX)2 = −X2 this gives us back spaces of elements of order 2. If F = H , then the matrix J is a
complex structure in Gl(n,H). Using the realization (6.16) of Gl(n,H), we see that an element
Z ∈ Gl(n,H) commuting with J must be real, i.e. Z = Z . Identifying

{
(
a b
−b a

)
∈ Gl(n,H)| a, b ∈M(n,R)} = Gl(n,C), (6.37)

we get
Gl(n,H)−j ∼= Gl(n,H)/Gl(n,C) (6.38)

as a homogeneous symmetric space. Here the group involution is given as above by conjugation
with J .

Case of the orthogonal groups (“Siegel-spaces”). The space

M = {X ∈ O(A,R)|X2 = −12n} = {X ∈ Gl(2n,R)|X2 = −12n, X
∗ = X−1}

= Gl(2n,R)−j ∩Asym(A,R)
(6.39)

of A-orthogonal complex structures is the subspace of (6.33) fixed under the automorphism
τ(X) = −X∗ . It may be empty, and in general it is not connected. If it is not empty, we assume
w.l.o.g. that it contains the base point J , i.e. J tAJ = A , or AJ = JA holds, and we may write
A =

(
B
−C

C
B

)
. As a homogeneous space, the component containing J is given by

MJ = O(A,R)o/(O(A,R)o ∩Gl(n,C)). (6.40)

The tangent space TJM is identified with the skew-symmetric elements in the space defined by
(6.35):

q = {X ∈M(2n,R)|XJ = −JX, XtA = −AX}. (6.41)

Let us consider some special choices for A : If A =
(
B
0

0
B

)
, then (using that O(

(
B
0

0
B

)
,R) ∩

Gl(n,C) = U(B)),

MJ = O(
(
B 0
0 B

)
,R)o/U(B). (6.42)

Now let B = Ip,q ; then
MJ
∼= O(2p, 2q)o/U(p, q). (6.43)

Next, the choice B = J yields
MJ
∼= Sp(2n,R)/U(n, n). (6.44)

If A =
(

0
−1

1
0

)
, then

MJ = Sp(n,R)/(Sp(n,R) ∩Gl(n,C)) = Sp(n,R)/U(n). (6.45)

This space is known as the Siegel-space.

Case of C-unitary groups. If X is a complex structure belonging to U(p, q), then iX is
an element of order 2 in U(p, q). The corresponding spaces have already been discussed above.

Case of H-unitary groups. This is case is similar to the case of orthogonal groups. It
leads to the spaces Sp(p, q)/U(p, q) (complex structures in Sp(p, q)) and O∗(2n)/U(p, 2n − p)
(complex structures in O∗(2n)).

6.4. Lagrangians and spaces of Lagrangian type. Next we consider subspaces which
are simultaneously fixed under 2 involutions. Thus let us assume that G is a classical group



20 Chapter I: Symmetric spaces and the Lie-functor

which is stable under the involution g 7→ −g∗ = −A−1gtA of Gl(m,R) and consider the space
of A-skewsymmetric elements of order 2:

M = {g ∈ G| g2 = 1m, g = −g∗} = Gj ∩Asym(A,F). (6.46)

Case of the general linear groups. Clearly Gl(n,F) is stable under X 7→ −X∗ . If
X2 = 1 and X = −X∗ , then the restriction of the bilinear form given by A vanishes on the
eigenspaces of X . It follows that the eigenspaces E1(X) and E−1(X) are maximal isotropic,
i.e. Lagrangian subspaces for this form. Thus we obtain a bijection X 7→ (E1(X), E−1(X)) of
M = Gl(n,F)j ∩Asym(A,F) onto pairs (E,F ) of Lagrangians (w.r.t. A) with E ∩ F = 0.

Since E1(X) and E−1(X) are maximal isotropic and complementary, it follows that both
have equal dimension denoted by n = m/2. We assume that the base point In,n belongs to M .
This forces A =

(
0
C
B
0

)
with B = ±C invertible. The tangent space of M at In,n is given by

taking skew-symmetric elements in (6.27):

q = {X ∈M(2n,R)|XIn,n = −In,nX, X∗ = −X}

= {
(

0 a
b 0

)
|bt = −C−1bB, at = −BaC−1}

(6.47)

The group O(A,R) acts on M by conjugation, and the stabilizer of the base point In,n is the
group of matrices of the form

(
g
0

0
(CgC−1)t

)
with g ∈ Gl(n,R); we identify it with Gl(n,R).

For reasons of dimension, the action is transitive on the connected component of In,n . Thus
MIn,n = O(A,R)o/Gl(n,R) as a homogeneous symmetric space (the group involution is given
by conjugation with In,n ). Now we distinguish the two cases: (1) C = B , (2) C = −B . In case
(1) q , as a vector space, is a direct product Asym(C,R)×Asym(C,R); in case (2) it is a direct
product Sym(C,R)× Sym(C,R). As a homogeneous symmetric space in case (1),

MIn,n = O(
(

0 C
C 0

)
,R)o/Gl(n,R), (6.48)

and in case (2)

MIn,n = O(
(

0 C
−C 0

)
,R)o/Gl(n,R). (6.49)

Taking in case (1) C = 1n , we get the space O(n, n)o/Gl(n,R); taking C = F we get
Sp(2k,R)/Gl(2k,R); taking in case (2) C = 1n , we get the space Sp(n,R)/Gl(n,R), and
taking C = F we get O(2k, 2k)o/Gl(2k,R). Similarly, for F = C we obtain the spaces
Sp(n,C)/Gl(n,C) and SO(2k,C)/Gl(k,C).

If F = C or H , then we consider also the spaces

Gl(n,F)j ∩Aherm(A, ε,F). (6.50)

Similar calculations as above lead, among others, to the spaces U(n, n)/Gl(n,C), Sp(n, n)/Gl(n,H)
and SO∗(4n)/Gl(n,H).

Case of orthogonal groups. Let A and D be two commuting matrices and consider the
space

M = {X ∈ Gl(2n,R)|X2 = 1n, A−1XtA = −X,D−1XtD = X}
= O(D)j ∩Asym(A,F);

(6.51)

this is the subspace of Gl(n,F)j∩Asym(A,F) fixed under τ(X) = D−1XtD . As above, it follows
that X 7→ E1(X) is a bijection of M onto the set of Lagrangian subspaces V w.r.t. A such
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that the restriction of the form given by D to V is non-degenerate. In particular, if D = 12n ,
N is isomorphic to the whole space of Lagrangian subspaces of A .

Assuming that the base point In,n belongs to M , it follows that D is of the form
(
E
0

0
G

)
. If

G = E and E and C commute, then A and D commute. The group O(D,R)∩O(A,R) acts on
M by conjugation, and the stabilizer of the base point In,n is the intersection of O(D,R) with the
group Gl(n,R) realized as in (6.48), (6.49); it is the group of matrices of the form

(
g
0

0
(CgC−1)t

)
with g ∈ O(E,R). We identify it with O(E,R). Thus, as a homogeneous symmetric space,

M = (O(
(

0 C
±C 0

)
,R) ∩O(

(
E 0
0 E

)
,R))/O(E,R) (6.52)

(the group involution is again given by conjugation with In,n ). The tangent space at the base
point In,n is given by intersecting the spaces defined by (6.27) and (6.47):

q = {
(

0 X
EXtE−1 0

)
∈M(2n,R)|Xt = −CXB−1} (6.53)

As a vector space, q is isomorphic to Asym(C,R) (if B = C ), resp. to Sym(C,R) (if B = −C ).
Now let us consider the two most important cases:

(1) If A = J and D = 12n , then (6.52) reduces to

M = (O(J,R) ∩O(2n))/O(n) = U(n)/O(n), (6.54)

the space of Lagrangians of the skew-symmetric form given by J . Here q is isomorphic to
Sym(n,R). The spaces U(p, q)/O(p, q) are obtained similarly with D = Ip,q .

(2) If A =
(
C
0

0
C

)
, it is convenient to diagonalize A via the matrix R given by Eqn. (6.6).

Then the base point In,n is replaced by the base point RIn,nR−1 = F (cf. Eqn. (6.7) and (6.3)).
In other words, we consider the space

M ′ := R−1MR = {X ∈ Gl(2n,R)|X2 = 12n, X
tA′ = −A′X, XtD′ = D′X}

= O(D′)j ∩Asym(A′,F),
(6.55)

instead of M , where A′ = R−1AR , D′ = R−1DR . If B = C = E , then according to Eqn. (6.7),
A′ =

(−C
0

0
C

)
and D′ = D . The conditions from (6.51) now imply that X ∈ M ′ anticommutes

with In,n , and one easily deduces that

N ′ = {
(

0 g
g−1 0

)
| g ∈ O(C,R)}. (6.56)

As a symmetric space, this is isomorphic to O(C,R). In particular, the group O(n) is identified
with the space of Lagrangians of A′ = In,n , the groups O(p, q) can be realized as open dense
subsets of this space, and Sp(n,R) can be realized as an open dense subset of the space of
Lagrangians of the form given by J2n .

Case of unitary groups. We consider the space

U(D, ε,F)j ∩Aherm(A, ε,F). (6.57)

If the base point In,n belongs to this space, we realize D and A as above and obtain the
homogeneous symmetric spaces

M = (U(
(

0 C
±C 0

)
, ε,F) ∩U(

(
E 0
0 E

)
, ε,F))/U(E, ε,F). (6.58)
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The most important cases are:
(1) If A = J and D = 12n , then (6.58) reduces to

M = (U(J, ε,F) ∩U(2n, ε,F))/U(n, ε,F). (6.59)

If ε is the standard conjugation of F = C , this space is isomorphic to (U(n)× U(n))/U(n), i.e.
to the group U(n). If ε is the standard conjugation of F = H , then this space is isomorphic
to U(2n)/Sp(n), the space of Lagrangians of the standard skew-sesquilinear form on Hn . The
spaces U(p, q) and U(2p, q2)/ Sp(p, q) are obtained similarly with D = Ip,q .

(2) If A =
(

0
C
C
0

)
and E = C , we transform again A via R and take F as base point. The

same calculations as before show that the unitary group U(B, ε,F) is realized as an open dense

subset of the variety of Lagrangians Lag(
(
B 0
0 −B

)
, ε,F). In particular

U(n) ∼= Lag(In,n, τ,C), (6.60)

Sp(n) ∼= Lag(In,n, τ,H). (6.61)

6.5. c-duality. The c-dual spaces (cf. Section 1.4) of the symmetric spaces M considered
so far are obtained as follows: the spaces we have looked at are all given by (at most 2) algebraic
equations

M = {g ∈ Gl(n,R)|F1(g) = 0, F2(g) = 0}

with rational maps F1 , F2 . The space

MC = {g ∈ Gl(n,C)|F1(g) = 0, F2(g) = 0}

(where F1 , F2 are the corresponding complex-rational maps) is a natural complexification of
M , and complex conjugation τ in M(n,C) defines a conjugation of MC w.r.t. M (i.e. a C -
antilinear involution of MC having fixed space M ). Moreover, if o ∈ M is a base point, then
the symmety so was also defined by a rational map of Rn ; the corresponding complex-rational
map will also be denoted by so . Then

M c = (MC)τso = {x ∈MC| τ(so(x)) = x} (6.62)

is the c-dual symmetric space of M .

Case of the general linear group. M = Gl(n,R), o = 1n , symmetry so(X) = X−1 . Its
c-dual real form is by definition the space

Gl(n,C)τso = {X ∈ Gl(n,C)|X = X−1}
= {X ∈ Gl(2n,R)|XF = FX, In,nXIn,n = X−1}.

(6.63)

Applying to this space the automorphism X 7→ Y := In,nX of the multiplication map µ of
Gl(2n,R), we end up with the two conditions Y F = −FY , Y 2 = 12n . Thus the space (6.63) is
isomorphic with the space of real forms of Cn . As a homogeneous symmetric space,

{Y ∈ Gl(2n,R)|Y F = −FY, Y 2 = 12n} = Gl(n,C)/Gl(n,R). (6.64)

In general, the c-dual of a space of group type G is given by GC/G .
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Case of the space of complex structures. M = {g ∈ Gl(2n,R)| g2 = −12n} , MC = {X ∈
Gl(2n,C)|X2 = −12n} , base point J , and the conjugation w.r.t. the real form M is τ(X) = X .
The symmetry sJ is given by sJ(X) = JXJ−1 . Thus

M c = {X ∈ Gl(2n,C)|X2 = −12n, JXJ
−1 = X}

= {X ∈ Gl(n,H)|X2 = −12n.}
(6.65)

This is the space of complex structures in Gl(n,H) which is isomorphic to Gl(n,H)/Gl(n,C),
cf. Eqn. (6.38). It is interesting to note that the c-dual construction thus automatically
leads from C-linear to H-linear groups. (It would be nice if there were a similar construction
leading automatically to exceptional groups...) More generally, the c-dual of a space of complex
structures in a classical group is another space of complex structures in another real form of the
corresponding complex group.

The general case. In most cases, the base point of M was either J or Ip,q , and the
corresponding symmetry was given by conjugation with this matrix. In the former case the real
form M c is given by intersecting MC with the algebra M(n,H), in the latter case it is given by
intersecting with the real form {X ∈ M(n,C)| Ip,qXIp,q = X} of M(n,C). Thus one sees that
the c-dual of a space of Grassmannian type is again of Grassmannian type, and the c-dual of a
space of Lagrangian type is again of Lagrangian type.

6.6. Spheres and hyperbolic spaces. We consider the symmetric bilinear form (x|y) =
xtAy on V = Fn (F = R or C) given by a non-singular symmetric matrix A .

Lemma I.6.1. The quadratic hypersurface

M = {x ∈ Fn| (x|x) = 1} (6.66)

is a symmetric space with multiplication map

µ(x, y) = sx(y) = 2(x|y)x− y. (6.67)

The group G(M) is equal to SO(A,F) .

Proof. Note that the linear map sx of V defined by sx(y) = 2(x|y)x − y is reflection w.r.t.
the axis Fx . From this we get the properties (M1), (M2) and (M4). It is immediately verified
that O(A,F) acts by automorphisms of µ , and since sx ∈ O(A,F), property (M3) follows. The
inclusion G(M) ⊂ SO(A,F) follows since Det(sxsy) = 1. For the converse we may assume that
A = Ip,q and use the classical fact that the groups SO(p, q; F) are generated by reflections.

The most important special case is A = 1 and F = R ; then M = Sn is the sphere. The
case A = Ip,q , F = R leads to SO(p, q)/ SO(p − 1, q); for F = C we obtain the complex sphere
SnC = SO(n+ 1,C)/ SO(n,C). In contrast to all preceding examples, the realization of M is not
a representation of a symmetric space. If we wish to realize M in a faithful representation, we
cannot use the quadratic map Q : M → SO(A,F) since it is not injective (we have sx = s−x ).
In particular, Q(Sn) ⊂ SO(n+ 1) is isomorphic to the real projective space RPn = Gr1,n+1(R).

A faithful representation can be constructed using Clifford algebras. Recall that the Clifford
algebra Cl(A,F) associated to the quadratic form q(x) = (x|x) is a 2n -dimensional associative
algebra with unit 1 containing V as a subspace such that the relation x2 = q(x)1, or in other
terms

xy + yx

2
= (x|y)1 (6.68)

holds for all x, y ∈ V .
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Proposition I.6.2. We consider M as a subset of Cl(A,F) via the imbedding V ⊂ Cl(A,F) .
Then M is a subsymmetric space of the space of elements of order 2 in the unit group of Cl(A,F) .

Proof. In the following all products are taken in Cl(A,F). If x ∈ M , then x2 = (x|x)1 = 1,
proving that M belongs to the space of elements of order 2. Furthermore, if x, y ∈M , then

xy−1x = xyx = (2(x|y)− yx)x = 2(x|y)x− y = µ(x, y),

proving that M is a subsymmetric space of the unit group of Cl(A,F).

We want to describe the image of the injective homomorphism M → Cl(A,F)× in more
detail. Recall from [LaMi89, p.13] the Pin-group which is the subgroup of the group of units of
the Clifford algebra generated by elements v ∈ V with (v|v) = ±1:

Pin(A,F) = 〈v ∈ V, (v|v) = ±1〉 ⊂ Cl(A,F)× (6.69)

Recall from [LaMi89, p.20] that the map

Ãd : Pin(A,F) 7→ O(A,F), y 7→ (v 7→ α(y)vy−1) (6.70)

is a covering of order 2 if F = R and of order 4 if F = C . Here α is the involutive automorphism
of Cl(A,F) determined by α(v) = −v for all v ∈ V . The inverse image of SO(A,F) under this
covering is the Spin group Spin(A,F). It is equal to Pin(A,F)α ([LaMi89, p. 14]).

Proposition I.6.3.

M = {x ∈ Pin(A,F)| x2 = 1, sgn(Ãd(x)) = (n− 1, 1)}

Proof. If x ∈ M , then x ∈ Pin(A,F), x2 = 1 and Ãd(x) is reflection w.r.t. the orthocom-
plement of x , whence sgn(Ãd(x)) = (n − 1, 1). For the proof of the other inclusion, note that
the right hand side is equal to

Ãd
−1

(N), N = {y ∈ O(A,F)| y2 = 1, sgn(y) = (n− 1, 1)}.

For every y ∈ N we can find inverse images in M : y is self-adjoint and is therefore a reflection
w.r.t. the orthocomplement x⊥ of a vector x which we can normalize such that (x|x) = 1. Now
x and −x are the two preimages in Pin(A,F) of y in the real case, and x,−x, ix,−ix are the
preimages in the complex case.

In particular, the sphere is realized as a subspace of Pin(n) := Pin(1n,R).

6.7. Other spaces. Oriented Grassmannians. The group SO(p+ q) acts transitively on
the space Mp,q of oriented p -planes in Rp+q , and

Mp,q
∼= SO(p+ q)/(SO(p)× SO(q)) (6.71)

as a homogeneous space. This space is a (simply connected) double cover of the Grassmannian
Grp,q(R) (cf. [Hel78, p.453]). In particular, it is a homogeneous symmetric space. Similarly to
the proof of Prop. I.6.3, one can prove that

Mp,q
∼= {g ∈ Pin(n)| g2 = 1, sgn(Ãd(g)) = (p, q)}; (6.72)

this defines a faithful representation of Mp,q . Of particular interest is the case p = 2: the spaces
of oriented planes in Rn+2 has yet another signification as we will see below.
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Projective compactifications of quadratic hypersurfaces. Let M1 = {x ∈ Rn|xtIp,qx = 1}
(p > 0); as seen above, this is a symmetric space of the type SO(p, q)/ SO(p − 1, q). The
projective compactification of M1 is given by

M = {[z] ∈ P(Rn+1)| ztIp,q+1z = 0}. (6.73)

The actions of the group PO(p, q+ 1) and of its maximal compact subgroup P(O(p)×O(q+ 1))
are transitive on M , and

M ∼= P(O(p)×O(q + 1))/P(O(p− 1)×O(1)×O(q)×O(1))
∼= (Sp−1 × Sq)/(Z/(2)),

(6.74)

where the quotient of the direct product Sp−1 × Sq of spheres is taken w.r.t. the equivalence
relation (x, y) ∼= (−x,−y). As a symmetric space, M is therefore locally isomorphic to a direct
product of spheres.

Next we consider the complex case: M1 = {x ∈ Cn| ztz = 1} ∼= SO(n,C)/ SO(n− 1,C),

M = {[z] ∈ P(Cn+1)| ztz = 0}; (6.75)

this space is compact and can therefore not be a complex symmetric space. In fact, the maximal
compact subgroup SU(n+ 1) ∩ SO(n+ 1,C)) ∼= SO(n+ 1) of SO(n+ 1,C) acts transitively on
M , and the stabilizer of the base point [(0, . . . , i, 1)t] is isomorphic to SO(n − 1) × SO(2)) (cf.
Section IV.1.5), whence

M ∼= SO(n+ 1)/ SO(n− 1)× SO(2)). (6.76)

Thus M is a homogeneous symmetric space, isomorphic to the space of oriented 2-planes in
Rn+1 . (For an explicit realization of this isomorphism cf. [Sa80, p.286].)
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Appendix A: Tangent objects and their extensions

This appendix serves merely to fix our notation and to introduce some general terminology.

A.1. Basic notation and conventions.
Transformation Groups. Let M be a smooth manifold and G a group of diffeomorphisms

of M . For a smooth function f on M we let

g∗f := f ◦ g, g∗f := f ◦ g−1;

Then g 7→ g∗ is homomorphism of G into the group of automorphisms of the function algebra
C∞(M), and g 7→ g∗ is a homomorphism of the opposite group Gop of G (which is by
definition the group G with the usual product m(x, y) replaced by mop(x, y) := m(y, x)) into
Aut(C∞(M)). Both actions can be canonically extended to actions of G resp. of Gop on the Lie
algebra X(M) = Der(C∞(M)) of vector fields on M , on the algebra of tensor fields on M and
on the algebra of differential operators on M . In all cases we write g∗ for the canonical action
of G and g∗ for the canonical action of Gop . For instance, if X is a vector field (a derivation of
C∞(M)), then (g∗X)f = g∗(X(g∗f)) = (X(f ◦g))◦g−1 ; the same formula holds for an arbitrary
differential operator X .

Lie transformation groups and a sign-convention. If G is a Lie group of diffeomorphisms
of M , then we identify its Lie algebra with a Lie algebra of vector fields on M by identifying
X ∈ g with the vector field X∗ on M given by

(X∗f)(p) :=
d

dt
|t=0f(expG(tX)p)

where expG is the exponential map of G . We denote by gop the opposite Lie algebra of g (the
Lie algebra g with the usual Lie bracket replaced by its negative). Then gop is the Lie algebra
of Gop , and the following diagram commutes (cf. [Hel78, p.122])

Gop
g 7→g∗−→ Aut(C∞(M))

expG ↑ ↑ exp

gop
X 7→X∗−→ X(M)c

;

here again expG denotes the exponential map of G which coincides with the exponential map
of Gop , and exp is the map defined on the set of complete vector fields assigning to a complete
vector field Z the automorphism (ϕ1)∗ , where t 7→ ϕt is the flow of Z . Of course, the reason
for this situation is the fact that groups and Lie algebras are defined on levels which behave
contravariantly with respect to each other (the space level and the function level). In principle,
there are two ways to deal with this dilemma: either

(a) we agree that all Lie brackets are taken in X(M); then we still denote the Lie algebra
{X∗|X ∈ g} by g and keep in mind that it is the opposite of the Lie algebra of the
transformation group G corresponding to g ; or

(b) we apply the “opposite functor” to the above diagram, i.e. we agree to take all Lie brackets
in X(M)op ; then g is really the Lie algebra of the corresponding transformation group.

However, in case (b) we will have serious troubles when we want to use notions of differential
geometry such as connections, and therefore we use the sign convention (a). It should be noted
that many authors implicitly adopt the convention (b) by choosing the opposite sign in Equation
(A.2) below (cf. e.g. [Lo77, p. 0.3]).
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Vector fields on vector spaces, calculus. If M is an open domain in a vector space V , then
we identify all tangent spaces canonically with V . Thus vector fields on M are identified with
smooth maps X : V ⊃M → V which operate on functions by

(Xf)(p) = (∂X(p)f)(p) = df(p) ·X(p). (A.1)

Using the fact that the second differential of f is a symmetric bilinear form, one gets the formula

[X,Y ](p) = DY (p) ·X(p)−DX(p) · Y (p). (A.2)

Here
Dϕ : V ⊃M → Hom(V,W ), x 7→ Dϕ(x) (A.3)

is the (first) total differential of a smooth map ϕ : V ⊃ M → W into a vector space W . (Note
that, in accordance with the sign-convention (a) above, this equips gl(V ) with the opposite of
its usual Lie bracket!) Iterating (A.3), we get the second total differential

D2ϕ = D(Dϕ) : V ⊃M → Hom(V,Hom(V,W )), x 7→ D2ϕ(x). (A.4)

Under the canonical isomorphism Hom(V,Hom(V,W )) = Hom(V ⊗ V,W ), D2ϕ(x) becomes a
symmetric bilinear map; thus D2ϕ takes values in the space Hom(S2V,W ), and so on for higher
differentials. (In contrast to the total differential of maps between vector spaces, we denote the
tangent map at x of a smooth map ϕ : M → N between abstract manifolds M and N by
Txϕ : TxM → Tϕ(x)N .)

The action of a diffeomorphism g of the vector space V on vector fields is described by

(g∗X)(p) = (Dg−1(p))−1 ·X(g−1(p)); (g∗X)(p) = (Dg(p))−1 ·X(g(p)). (A.5)

Once more according to our sign-convention we have the formula

d

dt
|t=0(exp(tY )∗X) = −[Y,X]. (A.6)

We often write v for the constant vector field with value v ∈ V . If tv(x) = v + x denotes
the translation by v ∈ V , then

exp(v) = tv, (A.7)

where exp is the exponential function of the Lie group V .

A.2. Extensions. In differential geometry the “extension” of a tangent object to a local
or global object on the manifold plays an important role. We define:

Definition I.A.1. Let M and M ′ be real manifolds and p ∈M , q ∈M ′ .
(1) An extension of a linear map a : TpM → TqM

′ is a smooth map α : M →M ′ such that

α(p) = q, Tpα = a.

(2) A vector field extension of a tangent vector v ∈ TpM is a vector field v ∈ X(M) such that

vp = v.

(3) A vector field extension of an endomorphism A ∈ End(TpM) is a vector field X ∈ X(M)
such that Xp = 0 and for all v ∈ TpM and vector field extensions v of v ,

[v, X]p = A(v).

If the extended object is only defined on a neighborhood of p , then we speak of local extensions.



28 Chapter I: Symmetric spaces and the Lie-functor

Note that in (3) the value of [v, X]p does not depend on the chosen vector field extension
of v because the bracket of two vector fields vanishing at p vanishes again at p . We choose a
chart V of M such that p corresponds to the origin 0 ∈ V , consider X as a smooth function
defined on a neighborhood of 0 and choose v to be constant on V . Then [v, X]0 = DX(0)v by
formula (A.2), and therefore condition (3) means that

DX(0) = A. (A.8)

Definitions (2) and (3) are just the beginning of a chain of definitions relating tangent objects
to vector fields vanishing of order k at p . For example, the next step would be to define a
vector field extension of a symmetric bilinear map B : TpM × TpM → TpM as a vector field X
vanishing of order 2 such that B(v, w) = [v, [w, X]]p for all vector field extensions v,w of v, w .

Clearly extensions as defined above are highly non-unique. However, in the presence of
additional requirements they may become unique. For instance, extensions of tangent maps to
affine maps (i.e. maps compatible with affine connections) are always unique (cf. [Lo69a, p.24]).

Lemma I.A.2. Let X be a vector field defined on a neighborhood of p ∈ M and ϕt its local
flow, assumed to be defined for all t belonging to some intervall I and x belonging to some
neighborhood of p , and let A ∈ End(TpM) . Then the following are equivalent:

(i) X is a local vector field extension of A .
(ii) ϕt is a local extension of etA ∈ Gl(TpM) .

Proof. It is classical that p is a fixed point of the flow ϕt iff X vanishes at p . Using a local
chart V as in the remarks preceding Eqn. (A.7) and considering ϕt as a local diffeomorphism
fixing the origin of V , we note that R → Gl(V ), t 7→ D(ϕt)(0) is (by the chain rule) a
homomorphism. The implication (ii) ⇒ (i) now follows by a straightforward differentiation.
Conversely, if (i) holds, then

d

dt t=0
D(ϕt)(0) = D(

d

dt t=0
ϕt)(0) = DX(0) = A,

and integration yields (ii).

Example I.A.3. (The Euler operator.) If M = V is a vector space and A = idV , then et idV
is a (global) extension of etA . The corresponding vector field extension of A is the vector field
E = E0 given by

E(p) = p, (A.8)

which is called the Euler operator. From Eqn. (A.2) we get that [E,Z](p) = DZ(p) · p − Z(p),
and the Euler differential equation follows: Z is homogeneous polynomial of degree r on V if
and only if

[E,Z] = (r − 1)Z. (A.9)

Appendix B: Affine Connections

B.1. Affine connections. An affine connection on a real manifold M is a R -bilinear
map

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY
of the space X(M) of vector fields on M such that for all smooth functions f and vector fields
X,Y on M ,

∇fXY = f∇XY, ∇X(fY ) = (Xf)Y + f∇XY.
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Example I.B.1. Let M = V a real vector space and identify vector fields on V with smooth
functions on V as explained in Appendix A.1, Eqn. (A.1). Immediate verificaton shows that the
formula

(∇XY )(p) := (DY )(p) ·X(p) (B.1)

defines an affine connection on V . We call it the canonical connection of V .

Let us describe the structure of the space

Conn(M) ⊂ Hom(X(M)⊗R X(M),X(M))

of affine connections on M . If ∇ and ∇′ are affine connections on M , then the defining
properties show that the difference

(∇−∇′)(X,Y ) = ∇XY −∇′XY

is function-linear both in X and in Y ; in other words, ∇ − ∇′ is a tensor field of type (2,1),
i.e. a section of the bundle Hom(TM ⊗ TM, TM), where TM is the tangent bundle. Thus
Conn(M) is an affine space whose translation space is the space of (2, 1) tensor fields: if ∇0 is
one connection on M , then

Conn(M) = ∇0 + C∞(Hom(TM ⊗ TM, TM)),

and if fi are functions such that
∑
i fi = 1 and ∇i are connections, then

∑
i fi∇i is again a

connection. In particular, given charts Ui and a subordinate partition of unity 1 =
∑
fi , the

formula ∇ :=
∑
fi∇(i) defines a connection on M , where ∇(i) are the canonical connections of

the Ui ’s.
If ∇0 is the canonical connection of a vector space V , then any other connection on V

can be written ∇ = ∇0 +C with a a smooth map C : V → Hom(V ⊗ V, V ); the coefficients Cijk
with (∇′eiej)(x) =

∑
k C

ij
k (x)ek are called Christoffel symbols.

B.2. Covariant derivative and the torsion tensor. The operator

∇X : X(M)→ X(M)

has a unique extension to a derivation

∇X : T (X(M))→ T (X(M))

of the mixed tensor algebra T (X(M)) of X(M) which commutes with contractions and such
that ∇Xf := Xf for a smooth function f (cf. [Hel78, p.42], [Lo69a, p.27]). Then X 7→ ∇XS
for S ∈ T (X(M)) is function-linear, so that (∇S)(X) := (∇XS) defines a tensor ∇S whose
covariance degree is one higher than the one of S .

As an example, consider the covariant derivative of the one form df , where f is a function:

Γ2(X,Y )f := (∇df)(X,Y ) = X〈df, Y 〉 − 〈df,∇XY 〉 = (XY −∇XY )f.

Note that Γ2(X,Y ) is a second order differential operator, depending function-linearly on X and
Y since ∇df is a tensor. (It generalizes the classical Hesse matrix of second partial derivatives.)
Thus

T∇(X,Y ) := (Γ2)(X ⊗ Y − Y ⊗X) = [X,Y ]−∇XY +∇YX.
again depends function-linearly on X and Y ; hence it is a tensor field, called the torsion tensor
of ∇ . A connection ∇ is torsionfree if and only if the corresponding Γ2 is a symmetric function-
bilinear map

X(M)⊗ X(M)→ X2(M),

where X2(M) is the space of second order differential operators. Note that the difference of two
connections is the same as the difference of the corresponding Γ2 ’s. Therefore all torsionfree
connections are obtained by taking one torsionfree connection and adding a symmetric bilinear
map X(M)⊗ X(M)→ X(M).
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Example I.B.2. The canonical connection of a vector space is torsionfree: since the torsion
T∇ is a tensor, it suffices to verify that (T∇)(w,u) = 0, where for v ∈ V we denote by v the
constant vector field with value v ∈ V . But clearly ∇wu = 0 and [w,u] = 0; therefore also
(T∇)(w,u) = 0. Thus the commutator of two vector fields is given by

[X,Y ](p) = (∇XY −∇YX)(p) = (DY )(p) ·X(p)− (DX)(p) · Y (p),

leading again to formula (A.2).

B.3. Iterated covariant derivatives and the curvature tensor. Let us calculate

Γ3(X,Y, Z)f := (∇∇df)(X,Y, Z) = (∇X∇df)(Y, Z)
= X · ((∇df)(Y, Z))− (∇df)(∇XY, Z)− (∇df)(Y,∇XZ)
= (XY Z − (X∇Y Z + (∇XY )Z + Y (∇XZ)) +∇∇XY Z +∇Y (∇XZ))f.

Note that Γ3(X,Y, Z) is a third order differential operator, depending function-linearly on
X,Y, Z since ∇∇df is a tensor. The symmetry relations of Γ3 play a basic role in differential
geometry. For simplicity we assume that ∇ is torsionfree, i.e. [U, V ] = ∇UV −∇V U . Then, as
seen above, ∇df is symmetric in both arguments, and therefore ∇X∇df is again symmetric in
both arguments; i.e. Γ3 is symmetric in Y and Z . It is in general not symmetric in X and Y :

Γ3(X ⊗ Y ⊗ Z − Y ⊗X ⊗ Z) = [X,Y ]Z − (∇XY −∇YX)Z+
∇∇XY−∇YXZ + [∇Y ,∇X ]Z

= −T∇(X,Y )Z +∇∇XY−∇YXZ − [∇X ,∇Y ]T
= (∇[X,Y ] − [∇X ,∇Y ])Z

=: −R(X,Y )Z;

where we used that T∇ = 0. Note that Γ3(X ⊗ Y ⊗ Z − Y ⊗X ⊗ Z) is a first order differential
operator (if the torsion does not vanish it is a second order differential operator) depending
function-linearly on X,Y, Z . The function-trilinear map R defined by the last equation is called
the curvature tensor of ∇ . A connection is called flat if it is torsionfree and R = 0.

Example I.B.3. The canonical connection on a vector space is flat; this follows in the same
way as we showed in Ex. I.B.2 that it is torsionfree.

Remark I.B.4. By induction, one may define

Γk(X1, . . . , Xk)f := (∇kf)(X1, . . . , Xk)

and show that this is a k -th order differential operator depending function-linearly on the Xi ’s.
It turns out that its symmetry relations under the action of the symmetric group Σk can all be
described using the Γj ’s with j < k together with the torsion tensor and the curvature tensor
along with their covariant derivatives. These relations are not all independent: the linear relations
between elements of Σk in this representation are given by the so-called Bianchi-identities.

B.4. Automorphisms and derivations of a connection. The group of diffeomor-
phisms of M acts on the space of (torsionfree) connections as follows. Recall from Appendix A.1
the actions g∗ and g∗ on the the space of vector fields on M . Then for any connection ∇ , the
formula

(g∗∇)XY := g∗(∇g∗Xg∗Y ) (B.2)
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defines a connection g∗∇ ; if g∗∇ = ∇ , then g is an automorphism of ∇ , also called an affine
diffeomorphism w.r.t. ∇ . Clearly the torsion of g∗∇ is g∗ applied to the torsion of ∇ ; therefore
g∗ preserves the space of torsionfree connections. We let g∗∇ = (g−1)∗∇ .

As an infinitesimal version of (B.2), the formula

(Z · ∇)XY := [Z,∇XY ]−∇[Z,X]Y −∇X [Z, Y ] (B.3)

defines a tensor field of type (2,1) (symmetric if ∇ is torsionfree). If Z · ∇ = 0, then Z is a
derivation of ∇ , also called an affine vector field w.r.t. ∇ . Its local flow is a family of local
automorphisms of ∇ .

Example I.B.5. If ∇ is the canonical connection of a vector space V , we can describe the
action of the diffeomorphism group more explicitely. From formula (A.5) one deduces that for
all u, v ∈ V ,

(g∗∇−∇)p(u⊗ v) = (Dg(p))−1 · ((D2g)(p))(v ⊗ u), (B.4)

where D2g : V → Hom(S2V, V ) is the ordinary second differential of g : V → V . (In order to
verify this formula, note that g∗∇−∇ is a tensor field of type (2,1); hence it suffices to determine
its values on the constant vector fields.)

B.5 Affine maps. One would like to define the notion of an affine map between manifolds
M,M̃ with affine connections ∇, ∇̃ as if ∇, ∇̃ were tensor fields. However, this is not the case,
and therefore we use the function-bilinear map Γ2 defined in Section B.2.

Definition I.B.6. For a real manifold M we denote by

X2(M) := SpanR{XY |X,Y ∈ X(M)}

the space of second order differential operators without constant term and by

T 2
pM := {Zp|Z ∈ X2(M)}

the second order tangent space at p ∈ M (cf. [Lo69a, p.6]). If ϕ : M → M ′ is a smooth map,
then its second order tangent map at p ∈M is defined by

T 2
pϕ : T 2

pM → T 2
ϕ(p)M

′, (T 2
pϕ · Zp)f := Zp(f ◦ ϕ);

cf. [Lo69a, p.9].

If m : X(M)×X(M)→ X2(M) is the natural composition (X,Y ) 7→ XY , then in Section
B.2 we associated to any connection ∇ the map Γ2 := m−∇ .

Definition I.B.7. Let M,M̃ be manifolds with connections ∇, ∇̃ and corresponding maps
Γ2, Γ̃2 . A smooth map ϕ : M → M̃ is called affine w.r.t ∇ and ∇̃ if for all p ∈ M and
u, v ∈ TpM ,

T 2
pϕ · Γ2

p(u, v) = Γ̃2
ϕ(p)(Tpϕ · u, Tpϕ · v),

i.e. the diagram
T 2
pM → T 2

ϕ(p)M̃

↑ ↑
TpM ⊗ TpM → Tϕ(p)M̃ ⊗ Tϕ(p)M̃

commutes.
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Example I.B.8. If M = M̃ , ∇ = ∇̃ and ϕ is bijective (or a local diffeomorphism), then ϕ
is affine iff it is an automorphism of Γ2 . But since the natural map m is invariant under all
diffeomorphisms, automorphisms of Γ2 = m − ∇ and automorphisms of ∇ are the same; thus
the notion of affine maps given here extends the one from the previous section. In particular, if
∇ is the canonical connection of a vector space, formula (B.4) shows that ϕ is affine iff D2ϕ = 0,
that is iff ϕ(x) = Ax+ b with A ∈ Gl(V ) and b ∈ V .

Remark I.B.9. It is possible to introduce a general second differential

D(2)
p ϕ : TpM ⊗ TpM → Tϕ(p)M̃

of a smooth map ϕ : M → M̃ such that ϕ is affine iff D(2)ϕ = 0. This is done as follows: every
connection defines a direct sum decomposition

T 2
pM = TpM ⊕ Γ2

p(TpM ⊗ TpM),

cf. [Lo69a, p.7 and p.20], and we define D(2)
p ϕ as the diagonal map in the following commutative

diagram:
T 2
pM = TpM ⊕ Γ2

p(TpM ⊗ TpM)
T 2
pϕ ↓ ↓ Tpϕ ↙ ↓ Tpϕ⊗ Tpϕ
T 2
ϕ(p)M̃ = Tϕ(p)M̃ ⊕ Γ2

ϕ(p)(Tϕ(p)M̃ ⊗ Tϕ(p)M̃).

Using the maps Γk from Remark I.B.4, one can also define higher differentials at a point p as
multilinear maps ⊗kTpM → ⊗jTpM for j ≤ k . They have similar (but more complicated)
properties as the ordinary higher differentials of smooth maps between vector spaces.

B.6. Geodesics and exponential map. If ∇ is an affine connection on M , then an
affine map

γ : R ⊃ I →M

is called a geodesic. Here I is an open interval in R , equipped with the canonical connection
induced from R . For v ∈ TpM , there exists a unique geodesic γv with γv(0) = p and γ̇v(0) = v .
The map

Exp = Expp : TpM ⊃ U →M, v 7→ γv(1),

where U is a suitable neighborhood of 0 in TpM , is called the exponential map of ∇ (at the
point p). It is a local diffeomorphism (cf. [Lo69a, p.22]).
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Notes for Chapter I.

I.1. – I.3. We have closely followed the presentation from [Lo69a] and [KoNo69]. The simple
observation stated in Prop. I.2.1 and its consequences simplify some arguments given there. The
terminology “prime” (Def. I.1.4) is used by O. Kowalski ([Kow80, p.41]). For a discussion of
the relation between homomorphisms of LTS and equivariant maps we refer to [Jac51] (cf. also
Notes to Ch.V).

I.4. The definition of symmetric spaces via the multiplication map (Def. I.4.4) is due to
O.Loos ([Lo67], [Lo69a]).

I.5. Representations of Lie triple systems already appear in [Jac49], but representations
of symmetric spaces seem not yet to have been considered as a proper subject in the literature.
The quadratic map has been introduced by O. Loos ([Lo67], [Lo69a]).

I.6. Our presentation of examples is an enlarged version of [Lo69a, Section II.1.2]; see
also [MnT86, Appendice 6.A]. Spaces of complex structures in classical groups are classified and
investigated in [Bir98].

Appendix B. The treatment of the curvature in Section B.3 is inspired by the introduction
of affine connections in [Lo69a, p.19]; see also [Po62]. As mentioned in Remarks I.B.4 and I.B.9, it
is possible to extend this idea to a general theory of higher order differentials on affine manifolds
(unpublished notes of the author).
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Chapter II: Prehomogeneous symmetric spaces and Jordan algebras

Prehomogeneous symmetric spaces are symmetric spaces which are open orbits under the
action of a linear group in a vector space. The interaction of the symmetric space structure with
the flat structure of the ambient vector space gives rise to new features: a new, commutative
algebra, the so-called Lie triple algebra emerges (Section 1). The most important examples of
these algebras are Jordan algebras. They are characterized by the fact that the quadratic map
of the corresponding symmetric space extends to a quadratic polynomial defined on the ambient
vector space. We call the corresponding prehomogeneous symmetric spaces quadratic (Section
2). Important examples of such spaces are the general linear groups and the cones of positive
definite symmetric matrices (Section 3). In the final section we introduce briefly two other classes
of symmetric orbits in vector spaces; a typical example is given by the orthogonal groups which
are certain closed symmetric orbits in the vector space of real or complex matrices.

1. Prehomogeneous symmetric spaces and Lie triple algebras

Definition II.1.1. Let G be a closed subgroup of the general linear group Gl(V ) of a complex
or real vector space V .

(1) An orbit G.e ⊂ V (e ∈ V ) is called a symmetric orbit if G/H , where H is the stabilizer
of e in G , is a symmetric space.

(2) If there exists a point e ∈ V such that the orbit Ω := G.e is open in V , then we say that
(G,V, e) is a prehomogeneous vector space (with base point).

(3) If Ω = G.e is an open symmetric orbit in V , we say that (G, σ, V, e) is a prehomoge-
neous symmetric space. Here σ is the involution of G belonging to the symmetric space
Ω = G/H . Homomorphisms of prehomogeneous symmetric spaces are linear base point-
preserving maps which are, when restricted to the open symmetric orbit, homomorphisms
of symmetric spaces.

The most important example of a prehomogeneous symmetric space is the group Gl(n,F)
which is an open symmetric orbit in the matrix space M(n,F). More examples are given in
Section 3.

If (G,V, e) is a prehomogeneous vector space, the projection G→ V, g 7→ g.e is open, and
therefore its differential at the base point

eve : g→ V, X 7→ Xe =
d

dt
|t=0 exp(tX).e

is surjective. Here g ⊂ gl(V ) denotes the Lie algebra of G ⊂ Gl(V ); it is identified with the
tangent space TeG . The kernel of eve is h , the Lie algebra of the stabilizer H of the base point
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e . If in addition the open orbit is symmetric in the sense of Def. II.1.1, we denote as usual by
g = h ⊕ q the decomposition w.r.t. the differential of σ . Then κ := eve|q is a bijection whose
inverse we denote by L : V → q . Now the action of g on V restricted to q yields a bilinear map
(in other words, an algebra structure)

Ae : V × V → V, (x, y) 7→ xy := L(x)y,

and L(x) is the operator of left multiplication by x in this algebra. The base point e becomes a
right unit for this algebra: L(x)e = κ(L(x)) = x for all x , whence xy = L(x)L(y)e . Moreover,
since [q, q] ⊂ h , it follows that xy−yx = [L(x), L(y)]·e ∈ h·e = 0, and the product is commutative.
This implies that e is also a left unit, i.e. L(e) = idV . Hence exp(λL(e)) = eλ idV ∈ G , and
we thus see that all non-zero scalars belong to G in the complex case, and all positive scalars
belong to G in the real case. Hence the open orbit Ω is a (in general non-convex) cone.

Lemma II.1.2. The map L : V → q is H - and h-equivariant. In other words, H is a subgroup
of the group Aut(V,Ae) of automorphisms of the algebra structure Ae , and h is a subalgebra of
the Lie algebra Der(V,Ae) of derivations of Ae .

Proof. For h ∈ H , h · e = e , and hence eve(h ◦X ◦ h−1) = h(Xe) = h(eve(X)), thus κ is
H -equivariant. By derivation, it follows that κ is also h -equivariant, and the same is true for
L = κ−1 .

Let us recall some basic notions related to algebras in order to explain the second statement.
We identify Ae : V ⊗ V → V and L : V → q ⊂ Hom(V, V ) under the canonical isomorphism
Hom(V ⊗V, V ) ∼= Hom(V,Hom(V, V )). Recall from elementary representation theory that Gl(V )
acts in a natural way on these spaces such that they are both isomorphic to V ∗ ⊗ V ∗ ⊗ V as
Gl(V )-modules. The automorphism group Aut(V,Ae) of Ae is the stabilizer of Ae in Gl(V ); it
is the group of invertible linear maps commuting with Ae , or (equivalently) commuting with L .
Its Lie algebra is the Lie algebra Der(V,Ae) := {X ∈ gl(V )|X · Ae = 0} of derivations of Ae .
Here X ·A = X ◦A−A◦(X⊗ id + id⊗X) is the natural action of gl(V ) on Hom(V ⊗V, V ). The
condition X · A = 0 is equivalent to the rule X(uv) = (Xu)v + u(Xv), where uv = A(u ⊗ v),
and to [X,L(v)] = L(Xv) for all u, v ∈ V .

(Remark. One can easily show that the association of the algebra Ae to a prehomogeneous
symmetric space is functorial; the lemma can be seen as a consequence of this fact.) The lemma
implies that

[L(V ), L(V )] = [q, q] ⊂ h ⊂ Der(V,Ae). (1.1)

Algebras with this property have been investigated by H. Petersson ([Pe67]) who introduced the
following terminology.

Definition II.1.3. A commutative algebra (V,A) satisfying [L(V ), L(V )] ⊂ Der(V,A) (where
L(v)x := A(v, x) is left multiplication by v ∈ V ) is called a Lie triple algebra.

Putting X = [L(x), L(y)] ∈ Der(V,Ae), we have [X,L(a)] = L(Xa), and (1.1) can be
written explicitly in the form of the following identities (1.2) or (1.3):

[[L(x), L(y)], L(a)] = L(x(ya)− y(xa)), (1.2)

x(y(ab))− y(x(ab)) + b(y(xa))− b(x(ya)) + a(x(yb))− a(y(xb)) = 0. (1.3)

The identity (1.2) explains the terminology: the space L(V ) is a Lie triple system. From this it
follows that Der(V,A)⊕ L(V ) is a symmetric Lie algebra.
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Definition II.1.4. Given a Lie triple algebra (V,A) with unit element e , the Lie algebra

str(V ) := str(V,A) := Der(V,A)⊕ L(V ) ⊂ gl(V )

is called the structure algebra of (V,A). If G ⊂ Gl(V ) is the analytic subgroup with Lie algebra
str(V ), then the orbit

Ω := G · e ⊂ V

is called the associated cone.

Remark II.1.5. Since L(V ) → V , L(v) → L(v)e = v is surjective, the associated cone of a
unital Lie triple algebra is open in V , and since eRL(e) = eR idV ⊂ G , it is indeed a cone. The Lie
algebra of the stabilizer H of e is Der(V,A), and thus Ω is a locally symmetric space belonging
to the LTS L(V ). However, in general we cannot lift the the corresponding involution from the
Lie algebra to the group G , and thus Ω is in general not globally symmetric. Roughly speaking,
one can therefore say that unital Lie triple algebras correspond bijectively to a local version of
prehomogeneous symmetric spaces.

We will see in the next section that for Jordan algebras a global version of a similar statement
holds (Th. II.2.13).

2. Quadratic prehomogeneous symmetric spaces

2.1. The quadratic representation. For a prehomogeneous symmetric space with open
symmetric orbit Ω, the quadratic map Q : Ω → Gl(V ) is a representation of Ω in the sense
of Def. I.5.1. Recall that it is equivariant w.r.t. the group of automorphisms of Ω, hence in
particular w.r.t. G : Q(gx) = gQ(x)σ(g)−1 for all g ∈ G , x ∈ Ω. In the following we denote by
W the vector space V together with the G-action by g.w = σ(g)(w). Then we can consider Q
as a G-equivariant map

Q : V ⊃ Ω→ Hom(W,V ) = W ∗ ⊗ V, x 7→ Q(x).

If g = t idV ∈ G is a scalar with t > 0, then σ(g) = t−1 idV , and thus

Q(tx) = t idV ◦Q(x) ◦ t idV = t2Q(x);

i.e. Q is homogeneous of degree two.

Definition II.2.1. A prehomogeneous symmetric space (G, σ, V, e) is called quadratic if the
quadratic map

Q : V ⊃ Ω→ G ⊂ Hom(W,V ), g · e 7→ gσ(g)−1

is quadratic polynomial, i.e. it extends to a homogeneous quadratic polynomial called the
quadratic representation and denoted by Q : V → Hom(W,V ).

Assume that Q is as in the definition. This means that Q(x, y) := Q(x+ y)−Q(x)−Q(y)
defines a symmetric bilinear map Q : V × V → V . Then the first differential of the quadratic
map Q : V → Hom(W,V ) is given by

DQ : V → Hom(V,Hom(W,V )), x 7→ DQ(x) = Q(x, ·)
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This is a G-equivariant linear map. The second differential

D2Q : V → Hom(S2V,Hom(W,V )), x 7→ D2Q(x) = Q(·, ·)

is a constant G-equivariant map (where S2(V ) ⊂ V ⊗ V is the second symmetric power of V ),
and Taylor’s formula reads

Q(x) =
1
2

D2Q(0) · (x⊗ x) =
1
2
Q(x, x).

We let
T : V ⊗W ⊗ V → V, x⊗ y ⊗ z 7→ Q(x, z)y.

Then by definition Q(x)y = 1
2T (x, y, x).

Lemma II.2.2. If Q is the quadratic representation of a quadratic prehomogeneous symmetric
space, then the “fundamental formula”

Q(Q(x)y) = Q(x)Q(y)Q(x) (2.1)

holds for all x, y ∈ V .
Proof. By Lemma I.5.7 (i), this formula holds for x, y ∈ Ω. Since it is a polynomial formula
verified on an open set, it holds on all of V .

Lemma II.2.3. The differential of Q : V → Hom(W,V ) at the base point,

DQ(e) : V = TeΩ→ End(V )

is identified with 2L , where L(v)x = vx is as in the preceding section.
Proof. Since v = L(v)e for all v ∈ V , we have

DQ(e)v =
d

dt
|t=0Q(exp(tL(V ))e) =

d

dt
|t=0 exp(2tL(v)) = 2L(v),

where we used that σ(exp(tL(v))−1 = exp(tL(v)).

On the other hand, (DQ(e))v = Q(e, v), whence for all v ∈ V ,

Q(e, v) = 2L(v). (2.2)

Proposition II.2.4. With the notation used above, the formulas

Q(x, z) = 2(L(x)L(z) + L(z)L(x)− L(xz)),

Q(x) = 2L(x)2 − L(x2)

hold.
Proof. As already remarked above,

Q : V ⊗ V ⊃ S2(V )→ Hom(W,V ),

is a G-equivariant map. Because it is linear, it is also g -equivariant. This means that for all
X ∈ g and v, w ∈ V

Q(Xv ⊗ w + v ⊗Xw) = X ◦Q(v, w)−Q(v, w) ◦ σ̇(X). (2.3)

Using (2.2), we let X := L(u) = Q(e⊗ u) ∈ q with u ∈ V . Then σ̇(X) = −X , and (2.3) yields

Q(uv ⊗ w + v ⊗ uw) = L(u)Q(v ⊗ w) +Q(v ⊗ w)L(u). (2.4)

Evaluating for v = e and using (2.2), this implies

Q(u⊗ w) + 2L(uw) = 2L(u)L(w) + 2L(w)L(u),

whence the claim.



38 Chapter II: Prehomogeneous symmetric spaces and Jordan algebras

The preceding proposition can also be written in the form

1
2
T (x, y, z) = x(yz) + z(yx)− (xz)y = ([L(x), L(y)] + L(xy))z. (2.5)

Definition II.2.5. A Jordan algebra is a commutative algebra (V,A) in which the identity

(J2) x(x2y) = x2(xy)

(or, equivalently, [L(x), L(x2)] = 0) holds.

By an elementary calculation one can show that every Jordan algebra is a Lie triple algebra
(cf. [FK94, Prop. II.4.1]). The converse is not true (cf. [Pe67]). The next theorem relates
quadratic prehomogeneous symmetric spaces to unital Jordan algebras.

Theorem II.2.6. Let (V,G, σ, e) be a prehomogeneous symmetric space with associated Lie
triple algebra Ae . Then the following are equivalent:

(i) The space (V,G, σ, e) is quadratic.
(ii) The map

Ã : Ω→ Hom(V ⊗ V, V ), g · e 7→ σ(g) ·Ae := σ(g) ◦Ae ◦ (σ(g)−1 ⊗ σ(g)−1)

is linear (i.e. it is given by restricting a linear map to Ω).
(iii) The algebra Ae is a Jordan algebra.

If (i) – (iii) hold, then the fundamental formula (2.1) and the identity

(JT2) T (T (x, y, u), v, w)− T (u, T (y, x, v), w) + T (u, v, T (x, y, w)) = T (x, y, T (u, v, w))

are verified.

Proof. We prove that (i) implies (iii). Let (V,G, σ, e) be quadratic. We have already proved
(2.1). In order to prove (J2) and (JT2), we write T (x, y)z := T (x, y, z); then

T : V ⊗W → End(V ), v ⊗ w 7→ (x 7→ T (v, w, x))

is g-equivariant. By (2.5) we have the explicit formula

T (x, y) = 2([L(x), L(y)] + L(xy)) (2.6)

which implies that T (V ⊗W ) ⊂ g . We choose X = T (x, y) ∈ g and use the g -equivariance of
T , noting that σ̇(T (x, y)) = (2[L(x), L(y)]− L(xy)) = −T (y, x):

T (T (x, y)u⊗ v − u⊗ T (y, x)v) = [T (x, y), T (u, v)]. (2.7)

When applied to an element w ∈ V , this is precisely (JT2). We choose y = e ; then since
T (x, e) = 2L(x), (2.7) yields

T (xu⊗ v)− T (u⊗ xv) = [L(x), T (u, v)]. (2.8)

Using again the explicit formula (2.6) for T , we obtain an equation between elements of g = h⊕q .
Since the sum is direct, this is equivalent to two equations, one between operators from q and
the other between operators from h . The former is nothing but the identity defining a Lie triple
algebra (Eqn. (1.2)). The latter reads

[L(xu), L(v)] + [L(vx), L(u)] + [L(uv), L(x)] = 0. (2.9)
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Putting u = v = x , we get the Jordan identity (J2).
For the proof that (iii) implies (i), the preceding arguments can essentially be all reversed:

we polarize (J2) and get (2.9). Defining now T (x, y) by the right hand side of Eqn. (2.6) and
q by q(x, y)z := T (x, z, y), we get (2.8) from (2.9) and from the defining relation of a Lie triple
algebra. This implies (2.7), that is, the g -equivariance of T and q . It follows that q has the
same Go -equivariance as Q , and since q(e) = Q(e) = idV , we get Q(x) = q(x) for all x ∈ Ω.
Since q is by definition a quadratic polynomial, (V,G, σ, e) is quadratic.

We prove that (ii) implies (iii). Note that Ã is linear if and only if the G-equivariant map

S : V × ΩW → End(V ), (v, x) 7→ Ã(x)(v ⊗ ·)

is bilinear; here ΩW is the open orbit Ω with the action of G induced by W . If this is the case,
then S is g-equivariant, and specializing to X = L(v) ∈ q ⊂ g , we see as above that S = t is
given by formula (2.6). Now the arguments given above apply, leading to (JT2) and (J2).

Conversely, the arguments proving that (iii) implies (i) show that (iii) also implies (ii).

Remark II.2.7. (1) Let Ap be the Lie triple algebra associated to Ω by the construction of the
preceding section when choosing p ∈ Ω as base point. Then it is easily verified that Ag·e = g ·Ae
for g ∈ G . Using Prop. I.2.1, one can show that p 7→ Ap , considered as a tensor field of type
(2,1), is the difference between the canonical flat connection of V and the canonical connection
of Ω = G/H .

(2) The reader may wonder whether it can be seen directly that properties (i) and (ii) of the
preceding theorem are equivalent. However, this it is not so easy because the “initial values”
given by (i) and (ii) are different: in terms of the trilinear map T , condition (i) gives us the
initial value T (e, ·, v) = 2L(v) (cf. Eqn. (2.2)), whereas (ii) gives T (v, e, ·) = 2L(v). It seems
thus that both (i) and (ii) reflect important properties of Jordan algebras. Under our geometric
view point, (i) is a global or “integral” property intimately related to the fundamental formula
(2.1), whereas (ii) is rather an infinitesimal or “differential” property intimately related to the
identity (JT2) which will play a crucial role in the next chapters.

Definition II.2.8. A polynomial representation of a quadratic prehomogeneous symmetric
space (V,G, σ, e) is a representation (in the sense of Def. I.5.1)

π : Ω→ Gl(E)

of the symmetric space Ω = G.e such that π is given by restricting a homogeneous polynomial
map without constant term

π̃ : V → End(E)

to Ω.

In this sense the quadratic representation Q of Ω is a polynomial representation (homoge-
neous of degree two), and det ◦Q is a polynomial representation of degree 2 dimV . It is easily
verified that a linear representation is a homomorphism V → End(E) of Jordan algebras.

2.2. Jordan inverse, multiplication map and structure group. We assume that
(V,G, σ, e) is a quadratic prehomogeneous symmetric space and derive some important conse-
quences of the “quadratic property”.

Proposition II.2.9.
(i) The symmetry se : Ω→ Ω , ge 7→ σ(g)e extends to a birational map j of V given by

j(x) = Q(x)−1x.
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Its differential is given by Dj(x) = −Q(x)−1 .
(ii) The multiplication map µ of the symmetric space Ω is given for x, y ∈ Ω by

µ(x, y) = Q(x)j(y) = Q(x)Q(y)−1y,

and it extends to a multiplication map on the open dense subset V ′ := {x ∈ V | DetQ(x) 6=
0} of V .

Proof. (i) By definition of se and Q , we have for all x = g.e ∈ Ω, se(x) = σ(g)e =
σ(g)g−1g.e = Q(x)−1x ; therefore se extends rationally to the map j which is non-singular on
the open dense set {x ∈ V | detQ(x) 6= 0} .

The symmetry se is a G -equivariant map Ω → ΩW . Therefore its differential is a G -
equivariant map D(se) : Ω→ Hom(V,W ) such that (Dse)(e) = − idV . Let x = g.e . Then

(Dse)(x) = (Dse)(g.e) = σ(g) ◦ (Dse)(e) ◦ g−1 = −σ(g)g−1 = −Q(x)−1.

By rationality of both sides, this extends to the equation Dj(x) = −Q(x)−1 .
(ii) By definition of the multiplication map (Section I.4), for all x, y ∈ Ω,

µ(x, y) = sxy = sxsesey = Q(x)sey = Q(x)j(y).

If x, y ∈ V ′ , then (using formula (2.1))

detQ(Q(x)j(y)) = detQ(Q(x)Q(y)−1y) = detQ(x)2 detQ(y)−1 6= 0.

Thus µ : V ′ × V ′ → V ′ is well-defined, and by rationality the properties (M1) – (M4) extend
from Ω to V ′ .

The arguments of the preceding proof show that also {x ∈ V | DetQ(x) = 1} is a symmetric
space with multiplication map given by (ii).

Corollary II.2.10. With the multiplication map from the preceding proposition and the atlas
given by V , V ′ is an algebraic symmetric space in the sense of Def. I.4.4 (3).

Note that V ′ is in general non-connected. For example, if V = M(n,R), then V ′ =
Gl(n,R) has two connected components, namely the elements with positive and those with
negative determinant. In this case Q(X)Y = XYX (see Section II.3.1), and the formula for µ
reduces to µ(X,Y ) = Q(X)Y −1 = XY −1X (already known from Ex. I.4.2).

Definition II.2.11. If detQ(x) 6= 0, then we let x−1 := j(x) = Q(x)−1x . The birational
map j is called the Jordan inverse. The group of linear automorphisms of µ ,

Aut(µ) ∩Gl(V ) = {g ∈ Gl(V )| ∀x, y ∈ V ′ : µ(gx, gy) = gµ(x, y)},

is called the structure group of the Jordan algebra (V,A) and is denoted by Str(V ) or Str(V,A).

In the example V = M(n,R) (and more generally for Jordan algebras derived from
associative algebras, cf. 3.1), the Jordan inverse coincides with the usual inverse.

Proposition II.2.12.
(i) The structure group is equal to each of the following groups:

{g ∈ Gl(V )| ∃g] ∈ Gl(V ) : ∀x ∈ V : Q(gx)g] = gQ(x)}, (2.11)
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{g ∈ Gl(V )| jgj ∈ Gl(V )}, (2.12)

and the equation g] = jgj holds.
(ii) The data (V,Str(V ), ], e) define a quadratic prehomogeneous symmetric space.
(iii) The Lie algebra of Str(V ) is

str(V ) := str(V,A) = Der(V,A)⊕ L(V ).

Proof. (i) A diffeomorphism g is an automorphism of µ if and only if for all x ∈ V ′ ,
sgx ◦ g = g ◦ sx . With the explicit formula sx = Q(x) ◦ j from Prop. II.2.9, this is equivalent to

Q(gx) ◦ j ◦ g = g ◦Q(x) ◦ j,

which can be written
Q(gx) ◦ jgj = g ◦Q(x). (2.13)

Since Q(x) and Q(gx) are invertible linear maps, it follows that jgj is a linear map if g is linear.
Thus Str(V ) is a subgroup of the group defined by (2.12), and putting g] := jgj , we see that it
is also a subgroup of the group defined by (2.11).

Conversely, if g satisfies the condition from (2.11), then

µ(gx, gy) = Q(gx)Q(gy)−1gy = gQ(x)(g])−1g]Q(y)−1g−1gy = gµ(x, y),

and thus g belongs to Str(V ). If g satisfies the condition from (2.12), then the differential
Dj : V ′ → End(V ) has the following equivariance property: for all g belonging to the group
defined by (2.12),

Dj(gx) = jgj ◦Dj(x) ◦ g−1.

(This follows from the fact that j : V ′ →W ′ is equivariant, where W ′ is the space V ′ with the
action by g.x := jgj(x).) With the explicit formula Dj(x) = −Q(x)−1 from Proposition II.2.9
(i), we get (2.13), i.e. g ∈ Aut(µ).

(ii) The orbit Str(T ).e is open in V since it contains exp(L(V )).e . It is symmetric because
Str(T ) ⊂ Aut(µ) by definition and ] is given by conjugation with the symmetry se = j (part
(i)).

(iii) From Eqn. (2.11) it follows that the Lie algebra of Str(V ) is the space

l := {X ∈ gl(V )| ∃X] ∈ gl(V ) : ∀v ∈ V : Q(Xv ⊗ v + v ⊗Xv) = X ◦Q(v, v)−Q(v, v) ◦X]},

and X 7→ X] is the differential of g 7→ g] at the unit element. The equivariance property of Q
already used in the proof of Prop. II.2.3 (cf. Eqn. (2.3)) shows that Der(V )⊕L(V ) ⊂ l . On the
other hand, let l = h⊕q be the decomposition w.r.t. X 7→ X] . Then L(V ) ⊂ q , and for reasons
of dimension we have equality. Next, Der(V ) ⊂ h , and again equality holds since the arguments
proving Lemma II.1.2 apply.

Finally we will prove that the functor from quadratic prehomogeneous symmetric spaces
to unital Jordan algebras is surjective. If one starts with a Jordan algebra V with product
xy and unit element e , then one defines the quadratic representation of (V,A) by Q(x) :=
2L(x)2 − L(x2), where L(x)y = xy , and the associated triple product is defined by T (x, y, z) =
2(x(yz)−y(xz)+(xy)z). The structure group of (V,A) is defined by Eqn. (2.11). In this context
it is easily seen that this is a group and ] is an automorphism, but it is less evident that it is
involutive.
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Theorem II.2.13. If V is a Jordan algebra with unit element e , then

(V,Str(V ), ], e)

is a quadratic prehomogeneous symmetric space whose associated algebra is the algebra we started
with.

Proof. As already mentioned, any Jordan algebra is a Lie triple algebra. Thus we can associate
to it a prehomogeneous locally symmetric space in the sense of Remark II.1.5. All arguments
from the proof of Th. II.2.6 apply locally, showing that this space is actually “locally quadratic”.
But, as seen in Proposition II.2.9, then the local symmetry se extends to a birational map j of
V , and our locally symmetric space is actually a connected component of V ′ and is global with
multiplication map µ . Now the theorem follows by the same arguments which have been used
in the proof of part (ii) of the preceding proposition.

2.3. Power associativity. For k ∈ N we define the powers of x in the Jordan algebra
(V,Ae) by

xk := L(x)ke, x−k := j(xk),

the latter provided that detQ(x) 6= 0.

Lemma II.2.14. The powers in the symmetric space Ω (Def. I.5.6) and the powers in the
Jordan algebra (V,Ae) coincide.

Proof. We have to prove that Q(x)ke = L(x)2ke and Q(x)kx = L(x)2kx for all k ∈ N . Using
the formula Q(x) = 2L(x)2 − L(x2), we have for k = 1: Q(x)e = 2x2 − x2 = x2 = L(x)2e ,
Q(x)x = 2x3 − x2x = x3 = L(x)2x . Since Q(x) and L(x) commute, the claim now follows by
induction.

An algebra V with product denoted by x · y is called power-associative if

xk · xl = xk+l

for all k, l ∈ N , where as above xk = L(x)ke .

Theorem II.2.15. A unital Lie triple algebra is a Jordan algebra if and only if it is power
associative.

Proof. (1) Let V be a power associative Lie triple algebra with unit e . For v ∈ V we define

Exp(v) := exp(L(v)) · e =
∑
k

vk

k!

(this is the exponential map Exp : V = TeΩ→ Ω ⊂ V associated to the locally symmetric space
Ω; cf. Remark II.1.5.) From the fact that V is power associative one deduces as for the usual
exponential map that for all v ∈ V and s, t ∈ R ,

Exp(tv) · Exp(sv) = Exp((s+ t)v).

Thus for x = Exp(v) = exp(L(v)) · e ∈ Ω, we have

Q(x)e = Q(exp(L(v)) · e)e = exp(L(v))Q(e) exp(L(v))e = exp(2L(v))e = Exp(2v) = x2.

This is a quadratic polynomial in x . Now let y = g · e ∈ Ω with g ∈ G ; then

Q(x)y = Q(x)g · e = σ(g)Q(σ(g)−1x)e = σ(g)(σ(g)−1x)2
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is again quadratic in x . Since Ω is open in V , it follows that x 7→ Q(x) is quadratic, and
according to Th. II.2.6, V is a Jordan algebra.

(2) Now we assume that V is a Jordan algebra with unit element e . Let R ⊂ V be
the R -linear span of the powers e = x0, x, x2, . . . and let R′ = R ∩ V ′ be the set of invertible
elements in R . Since the powers in V coincide with the powers in Ω, Lemma I.5.7 (i) yields
µ(xn, xm) = x2n−m , and we deduce by rationality of µ that µ(R′, R′) ⊂ R′ . Thus R′ is a
subsymmetric space of V ′ . From the construction of the algebra associated to a prehomogeneous
symmetric space (Section II.1) it follows that R is a subalgebra of V . We will prove the following
lemma showing that for this subspace the formula for µ from Prop. II.2.9 can be simplified.

Lemma II.2.16. For all a, b ∈ R′ ,

µ(a, b) = L(a2)b−1 = a2 · b−1.

Proof. We say that an element y ∈ R generates R if R is the R-linear span of the powers
e, y, y2, . . . . Since this can be expressed by algebraic equations (using determinants), it follows
that the set of generating elements is open dense in R .

We fix a generating element y and prove first by induction that for all m ∈ N , y2 · ym =
ym+2 . For m = 1 this is clear, and assuming that the equation holds for m− 1, we get by (J2)

ym+2 = L(y)ym+1 = L(y)L(y2)ym−1 = L(y2)L(y)ym−1 = y2 · ym.

We have proved that R is stable under L(y)2 and under L(y2), and that both operators coincide
on R . Since Q(y) = 2L(y)2 − L(y2), we conclude that R is stable under Q(y) and

Q(y)|R = L(y2)|R = L(y)2|R.

If y is invertible, then Q(y) is invertible, and thus also Q(y)−1y = y−1 ∈ R .
Thus we get for all invertible generating elements a, b ∈ R that

µ(a, b) = Q(a)b−1 = L(a2)b−1 = a2 · b−1.

By density, the equation holds for all a, b ∈ R′ .

Now we finish the proof of the theorem. Assuming that x is invertible, we deduce from
Lemma I.5.7 and the preceding lemma that for all n,m ∈ Z ,

x2n−m = µ(xn, xm) = (xn)2 · x−m = x2n · x−m.

Choosing −m ∈ N , we obtain power associativity for the case that one of the exponents is even.
The general case is reduced to this one since on an open neighbourhood of e every element x =
exp(X) ·e can be written x = y2 where y = exp(X2 ) ·e ; then xmxn = y2ny2m = y2m+2n = xm+n .
Now power associativity, being an algebraic identity, extends from an open set to all of V .

Note that in the proof of part (2) we have shown more than anounced, namely that R′ ⊂ V ′
is a subsymmetric space; it is an abelian group w.r.t. the product (a, b) 7→ a · b , and its
multiplication map µ comes from this group structure via the usual formula µ(a, b) = ab−1a =
a2b−1 .
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3. Examples

3.1. Associative algebras. Let V be an associative algebra with unit element e and
denote by V × ⊂ V the group of invertible elements. The group G = V × × V × acts on V by
((g, h), v) 7→ gvh−1 . The G -orbit G.e is equal to V × and is therefore open in V .

Lemma II.3.1. The prehomogeneous symmetric space just defined is quadratic, and the asso-
ciated Jordan algebra Ae is given by

Ae(X,Y ) =
1
2

(XY + Y X).

Proof. The open orbit G.e is symmetric w.r.t. the involution σ((g, h)) = (h, g) of G . Let
X ∈ V × . Then X = g.e with g = (X, e) ∈ G , and for all Y ∈ V ,

Q(X)Y = gσ(g)−1.Y = ((X, e)(e,X−1)).Y = (X,X−1).Y = XYX.

Thus Q extends to a quadratic polynomial on V . Polarizing Q , we get the triple product

T (X,Y, Z) = (Q(X + Z)−Q(X)−Q(Z))Y = XY Z + ZY X

and the Jordan product

Ae(X,Y ) =
1
2
T (X, e, Y ) =

1
2

(XY + Y X).

Specializing the lemma to the associative matrix algebras M(n,F) (F = R,C,H), we see
that the general linear groups Gl(n,F) are (real) quadratic prehomogeneous symmetric spaces;
for F = C we get a complex quadratic prehomogeneous symmetric space. Another example is the
associative algebra V of upper triangular matrices. Its group of invertible elements is the group
exp(V ) of invertible upper triangular matrices. The corresponding Jordan algebra is nilpotent
in the sense that L(V ) is a nilpotent LTS.

3.2. Subspaces.

Lemma II.3.2. Let U be a subalgebra of a Jordan algebra V containing the unit element
e . Then the prehomogeneous symmetric space belonging to U is given by restricting the corre-
sponding data from V , and if ΩU denotes the connected open symmetric orbit associated to U ,
then

ΩU = (ΩV ∩ U)e.

Proof. Note first that, if x ∈ U is invertible in V , then j(x) ∈ U . In fact, U is stable under
Q(x) = 2L(x)2 − L(x2) since it is a subalgebra. If x is invertible, then Q(x) is a bijection of U
and hence j(x) = Q(x)−1x ∈ U . In this sense we can restrict j and the multiplication map µ
to U resp. to U × U .

Next, let GU be the group generated by exp(L(U)); then ΩU = GU .e ⊂ Ω and clearly
ΩU ⊂ U . By connectedness, ΩU ⊂ (ΩV ∩ U)e . For the other inclusion, recall from Prop. II.2.9
that ΩU is a connected component of U ′ = {x ∈ U |detQU (x) 6= 0} , and similarly for Ω. Now,
if x ∈ U and detQ(x) 6= 0, then detQU (x) 6= 0 since Q(x) can be written as a block-matrix(
QU (x)

0
∗
∗
)

. Thus x ∈ (V ′ ∩ U) implies x ∈ U ′ , and the other inclusion of the claim follows.



45

We may call the orbit ΩU ⊂ Ω a subspace of the prohomogeneous symmetric space given
by V . For example, the algebra U = Sym(n,R) is a subalgebra of M(n,R). It is the fixed point
set of the automorphism X 7→ Xt of M(n,R). The open symmetric orbit associated to U is
the cone Gl(n,R)/O(n) of symmetric positive definite matrices. More generally, we consider the
automorphism “adjoint” of M(n,F) assigning to X its adjoint X∗ = A−1ε(Xt)A (cf. Section
I.6.1); then the fixed point space is the space of A-symmetric (resp. Hermitian) operators and
the open orbits are of the form Gl(n,F)/O(A,F), resp. Gl(n,F)/U(A, ε,F), cf. Section I.6.2.
See Tables XII.1.1. and XII.1.2 for a complete list of normal forms.

3.3. Scalar extended quadratic hypersurfaces. Let V = Fn be a vector space over
F = R or C equipped with a non-degenerate symmetric bilinear form b and G ⊂ Gl(V ) the
subgroup generated by the group of isometries O(b) and the non-zero multiples of the identity.
Choose a base point e such that b(e, e) = 1. Let F be the orthogonal reflection with respect to
Fe . Then the stabilizer Ge is open in the fixed point group of the involution σ(λg) = λ−1FgF ,
(g ∈ O(b), λ ∈ F∗), and therefore G.e is a symmetric space.

Lemma II.3.3. The data (V,G, σ, e) define a quadratic prehomogeneous symmetric space. The
associated Jordan product is given by the formula

Ae(x, y) = b(x, e)y + b(y, e)x− b(x, y)e.

Proof. The decomposition g = h⊕ q is given explicitly by h = o(b|e⊥×e⊥) and

q = F idV ⊕q1, q1 = {X ∈ o(b)|FXF = −X}.
Direct verification shows that

L : Fe⊕ e⊥ → F idv ⊕q1, λe+ w 7→ λ+ e∗ ⊗ w − w∗ ⊗ e
(where (v∗ ⊗ u)(x) := b(v, x)u) is an inverse of eve : q → Fn , X 7→ X(e). This implies that
G.e ⊂ V is open. Moreover, letting z := x− b(x, e)e ∈ e⊥ , this formula yields

L(x)y = L(b(x, e)e+ z)y = b(x, e)y + b(y, e)z − b(z, y)e = b(x, e)y + b(y, e)x− b(x, y)e.

In order to prove that this is a Jordan product, note that

x2 := Ae(x, x) = 2b(x, e)x− b(x, x)e,

and thus L(x2) = 2b(x, e)L(x)− b(x, x) idV commutes with L(x), whence the identity (J2).

If F = R and b is positive definite, G.e is the complement of the origin, and if b has
signature (1, 3), then the connected component of e of G.e is the open Lorentz-cone. The
normal forms are b(x, y) = xtIp,qy , Ω = (SO(p, q)× R+)/ SO(p− 1, q).

The Jordan algebra just constructed can be interpreted as a subalgebra of the Clifford
algebra (cf. Section I.6.6) associated to V1 = e⊥ :

Lemma II.3.4. Let V1 be a real or complex vector space equipped with a bilinear form given
by symmetric non-singular matrix A . On V := F1⊕ V1 ⊂ Cl(A,F) we define a bilinear form b
by the block-matrix

(
1
0

0
−A
)

. Then V is a Jordan subalgebra of Cl(A,F) with Jordan product for
x, y ∈ V given by

xy + yx = b(x, 1)y + b(y, 1)x− b(x, y)1.
Proof. If x, y ∈ V1 , then the formula is true by the defining relation

xy + yx = xtAy · 1
of the Clifford algebra. If x = 1, then the right hand side reduces to y , in accordance to the fact
that 1 is the unit element of the Clifford algebra.

Note that in combination with Lemma II.3.2, the preceding Lemma yields an independent
proof of Lemma II.3.3.
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4. Symmetric submanifolds and Helwig spaces

Definition II.4.1. Let M = G.e ⊂ V be a symmetric orbit (cf. Def. II.1.1). We say that M
is an (extrinsic) symmetric submanifold of V if there exists a linear map Se : V → V such that
Se extends the symmetry se of M in the following sense:
(S1) S2

e = idV ,
(S2) Se|M = se ,
(S3) the tangent space TeM is equal to the −1-eigenspace V − of Se .

It follows immediately that for all p ∈M the symmetry sp has an extension with properties
(S1) – (S3). The properties (S1) – (S3) are not all independent. In fact, if M generates V as
a vector space, then (S1) follows from (S2). The inclusion TeM ⊂ V − follows already from
(S2) since linearity of Se implies that Se|TeM = Te(se) = − idTeM . The term “symmetric
submanifold” is justified by the observation that the canonical connection of M is induced from
the connection ∇0 of V via (∇XY )p = pr−p (∇0

XY )p , where pr−p is the projection onto the
−1-eigenspace of the linear map Sp .

Example II.4.2. (a) The sphere Sn = SO(n + 1)/ SO(n) is a symmetric submanifold of Rn :
as seen in Section I.6.6, the symmetries of Sn are induced by linear maps.
(b) The groups O(A,F) and U(A, ε,F) are symmetric submanifolds of M(n,F) with e = 1n
and Se(X) = X∗ .
(c) The spaces Mp,q of elements of order 2 in Gl(n,F) (Section I.6.3) are symmetric submanifolds
of M(n,F) with e = Ip,q and Se(X) = Ip,qXIp,q (for (S3) cf. Eqn. (6.26)). Similarly, the spaces
of elements of order 2 in O(A,F) are symmetric submanifolds of Sym(A,F). In particular, the
Grassmannian Grp,n(R) is a symmetric submanifold of Sym(n,R). Similarly for the spaces of
Lagrangians (Section I.6.4).
(d) The spaces of complex structures (Section I.6.4) are symmetric submanifolds of M(n,F),
resp. of Asym(A,F) with e = J and Se(X) = JXJ−1 .

Lemma II.4.3. Let V be a Jordan algebra with unit e and α an involutive automorphism of
V . Then the space

M := {x ∈ V | DetP (x) 6= 0, x−1 = α(x)}e

is a symmetric submanifold of V , homogeneous under the group

G := Str(V )(jα)∗
o = {g ∈ Str(V )| g] = α ◦ g ◦ α−1}o.

Proof. If Ω = Str(V )o.e is the open symmetric orbit associated to V , then jα is an involutive
automorphism of the symmetric space Ω. By definition, M is a connected component of the
jα -fixed subspace Ωjα of Ω and thus inherits a natural symmetric space structure. Since j is
the symmetry of Ω w.r.t. e , j|M = α|M is the symmetry of M w.r.t. e . Thus with Se := α the
properties (S1) – (S3) are clear. From the fact that Str(V )o contains the group G(Ω)o it follows
that G contains the group G(M)o and is thus transitive on M .

The symmetric submanifolds of unital Jordan algebras defined by the preceding lemma will
be called Helwig spaces since K.H. Helwig was the first who studied such spaces (cf. [Hw70]).
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Example II.4.4. The symmetric submanifolds from Example II.4.2 are in fact Helwig spaces:
in case (a) take the Jordan algebra defined in Section II.3.3; in case (b) take the Jordan algebra
M(n,F) with α(X) = X∗ ; in case (c) take the Jordan algebra M(n,F) resp. Sym(A,F) with
Jordan product (X,Y ) 7→ 1

2 (XIp,qY + Y Ip,qX) and α conjugation by Ip,q . Case (d) is treated
similarly, but one has to turn Asym(A,F) first into a Jordan algebra.

In particular, the spheres and all projective spaces are Helwig-spaces. This holds also for
the exceptional octonionic projective plane (cf. [Hw70]); thus all compact symmetric spaces of
rank 1 are Helwig spaces.

Problem II.4.5. We have defined Helwig spaces by a construction and not by a geometric
concept. What is the characteristic property of the Helwig spaces among the symmetric sub-
manifolds?

This problem will turn up again in Chapter XI.4. Let us put it into a more specific form: let
M ⊂ V be a symmetric submanifold and denote by V = V +⊕V − the eigenspace decomposition
w.r.t. Se . Following the construction from Section II.1, we denote by

L : V − → q, u 7→ L(u)

the inverse of the evaluation map

q→ V −, X 7→ Xe

which is bijective by (S3). Here g = h⊕ q is the usual decomposition w.r.t. conjugation by Se .
Thus we get a bilinear map

q× q→ End(V )Se , (u, v) 7→ L(u)L(v).

The eigenspaces V ± of Se are stable under the operators L(u)L(v), and thus we get a trilinear
map

V − × V − × V −, (u, v, w) 7→ uvw := L(u)L(v)L(w)e = L(u)L(v)w.

Note that
uvw − uwv = L(u)[L(v), L(w)]e = 0

since he = 0, and therefore the curvature tensor at the base point is given by

−Re(u, v)w = [[L(u), L(v)], L(w)]e = [L(u), L(v)]L(w)e = uvw − vuw.

In the Riemannian case, D. Ferus interpretes the term uvw essentially as the “second fundamental
form” and proves that

T (x, y, z) := R(x, y)z + zxy = yxz − xyz + zxy

is a Jordan triple system, i.e. it satisfies the identity (JT2) ([Fe80, Lemma 2]). This result
generalizes to the non-degenerate case, but it seems not to be known whether it holds in the
general framework defined here:

Problem II.4.6. (a) Give a necessary and sufficient condition on (M,V ) for T to be a Jordan
triple system.
(b) Under which additional conditions on (M,V ) can we define a Jordan algebra structure on
V + and on V such that V = V − ⊕ V + is the decomposition of a Jordan algebra under an
involution?
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Notes for Chapter II.

II.1. Prehomogeneous symmetric spaces and their relation with Lie triple algebras have
first been considered by Vinberg ([Vi63]) and Koecher (cf. the notion of “ω -Bereich” in [BK66])
and later by Shima [Shi75]. Our presentation is based on [Be94]; cf. also [Be98b].

II.2. The notion of quadratic prehomogeneous symmetric spaces is motivated by [Lo69a,
p.67 – 72] (cf. also [Lo67, Satz 1.4]) where essentially the implication (iii) ⇒ (i) of Th. II.2.6 is
proved and the formula for the multiplication map (Prop. II.2.9) has been noted. The equivalence
of (ii) and (iii) in Th. II.2.6 is taken from [Be94], cf. also [Be98b, Th.1.2.2]. The definition of the
structure group via Eqns. (II.2.11) and (II.2.12) goes back to Koecher (cf. [BK66, Section II.5]);
in order to simplify our notation we write g] where in [BK66] the notation (g])−1 is used. Power
associativity is a well-known property of Jordan algebras, cf. [BK66, IV., Satz 1.5], [FK94, Prop.
II.1.2]; the proof given here is a “geometric version” of the one from [FK94]. Conversely, the fact
that a power associative Lie triple algebra is a Jordan algebra can be found in the literature, cf.
[Pe67].

II.3. See Section XII.1 for the complete classification of simple real Jordan algebras and
for the determination of their structure groups.

II.4. Our definition of a symmetric submanifold is a group theoretic version of the differ-
ential geometric definition given by D.Ferus ([Fe80]) in the Riemannian case and by H. Naitoh
([Na84]) in the pseudo-Riemannian case. In theses cases one obtains, as remarked in the text, a
bijection of the corresponding objects with certain non-degenerate Jordan triple systems. To our
knowledge, the relation between the symmetric submanifolds and the Helwig-spaces has never
been systematically studied. In [Hw70], K.H. Helwig describes many interesting geometric fea-
tures of his spaces by using the imbedding. See the papers by R. Iordanescu [Io90], [Io98] for an
extensive bibliography of related topics.
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Chapter III: The Jordan-Lie functor

A complexification of a symmetric space is a symmetric space with invariant complex
structure containing the given space as the subspace fixed under a complex conjugation (an
antiholomorphic automorphism of order 2). This notion of complexification is broader than the
usual one. As an example consider the Poincaré disc D = SU(1, 1)/ SO(2). It has a SU(1, 1)-
invariant complex structure. The space fixed under the complex conjugation z 7→ z is the interval
]−1, 1[ which, as a symmetric space, is isomorphic to R . In our sense D is a complexification of
R . On the other hand, the symmetric space C is also a complexification of R . Thus a symmetric
space can have several complexifications which are not even locally isomorphic (C is flat and D
is not flat).

The preceding example illustrates already the two main types of complexifications: straight
complexifications generalize the complexification C , and twisted complexifications generalize the
complexification D of R . The latter might also be called a hermitification, and in the literature
the former are usually just called “complexifications”; they correspond to the complexification
of Lie algebras and Lie groups, and one often writes just MC = GC/HC in order to denote the
straight complexification of M = G/H . Algebraically, they correspond to a complexification of
the multiplication map µ similarly as in the case of Lie groups w.r.t. the group multiplication.

The behavior of twisted complexifications is completely different from the straight case. In
this chapter we give their formal definition (Section 2) and investigate their formal properties
(Sections 2 and 4); in Chapters VI–XI their geometric theory is developed. A central role in the
study of formal properties of complexifications is played by the structure tensor

T (X,Y )Z := −1
2

(R(X,Y )Z + J R(X,J Y )Z)

constructed from the curvature R and the invariant almost complex structure J corresponding
to the structure of a complex manifold. In the straight case, we have T = 0, whereas the twisted
case is characterized by the important relation

(!) T (X,Y )− T (Y,X) = −R(X,Y ).

It turns out that then T satisfies the algebraic relations of a Jordan triple system (JTS). The
main result of this chapter is that twisted complexifications correspond bijectively to Jordan
triple systems related via (!) to the curvature tensor; we call them Jordan extensions of R , and
the correspondence T 7→ R is called the algebraic Jordan-Lie functor. Our “formal method”
has the advantage that the bijection just mentioned is also an equivalence of categories (Th.
III.4.7) and that it immediately carries over to the “para-complex” case already mentioned in
the introduction (Section 0.3). Thus one goal mentioned in the introduction, the construction of
the “Jordan functor for Jordan triple systems”, is reached.
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However, a natural question remains, namely: how many inequivalent twisted complexifica-
tions does a symmetric space have, if any? In more algebraic terms: how many Jordan-extensions
does the curvature admit? Or how can we determine the fibers of the algebraic Jordan-Lie func-
tor? These are much harder problems; they remain open in general. Only in the irreducible case
one can give a preliminary answer by classification, see the following chapter.

1. Complexifications of symmetric spaces

Definition III.1.1. An almost complex structure on a manifold M is a tensor field J of type
(1, 1) (i.e., J = (Jp)p∈M where Jp is an endomorphism of the tangent space TpM ) such that
J 2
p = − idTpM for all p ∈ M . A smooth map ϕ : M → M ′ between manifolds with almost

complex structures J and J ′ is called almost holomorphic if for all p ∈M ,

Tpϕ ◦ Jp = J ′ϕ(p) ◦Tpϕ.

It is called almost anti-holomorphic if Tpϕ ◦ Jp = −J ′ϕ(p) ◦Tpϕ holds for all p ∈M .

For example, if M is a complex manifold (i.e. it has a complex atlas), then every tangent
space TpM of the underlying real manifold has a natural structure of a complex vector space. If
we let Jp be the multiplication by i in TpM , then J is an almost complex structure, and the
almost holomorphic maps are precisely the holomorphic ones w.r.t. the given complex atlas.

Definition III.1.2.
(1) An invariant almost complex structure on a symmetric space M is an almost complex

structure J on M which is invariant under the displacement group G(M) (i.e. G(M)
acts almost holomorphically). Homomorphisms of symmetric spaces with invariant almost
complex structure are almost-holomorphic homomorphisms of symmetric spaces.

(2) A global complexification of a symmetric space M is a symmetric space N together with
an invariant almost complex structure J and a conjugation τ (i.e. an almost anti-
holomorphic automorphism with τ2 = idN ) such that τ(o) = o and the symmetric space
M is isomorphic to the τ -fixed space Nτ (or to a union of connected components of Nτ ).
In this situation we say that M (or τ ) is a real form of N .

(3) A complexification of a germ Mo of a symmetric space is defined as a germ No of a
symmetric space with invariant almost complex structure and germ τ of a conjugation
such that Mo ∼= (No)τ , and again Mo is called a real form of No .

(4) A homomorphism of complexifications is a homomorphism of germs of symmetric spaces
with an extension to an almost-complex homomorphism of the complexifications.

Strictly speaking, we should use the term “almost-complexification” instead of “complexifi-
cation”. But (cf. Ch.VI, Appendix A) invariant almost complex structures on symmetric spaces
are integrable, and thus complexifications as considered here are indeed complexifications in the
sense of manifolds, i.e. N is a complex manifold defining J as explained above, and almost
(anti-) holomorphic maps are actually (anti-) holomorphic. These facts, however, will not be
needed in this chapter. We now give the infinitesimal version of the preceding definitions:

Definition III.1.3.
(1) An invariant complex structure on a LTS q is a complex structure J on the vector space

q such that for all X,Y, Z ∈ q ,

[X,Y, JZ] = J [X,Y, Z].
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Homomorphisms of LTS with invariant complex structure are complex linear homomor-
phisms of LTS.

(2) A complexification of a LTS q is a LTS p with an invariant complex structure J and a
conjugation τ (i.e. a complex antilinear automorphism with τ2 = idp ) such that the LTS
q is isomorphic the τ -fixed LTS pτ .

(3) A homomorphism of complexifications of LTS is a homomorphism of LTS together with a
C-linear extension to a homomorphism of the complexified LTS.

Proposition III.1.4.
(i) The category of germs of symmetric spaces with invariant almost complex structure is

equivalent to the category of Lie triple systems with invariant complex structure.
(ii) The category of local complexifications of germs of symmetric spaces is equivalent to the

category of complexifications of Lie triple systems.

Proof. (i) If J is invariant on M = G/H , then Jo is invariant under H and thus also under
h = [q, q] , i.e. U ◦ Jo = Jo ◦U for all U ∈ h . If we identify ToM with q in the usual way, then
Jo is identified with a complex structure J on q having the stated property.

Conversely, any such structure defines an h- and Ho -invariant complex structure Jo on
ToM . By forward transport with elements of G it defines an almost complex structure on some
neighborhood of o which is an invariant almost complex structure on the germ Mo .

Finally, the differential of an almost holomorphic homomorphism at the base point is a
complex linear homomorphism of LTS. Conversely, let α : q→ q′ be a C-linear homomorphism
of LTS and ϕ : M → M ′ be the corresponding homomorphism of germs symmetric spaces. We
have to show that it is almost holomorphic. By assumption, its differential ϕ̇ = α is C-linear.
Let p = g(o) ∈M with g ∈ G(M). According to Prop. I.3.5. there exists g′ ∈ G(M ′) such that
g′ ◦ ϕ = ϕ ◦ g . Thus

Tpϕ = To′g
′ ◦ Toϕ ◦ (Tog)−1

is a composition of C -linear maps and thus itself C -linear.
(ii) Clearly, under the equivalence (i), real forms of germs correspond bijectively to real

forms of Lie triple systems.

Proposition III.1.5. For any Lie triple product R : q× q× q→ q , the C-trilinear extension

RC : qC × qC × qC → qC

is a complex Lie triple product.

Proof. Let g = [q, q] ⊕ q be the standard-imbedding of q and σ its involution (Def. I.1.4).
Then the C-linear extension of σ is an involution of the complexified Lie algebra gC = g ⊕ ig ,
and the triple commutator on its −1-eigenspace qC is just the C -trilinear extension of the triple
commutator in q . This is again a Lie triple product.

Definition III.1.6. The complexification Mo
C of the germ Mo belonging to the complexifi-

cation qC of q defined in the previous proposition is called the straight complexification of Mo .

The preceding proof shows that, if Mo is the germ of the symmetric space G/H , then Mo
C

is the germ of
MC := GC/HC,

where GC is the connected simply connected group with Lie algebra gC and HC = GσC the
group fixed under the unique holomorphic involution whose differential at the origin is the
complexification of σ . It is clear, however, that MC is in general not a global complexification



52 Chapter III: The Jordan-Lie functor

of M = G/H . If one wants global complexifications one has to add further topological or
algebraic assumptions; we return to this point later (cf. Prop. X.3.6). Let us mention here just
that for the symmetric spaces described in Section I.6 we can easily construct global straight
complexifications (cf. I.6.5).

Lemma III.1.7. Let q be a LTS and A ∈ End(q) such that [X,Y,AZ] = A[X,Y, Z] for all
X,Y, Z ∈ q . Then the Lie triple product is A-linear in the first two variables if and only if for
all X,Y, Z ∈ q ,

[AX,Y, Z] = [X,AY,Z]. (1.1)

Proof. Let us assume that (1.1) holds. Then we get from the Jacobi-identity

0 = [AX,Y, Z] + [AZ,X, Y ] +A[Y,Z,X].

We add up the three equations obtained by cyclic permutation of X,Y, Z after having multiplied
the second by −1. Again by the Jacobi-identity, this gives

0 = 2[AX,Y, Z]− 2A[X,Y, Z],

whence A[X,Y, Z] = [AX,Y, Z] = [X,AY,Z] , proving that the LTS is A-trilinear. The converse
is trivial.

Proposition III.1.8. Under the correspondence of Th. I.2.9 (ii), Lie triple systems q with
C-trilinear triple product correspond bijectively to germs of symmetric spaces Mo with invariant
complex structure J such that the curvature R satisfies

R(X,J Y )Z = R(J Y,X)Z (1.2)

for all germs of vector fields X,Y, Z on Mo .

Proof. Recall (Cor. I.2.5) that the curvature R at o is equivalent to the LTS q of Mo .
Therefore complex LTS correspond bijectively to spaces with almost complex structures such
that R is J -trilinear. By the preceding lemma, this is equivalent to invariance combined with
(1.2).

Definition III.1.9. An invariant almost complex structure J on a symmetric space is called
straight if (1.2) holds.

The preceding proposition shows that a germ Mo of a symmetric space has one and only one
complexification (No,J , τ) such that J is straight for N , namely the straight complexification
Mo

C (Def. III.1.6).

2. Twisted complex symmetric spaces and Hermitian JTS

2.1. Twisted complex symmetric spaces.

Definition III.2.1. A twisted complex symmetric space is a symmetric space M with an
invariant almost complex structure J such that for all X,Y, Z ∈ X(M)

R(J X,Y )Z = −R(X,J Y )Z (2.1)

where R is the curvature tensor of M . An invariant complex structure J on a LTS q is called
twisted if for all X,Y, Z ∈ q

[JX, Y, Z] = −[X, JY, Z]

holds.
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It is clear that under the correspondence of Prop. III.1.4 germs of symmetric spaces with
twisted invariant almost complex structure correspond bijectively to LTS with twisted invariant
complex structures. If R = 0, then J may be straight and twisted at the same time, but otherwise
this is impossible. However, we will see later examples of spaces having different invariant almost
complex structures, one of it being straight and the other twisted.

Proposition III.2.2. If J is an invariant complex structure on a LTS q , then the following
are equivalent:

(i) J is twisted.
(ii) J is an automorphism of q , i.e.

∀X,Y, Z ∈ q : [JX, JY, JZ] = J [X,Y, Z].

(iii) J is a derivation of q , i.e.

∀X,Y, Z ∈ q : J [X,Y, Z] = [JX, Y, Z] + [X,JY, Z] + [X,Y, JZ].

Proof. In view of the invariance, the equivalence of (i) and (iii) is clear. Using in addition
that J2 = − idq , the equivalence of (i) and (ii) follows immediately.

Since etJ = cos(t) idq + sin(t)J and thus J = e
π
2 J and the exponential of a derivation is

an automorphism, we obtain another proof of the implication (iii) ⇒ (ii).

2.2. Structure tensor and Hermitian Jordan triple systems. Let M = G/H be
a symmetric space with curvature tensor R and invariant almost complex structure J . For
any p ∈ M , the space End(TpM) of endomorphisms of the tangent space TpM splits into a
direct sum of complex-linear and complex-antilinear (w.r.t. Jp ) elements. The endomorphism
R(X,Y ) of X(M) is by assumption complex-linear, but the endomorphism R(X, ·)Z in general
decomposes into two terms. We are thus lead to define the structure tensor T of J by

T (X,Y )Z = −1
2

(R(X,Y )Z − J R(X,J−1 Y )Z) = −1
2

(R(X,Y )Z + J R(X,J Y )Z).

Sometimes we will write T (X,Y, Z) instead of T (X,Y )Z . Since R and J are G-invariant, T
is a G -invariant tensor field of the same type as the curvature tensor. We write J for Jo . Then

To(X,Y )Z =
1
2

([X,Y, Z]− J [X, J−1Y,Z]) =
1
2

([X,Y, Z] + J [X, JY, Z])

is an H -equivariant map ⊗3q → q , called the structure tensor of J . Since To and Ro are,
by invariance, equivalent to T and R , we will suppress the index o when there is no risk of
confusion.

Proposition III.2.3.
(i) The structure tensor vanishes if and only if J is straight.

(ii) The Lie algebra g acts as a Lie algebra of derivations of T , and h acts as a Lie algebra of
derivations of To .

(iii) For all vector fields X,Y, Z on M ,

T (X,Y, Z) = T (Z, Y,X).

(iv) For all vector fields X,Y, Z on M ,

T (X,Y,J Z) = −T (X,J Y,Z) = T (J X,Y, Z) = J T (X,Y, Z).
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(v) J is twisted if and only if for all vector fields X,Y, Z on M ,

T (X,Y )Z − T (Y,X)Z = −R(X,Y )Z,

or, equivalently, To(X,Y )Z − To(Y,X)Z = [X,Y, Z] for X,Y, Z ∈ q .
Proof. (i) Clearly, T = 0 iff R is J -trilinear, and (ii) is the infinitesimal version of the
invariance of T under G , resp. under H .

(iii) Using the Jacobi-identity, we get

−2(T (X,Y, Z)− T (Z, Y,X)) = R(X,Y, Z)−R(Z, Y,X)+

J (R(X,J Y,Z)−R(Z,J Y,X))
= −R(Z,X, Y − J R(Z,X,J Y ) = 0.

(iv) T (X,Y )J Z = J T (X,Y )Z since J is invariant;

T (X,J Y )Z = −1
2

(R(X,J Y,Z)− J R(X,Y, Z)) = −J T (X,Y )Z;

T (J X,Y )Z = T (Z, Y )J Z = J T (Z, Y )X = J T (X,Y )Z,

using twice part (iii).
(v) The tensor

T (Y,X)Z − T (X,Y )Z −R(X,Y, Z) =
1
2
J (R(X,J Y, Z)−R(Y,J X,Z))

=
1
2
J (R(X,J Y, Z) +R(J X,Y, Z))

clearly vanishes if and only if J is twisted.

Proposition III.2.4. Let T = To be the structure tensor, evaluated at the base point, of an
invariant twisted almost complex structure J . Then the following holds for u, v, w, x, y, z ∈ ToM :

(JT1) T (x, y, z) = T (z, y, x)
(JT2) T (u, v)T (x, y, z) = T (T (u, v)x, y, z)− T (x, T (v, u)y, z) + T (x, y, T (u, v)z) .
Proof. The property (JT1) is nothing but Prop. III.2.3 (iii).

We now establish the property (JT2). Since [q, q] ⊂ h , Prop. III.2.3 (ii) implies that
Ro(X,Y ) is a derivation of To . If D is a derivation of To , then JD is a skew-derivation of To
in the following sense: using III.2.3 (iv) we get

JD To(X,Y, Z) = J(To(DX,Y, Z) + To(X,DY,Z) + To(X,Y,DZ))
= To(JDX, Y, Z)− To(X,JD Y,Z) + To(X,Y, JDZ).

Thus 2To(X,Y ) ∈ End(q) is the sum of the derivation Ro(X,Y ) ∈ h and the skew-derivation
J Ro(X, JY ) ∈ End(q). If J is twisted, we obtain for the difference of these two elements

1
2

(Ro(X,Y )− JRo(X, JY )) = To(Y,X).

Using this, we can write (dropping the indices o)

T (X,Y ) · T (U, V,W ) = −1
2

(R(X,Y ) · T (U, V,W ) + J R(X, JY ) · T (U, V,W ))

= −1
2

(T
(
(R(X,Y ) + J R(X, JY ))U, V,W

)
+

T
(
U, (R(X,Y )− J R(X, JY ))V,W

)
+

T
(
U, V, (R(X,Y ) + J R(X, JY ))W

)
)

= T
(
T (X,Y )U, V,W

)
− T

(
U, T (Y,X)V,W

)
+ T

(
U, V, T (X,Y )W

)
.

This is the identity (JT2).
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Definition III.2.5. A Jordan triple system (V, T ) (abbreviated JTS) is a vector space V
together with a trilinear map T : V × V × V → V verifying (JT1) and (JT2). A Hermitian JTS
is a JTS (V, T ) together with a complex structure J on V such that for all u, v, w ∈ V ,

T (Ju, v, w) = −T (u, Jv, w) = T (u, v, Jw) = J T (u, v, w).

Homomorphisms of Jordan triple systems are linear maps compatible with the triple products;
homomorphisms of Hermitian JTS are complex-linear homomorphisms of JTS.

We have shown that the structure tensor T of a twisted complex symmetric space is a field
of Hermitian Jordan triple products (Prop. III.2.4 and III.2.3 (iv)). Using the following lemma,
we will prove the converse.

Lemma III.2.6. Let T be a Jordan triple product defined on a vector space q . Then

[X,Y, Z]T := −RT (X,Y )Z
:= T (X,Y )Z − T (Y,X)Z = T (X,Y )Z − T (Z,X)Y

defines a Lie triple product on q .

Proof. Clearly RT is antisymmetric in the first two variables and satisfies the Jacobi-identity
(LT2); cf. Def.I.1.1. The identity (JT2) implies that RT (X,Y ) is a derivation of T and therefore
also of RT , whence (LT3).

We call RT the LTS associated to the JTS T , and if R = RT , then we say that T is a
Jordan-extension of the LTS R . It is clear that JTS-homomorphisms induce homomorphisms of
associated LTS’s. Therefore we call T 7→ RT the (algebraic) Jordan-Lie functor. The Jordan-Lie
functor is not bijective, but it does induce bijections of some important sub-categories.

Proposition III.2.7. The Jordan-Lie functor T 7→ RT yields an equivalence of the category of
Hermitian JTS’s and the category of LTS’s with invariant twisted complex structure. Its inverse
is given by the formula

T (X,Y )Z := −1
2

(R(X,Y )Z − JR(X,J−1Y )Z).

Proof. If T is Hermitian, then J is a twisted invariant complex structure for RT :

RT (X,Y )JZ = T (Y,X, JZ)− T (X,Y, JZ) = JRT (X,Y )Z;
−RT (JX, Y ) = T (JX, Y )− T (Y, JX) = −(T (X, JY )− T (JY,X) = RT (X,JY ).

Conversely, if J is a twisted invariant complex structure for R , then T is a JTS (Prop.III.2.4)
which is Hermitian (Prop. III.2.3 (iv)). Thus both functors are well-defined. It is easily checked
that they are inverses of each other: if J is twisted invariant for R , then R(X,JY ) is symmetric
in X and Y , and antisymmetrizing T in the first two variables, we get back R . If (T, J) is
Hermitian, then

−RT (X,Y )Z − JRT (X,JY )Z = T (X,Y, Z)− T (Y,X,Z)+
J(T (X, JY, Z)− T (JY,X,Z))

= 2T (X,Y, Z).

Finally, homomorphisms in both categories are the same since compatibility with R and J is
equivalent to compatibility with T and J .

We summarize the preceding results:
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Theorem III.2.8. The following three categories are equivalent:
(1) tcLTS: twisted complex Lie triple systems,
(2) hJTS: Hermitian Jordan triple systems,
(3) tcSS: germs of twisted complex symmetric spaces.

The functor tcSS → tcLTS is given by evaluating curvature tensor and almost complex structure
at the base point, and the functor tcSS → hJTS by evaluating structure tensor and almost complex
structure at the base point.
Proof. The equivalence of (1) and (2) has been established in the previous proposition, and
the equivalence of (1) and (3) follows from Prop. III.1.4. (i).

In Section IV.1 the most important examples of twisted complex symmetric spaces are
given, among them the space of complex structures on R2n .

3. Invariant polarizations, graded Lie algebras and Jordan pairs

3.1. Polarizations. Most of what has been said so far remains valid for tensor fields
having the property J 2 = id instead of J 2 = − id. They arise for example by the formula
J = J1 J2 if we have two commuting almost complex structures J1 and J2 . If J1 is twisted
and J2 is straight, then J will be twisted in the sense of the following definition.

Definition III.3.1. A polarization of (the tangent bundle of) a manifold M is a tensor field
J of type (1,1) such that J 2

p = idTpM for all p ∈ M . It is called a paracomplex structure
if the −1-eigenspace of Jp (p ∈ M ) has the same dimension as the +1-eigenspace of Jp . A
polarization J on a symmetric space M is called invariant if ∇J = 0 (equivalently, if g ·J = J
for all g in the group of displacements), and it is called straight if

R(J X,Y ) = R(X,J Y ),
and twisted if

R(J X,Y ) = −R(X,J Y )
holds for all X,Y ∈ X(M). A twisted polarized symmetric space is a symmetric space together
with an invariant twisted polarization.

Evaluating at the base point, we obtain the corresponding infinitesimal objects:

Definition III.3.2. An invariant polarization on a LTS (q, R) is an endomorphism J such
that J2 = idq which is invariant in the sense that [X,Y, JZ] = J [X,Y, Z] . We call J straight if it
is invariant and [JX, Y, Z] = [X, JY, Z] and twisted if it is invariant and [JX, Y, Z] = −[X, JY, Z]
(X,Y, Z ∈ q). A polarized LTS is a LTS together with a twisted polarization.

As in Prop. III.1.4 it is shown that germs of symmetric spaces with invariant polarizations
are equivalent to LTS with invariant polarizations, and this correspondence clearly is compatible
with the respective notions of “straight” and “twisted”.

Lemma III.3.3. Lie triple systems with straight invariant polarizations are precisely the direct
products of two Lie triple systems.
Proof. As in the proof of Prop. III.1.8 it is seen that J is a straight invariant polarization on
(q, R) iff R is J -trilinear. Therefore, if qk (k = 1,−1) are the eigenspaces of J ,

[qi, qj , qk] ⊂ (qi ∩ qj ∩ qk),
which immediately implies that q1 and q−1 are ideals of (q, R); thus q is a direct product.
Conversely, given a direct product, let J be the linear map which is one on the first factor and
minus one on the second; this clearly is a straight invariant polarization.
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Lemma III.3.4. Let J be an invariant polarization on the LTS (q, R) . Then the following are
equivalent:

(i) J is twisted.
(ii) J is a derivation of R .
(iii) If m± are the ±1-eigenspaces of J , then R(m+,m+) = 0 and R(m−,m−) = 0 .

Proof. (i)⇔ (ii): If J is invariant, the conditions [JX, Y, Z] + [X, JY, Z] = 0 and

J [X,Y, Z] = [JX, Y, Z] + [X,Y, JZ] + [X,Y, JZ]

are clearly equivalent.
(i)⇔ (iii): If J is twisted, then we have for all X,Y ∈ m+ :

R(X,Y ) = R(X, JY ) = −R(JX, Y ) = −R(X,Y ),

and therefore R(m+,m+) = 0; similarly for m− . Conversely, if R(m+,m+) = 0 = R(m−,m−),
then the equality R(X, JY ) = −R(JX, Y ) is verified for X,Y ∈ m+ and for X,Y ∈ m− . For
X ∈ m− , Y ∈ m+ , the equality R(X, JY ) = −R(JX, Y ) holds by definition of the eigenspaces;
it is therefore verified in all cases.

As in the previous section, we define the structure tensor of the invariant polarization J
by

T (X,Y )Z = −1
2

(R(X,Y )Z − J R(X,J−1 Y )Z)

= −1
2

(R(X,Y )Z − J R(X,J Y )Z).

Then Propositions III.2.3 and III.2.4 and their proofs carry over to the polarized case without
any changes, except that we have to replace “Hermitian Jordan triple systems” by “polarized
Jordan triple systems” which are defined in a completely analoguous way:

Definition III.3.5. A polarized JTS (V, T, J) is a JTS (V, T ) together with an endomorphism
J with J2 = idV such that

T (Ju, v, w) = −T (u, Jv, w) = T (u, v, Jw) = JT (u, v, w)

for all u, v, w ∈ V . Homomorphisms of polarized JTS are homomorphisms of JTS which are
compatible with the polarizations.

The following statement is proved as Prop. III.2.7:

Proposition III.3.6. The Jordan-Lie functor T 7→ RT yields an equivalence of the category
of polarized JTS’s and the category of LTS’s with invariant twisted polarization. Its inverse is
given by the formula

T (X,Y )Z := −1
2

(R(X,Y )Z − JR(X,J−1Y )Z).

3.2. Graded Lie algebras and Jordan pairs. Before returning to the general problem
of complexifications, we present two concepts corresponding to the concept of twisted polarized
symmetric space given above: first the concept of a 3-graded Lie algebra which is equivalent to
the standard imbedding of a polarized LTS, and second the concept of a Jordan pair which is
equivalent to the notion of polarized JTS defined above.
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Definition III.3.7. A Lie algebra g together with a direct sum decomposition

g =
⊕
j∈Z

gj

is called Z-graded if [gj , gk] ⊂ gj+k holds for all j, k ∈ Z . It is called 3-graded if gj = 0 for
j /∈ {−1, 0, 1} .

Proposition III.3.8. The standard imbedding of a LTS yields a bijection of twisted polarized
LTS and 3-graded Lie algebras g = g−1 ⊕ g0 ⊕ g1 with g0 = [g−1, g1] .
Proof. Let (q, J) be a polarized LTS, denote by q = m1⊕m−1 the eigenspace-decomposition
of J and let m0 := h = [q, q] . Then

g = m−1 ⊕m0 ⊕m1

is a 3-grading of the standard-imbedding g . In fact, since J is invariant, we have the relations
[m0,m±] ⊂ m±

(where we abbreviate m± := m±1 ), and since J is twisted, the conditions [m+,m+] = 0 and
[m−,m−] = 0 hold according to Lemma III.3.4. Finally, [m+,m−] = m0 holds by definition. This
proves that g is 3-graded.

Conversely, given a 3-graded Lie algebra, we let q := g−1 ⊕ g1 and h := [g−1, g1] ⊂ g0 .
Then because of the grading q is a Lie triple system on which h acts by derivations; therefore
g is the standard-imbedding of q . We define J to be 1 on g1 and −1 on g−1 ; then J is an
invariant polarization because h preserves the eigenspaces. Lemma III.3.4 now shows that J is
twisted.

Finally, both constructions are clearly inverse to each other.

If we consider the g0 -modules g1 and g−1 and the bilinear composition g−1 × g1 → g0

given by the Lie bracket, then we obtain an object which has been introduced by K. Meyberg in
[Mey70] (“verbundenes Paar”):

Definition III.3.9. Let h be a Lie algebra, m+ and m− h -modules and S : m+ ⊗ m− → h
linear. These data are called a connected pair if they verify the following conditions:
(P1) S is h-equivariant,
(P2) for all a′, a ∈ m+ , b ∈ m− : S(a, b)a′ = S(a′, b)a ,
(P3) for all b, b′ ∈ m− , a ∈ m+ , S(a, b)b′ = S(a, b′)b .

Proposition III.3.10. There is a canonical bijection between connected pairs and 3-graded
Lie algebras.
Proof. If g is a 3-graded Lie algebra, then m± := g±1 , h := g0 and S : g1 × g−1 → g0 ,
(X,Y ) 7→ [X,Y ] are a connected pair. Conversely, given a connected pair, we define on the
direct sum g := m+ ⊕ h⊕m− a Lie bracket in the obvious way such that the two constructions
are inverse of each other.

Clearly equivariant maps of the standard imbedding correspond to homomorphisms of
connected pairs defined to be linear maps ϕ± : m± → (m±)′ , ϕ0 : h → h′ satisfying the
compatibility condition S′ ◦ (ϕ+ ⊗ ϕ−) = ϕ0 ◦ S . However, as mentioned in Section I.3, the
standard imbedding does in general not depend functorially on the LTS; thus the category of
connected pairs (3-graded Lie algebras) is not equivalent to the category of twisted polarized
LTS. But if we retain only the symmetric bilinear maps

m+ ⊗m+ → Hom(m−,m+), (X,Y ) 7→ S(X, ·)Y,
m− ⊗m− → Hom(m+,m−), (X,Y ) 7→ S(·, X)Y

together with their algebraic properties following from (P1) – (P3), then we arrive at the concept
of a Jordan pair which is indeed equivalent to the one of twisted polarized LTS.
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Definition III.3.11. A Jordan pair is a pair (V +, V −) of vector spaces together with trilinear
maps

T± : V ± × V ∓ × V ± → V ±, (u, v, w) 7→ T±(u, v, w) =: T±(u, v)w

which are symmetric in the outer variables and satisfy the identity

T±(u, v)T±(x, y, z) = T±(T±(u, v)x, y, z)− T±(x, T±(v, u)y, z) + T±(x, y, T±(u, v)z)

for u, x, z ∈ V ± , v, y ∈ V ∓ .

(We have used here the identity JP14 from [Lo75] for the definition. Since we use a base
field of characteristic zero, this is equivalent to the definition in [Lo75]; cf. loc. cit. p. 15.) It
is clear that the defining identity of a Jordan pair is just the restriction of the defining identity
(JT2) of a JTS to the products of eigenspaces V ± of the polarization J of a polarized JTS
T . Conversely, given a Jordan pair, we let V := V + ⊕ V − and define T in the obvious way
such that J = idV + ⊕ − idV − becomes an invariant polarization. This defines an equivalence
of the categories of polarized Jordan triple systems and Jordan pairs (cf. [Lo75, p.9/10]). We
summarize the results of this section:

Theorem III.3.12. The following four categories are equivalent:
(1) pLTS: polarized Lie triple systems,
(2) pJTS: polarized Jordan triple systems,
(3) JP: Jordan pairs,
(4) tpSS: germs of symmetric spaces with invariant twisted polarization.

The functor tpSS → pLTS is given by evaluating curvature tensor and polarization at the base
point, and the functor tpSS → pJTS by evaluating structure tensor and polarization at the base
point.

Proof. The equivalence of the categories (1), (2) and (4) is proved as in Th.III.2.8, and the
equivalence of (2) and (3) has been discussed above.

The most important example of a symmetric space with twisted invariant polarization is
the space of polarizations of Rn , cf. Section IV.1.

4. Jordan-extensions and the geometric Jordan-Lie functor

4.1. Symmetric spaces with twist. Recall that we have defined real forms of (germs
of) symmetric spaces with invariant almost complex structure (Def. III.1.2). Replacing almost
complex structures by polarizations, we get the definition of para-real forms and conversely of
para-complexifications of (germs of) symmetric spaces and of Lie triple systems (cf. Def. III.1.3).
Note that, if a polarized LTS (q, J) admits a para-real form (an involution τ anticommuting with
J ), then τ yields a bijection of the +1 eigenspace of J onto the −1-eigenspace, and therefore
J is actually a paracomplex structure (cf. Def. III.3.1).

Lemma III.4.1. Let τ be a (para-) real form of a germ M of a symmetric space with invariant
(para-) complex structure J . Then τ is an automorphism of the structure tensor T (X,Y )Z =
− 1

2 (R(X,Y )Z − J R(X,J−1 Y )Z) , i.e. τ∗T = T . In particular, the restriction of T to Mτ is
a well-defined tensor field on the (para-) real form Mτ .

Proof. We prove the corresponding infinitesimal statement. Let τ be a (para-) conjugation of
the invariant (para-) complex structure J on the LTS q . Then, using that τ is an automorphism
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of the LTS and anticommutes with J ,

τ(T (X,Y, Z)) =
1
2

(τ [X,Y, Z]− τ(J [X, J−1Y, Z]))

=
1
2

([τX, τY, τZ]− J [τX, J−1τY, τZ])

= T (τX, τY, τZ).

Now the local version follows since τ∗T−T is a gτ -invariant tensor field (where gτ is the standard
imbedding of qτ ) vanishing at the origin. Therefore τ∗T = T on the real form Mτ .

In the straight case the preceding lemma is useless because then the structure tensor
vanishes. In the twisted case the situation is completely different: we will see that all local
information about the twisted complexification is already encoded in the restriction of the
structure tensor to Mτ .

Lemma III.4.2. If J is an invariant twisted (para-) complex structure, then the restriction
of the structure tensor to Mτ is an invariant tensor field of Jordan triple products verifying the
relation

T (X,Y )− T (Y,X) = −R(X,Y ) (4.1)

for all vector fields X,Y on Mτ .

Proof. According to Prop. III.2.3 and III.2.4 the structure tensor of M has the properties
of the claim. Since R and T , by the preceding lemma, can be restricted to Mτ , the algebraic
relations (JT1), (JT2) and (4.1) carry over to the real form.

Definition III.4.3. A Jordan-extension of the curvature tensor R of a symmetric space M
is an invariant tensor field T which is a field of Jordan triple systems, (i.e. a tensor field of type
(3,1) satisfying the identities (JT1) and (JT2) from Def. III.2.5 and Eqn. (4.1). A (germ of)
a symmetric space with twist (M,T ) is a (germ of a) symmetric space together with a Jordan-
extension T of the curvature tensor R . Homomorphisms of (germs of) symmetric spaces with
twist are homomorphisms of symmetric spaces which are compatible with the respective Jordan-
extensions.

Summarizing, we can say that every (para-) real form of a twisted (para-) complex sym-
metric space is a symmetric space with twist. Next we are going to prove the converse of this
statement.

4.2. The equivalence of Jordan-extensions and twisted (para-) complexifica-
tions. The following theorem is the main result of this section.

Theorem III.4.4. (i) Let (q, R) be a Lie triple system. Then the following objects are in
one-to-one correspondence:

(1) twisted complexifications of R ,
(2) twisted para-complexifications of R ,
(3) Jordan-extensions T of R .

(ii) Let M be a germ of a symmetric space. Then the following objects are in one-to-one
correspondence:
(1’) twisted complexifications of M ,
(2’) twisted para-complexifications of M ,
(3’) Jordan-extensions T of the curvature tensor R of M .
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Proof. The claims (i) and (ii) are equivalent since we have already seen that the objects (k)
and (k’) are in one-to-one correspondence under the bijection of Lie triple systems and germs of
symmetric spaces.

The correspondences (1’) → (3’) and (2’) → (3’) are given by restricting the structure
tensor of the (para-) complexified space to the real space we started with. The main step is now
to construct the infinitesimal version (3) → (1) of the correspondence (3’) → (1’). In order to
do this, we need some basic results on Jordan triple systems.

Lemma III.4.5. Let T be a Jordan triple product on a vector space V and α an endomorphism
of V with the property

∀x, y, z ∈ V : T (αx, y, αz) = αT (x, αy, z). (4.2)

Then the formula
T (α)(x, y, z) := T (x, αy, z)

defines a Jordan triple product T (α) on V .

Proof. The identity (JT2) for T with v and y replaced by αv and αy , respectively, yields

T (T (u, αv)x, αy, z)− T (x, T (αv, u)αy, z) + T (x, αy, T (u, αv)z) = T (u, αv)T (x, αy, z).

We apply (4.2) to the middle triple product in the middle term and obtain

T (T (u, αv)x, αy, z)− T (x, αT (v, αu)y, z) + T (x, αy, T (u, αv)z) = T (u, αv)T (x, αy, z).

This is precisely the identity (JT2) for T (α) . Since T (α) clearly satisfies (JT1), it is a Jordan
triple product.

If A : V → Hom(V ⊗ V, V ), x 7→ T (·, x, ·) is injective, then the arguments from the above
proof can be reversed, showing that (4.2) is necessary for T (α) to define a JTS. We call T (α) the
α-modification of T , and the set of all α ’s satisfying (4.2) will be called the structure variety
of T , denoted by Svar(T ) ⊂ End(V ). Note that any involution of T belongs to the structure
variety. An important application of the previous lemma is the existence of a canonical (para-)
Hermitian complexification in the category of JTS’s:

Proposition III.4.6. Let (V, T ) be a Jordan triple system. We imbed V into Ṽ := V ⊕ V
as first factor and equip Ṽ with its canonical (para-) complex structure J(x, y) = (−y, x) (resp.
I(x, y) = (y, x)). Then there exist four Jordan triple systems TC , Td , ThC and TphC on Ṽ
extending T and uniquely determined by the following properties:

(i) TC is complex with respect to J .
(ii) Td is I -linear in all three variables.
(iii) ThC is Hermitian with respect to J .
(iv) TphC is polarized with respect to I .

Proof. Uniqueness is immediate from the definitions. We now prove existence: one verifies
that the C -trilinear extension TC of T is again a JTS. (In order to do this one may express (JT1)
and (JT2) by commutative diagrams of linear maps of some tensor products and then apply the
ordinary complexification functor in the category of vector spaces.) Thus (i) is proved. In order
to prove (iii), one verifies that complex conjugation τ(x, y) = (x,−y) is an automorphism of TC .
Since it is an involution, it satisfies Eqn. (4.2), and therefore

ThC(u, v, w) := (TC)(τ)(u, v, w) = TC(u, v, w)
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again is a JTS. It clearly is Hermitian and extends T . Now we prove (ii): let W± be the
eigenspaces of I ; then W+ is the diagonal and W− the antidiagonal, and V → W± , v 7→
1
2 (v,±v) are vector space isomorphisms which we use as identifications in order to define the
JTS Td := T ⊕ T on W+ ⊕ W− . It extends T and is I -trilinear. This proves (ii). The
para-conjugation τ(x, y) = (x,−y) is an involution of Td = T ⊕ T ; in fact, in the coordinates
W+⊕W− it is just exchange of the two factors. The previous lemma implies that TphC := (Td)(τ)

is a JTS. It clearly is polarized by I and extends T , thus (iv) is proved.

Now we can finish the proof of Th. III.4.4. Let ThC be as in the preceding proposition
and define R̃(X,Y ) := ThC(X,Y )− ThC(X,Y ). Then R̃ is a twisted complex LTS since ThC is
a Hermitian JTS (Prop.III.2.7). Further, restriction of R̃ to q yields R since the restriction of
ThC to q is T , and RT = R by assumption. Therefore R̃ is a twisted complexification of R .

The correspondence (3) → (2) is constructed in the same way, using this time the para-
Hermitian complexification TphC of T . Finally, it is clear that the given constructions are inverses
of each other.

The correspondences from the preceding theorem are functorial:

Theorem III.4.7. The following categories are equivalent:
(1) (real finite dimensional) Jordan triple systems.
(2) germs of symmetric spaces with twist.
(3) germs of symmetric spaces with local twisted complexification.
(4) germs of symmetric spaces with local twisted para-complexification.

Proof. We show first that the constructions given in Prop. III.4.6 are functorial. If ϕ : V → V ′

is a homomorphism of JTS T and T ′ , then we complexify the commutative diagram

V × V × V T→ V
×3ϕ ↓ ↓ ϕ

V ′ × V ′ × V ′ T ′→ V ′,

and see that ϕC is a homomorphism from TC to T ′C . From this it follows that

ϕCThC(u, v, w) = ϕCTC(u, v, w) = T ′C(ϕCu, ϕCv, ϕCw) = ThC(ϕCu, ϕCv, ϕCw)

since ϕv = ϕv . Thus ϕC is a homomorphism from ThC to T ′hC . Similarly for the para-
complexifications.

Next we use the fact that the Jordan-Lie functor T 7→ RT is functorial, i.e. we obtain
homomorphisms of the twisted (para-) complex LTS equivalent to ThC resp. TphC .

Applying now Prop. III.1.4 (ii), we can lift these homomorphisms on a local level, i.e. we
have shown that (1) → (3) and (1) → (4) are functorial.

It is clear that restriction to a real form is functorial; thus (3) → (2) and (4) → (2) are
functorial. It is also clear that evaluating at the base point is a functorial construction; thus (2)
→ (1) is functorial, and the theorem is proved.

Definition III.4.8. The geometric Jordan-Lie functor is the forgetful-functor from the
category of (germs of) symmetric spaces with twist to the category of (germs of) symmetric
spaces. The geometric Jordan-Lie functor for germs of symmetric spaces can equivalently be
characterized as the forgetful-functor from germs of symmetric spaces with twisted (para-)
complexification to germs of symmetric spaces by forgetting the (para-) complexification.
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The relation with the algebraic Jordan-Lie functor is given by the commutative diagram
(0.7) (Introduction). In Chapter IX we will return to the problem which symmetric spaces with
twist admit a global (para-) complexification.

4.3. The complexification functors. We write C , d , hC and phC for the functors
JTS → JTS defined in Prop. III.4.6; we call them the functors of complexification, doubling,
Hermitian complexification and para-Hermitian complexification in the category of Jordan triple
systems.

Theorem III.4.9. The category of germs of symmetric spaces with twist is stable under
the functors C , d , hC and phC . Any two of the four functors commute, i.e. the opposite
composition yields functors isomorphic to those obtained by the usual composition. Further,

(i) C ◦ C = d ◦ C , hC ◦ hC = d ◦ hC , phC ◦ phC = d ◦ phC ,
(ii) C ◦ hC ∼= C ◦ phC ∼= hC ◦ phC ,
(iii) phC ◦ hC ◦ C ∼= d ◦ hC ◦ C .

Proof. Since the functors C , d , hC and phC are functors inside the category of Jordan triple
systems, they are by Th. III.4.7 also functors inside the category of germs of symmetric spaces
with twist.

The “commutation relations” (i)–(iii) are verified by using the “multiplication table” for
complex and para-complex structures: the product of two commuting complex structures is a
para-complex structure, the product of two commuting twisted structures is straight, and so on.

Note that exactly one interesting new functor arises by composition: it is a sort of double
complexification-functor C ◦ hC ∼= C ◦ phC ∼= hC ◦ phC in the category of symmetric spaces with
twist. It assigns to a space another one having four times its real dimension and carrying two
commuting almost complex structures. We thus have four non-trivial complexification-functors
C , hC , phC and C ◦ hC which are related by (i) – (iii). The situation may be visualized by the
complexification diagram of a symmetric space with twist T :

↗ MC ↘
M → MhC → (MhC)C

↘ MphC ↗

In the next Chapter we will give many examples of complexification diagrams. – Recall from
Section I.1.4 that to every (germ of a) symmetric space M one associates a (germ of a) c-dual
symmetric space M c whose associated LTS is −R if R is the LTS of M . Therefore we define:

Definition III.4.10. The c-dual of a LTS R , resp. of a JTS T , is the LTS −R , resp. the
JTS −T .

If (R, J) is straight complex, then

(J ·R)(X,Y, Z) = JR(Z−1X, J−1Y, J−1Z) = J−2R(X,Y, Z) = (−R)(X,Y, Z),

i.e. the action of J in Hom(⊗3V, V ) induces an isomorphism R 7→ −R . In other words, straight
complex LTS are self c-dual. The same holds for twisted polarized LTS, but not for twisted
complex LTS (for the latter, J ·R = R). Similarly, straight complex and twisted polarized JTS
are self c-dual, but Hermitian JTS are in general not. As a consequence, we have the relations

(MC)c ∼= MC, (MphC)c ∼= MphC.

Thus, when applying the c-dual functor to a complexification diagram, only the first two spaces
in the middle line change.
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Notes for Chapter III.

III.2. It is known that almost complex structures related to Hermitian symmetric spaces
are twisted (see Prop. V.2.2); cf. e.g. [Lo69b] where invariant twisted complex structures are
called anticomplex. The correspondence between such structures and Hermitian Jordan triple
systems has already been remarked by W. Kaup (cf. [Kau93]).

III.3. The para-Hermitian symmetric spaces (see Def. V.2.1) introduced by P. Libermann
and investigated by M. Kozai and S. Kaneyuki ([KanKo85]) are twisted polarized (see Prop.
V.2.2). The approach of Kozai and Kaneyuki, including the classification (cf. Tables XII.4.1,
XII.4.2), is via graded Lie algebras. Motivated by M. Koechers investigations on graded Lie
algebras related to Jordan algebras [Koe68], K. Meyberg in [Mey70] was led to the notion
“verbundenes Paar” which is a precursor of the algebraically more satisfactory notion of a Jordan
pair introduced by O. Loos ([Lo75]).

III.4. Various special cases of symmetric spaces with twist have already been investigated
in the research literature; however, it seems that the present work is the first systematic attempt
to clarify their geometric and algebraic nature – see Section 0.3 (introduction).

The algebraic Jordan-Lie functor (Lemma III.2.6) has first been noticed by K. Meyberg
(cf. [Ne85]) and then been investigated by E. Neher, see Notes to Chapter IV. A special case of
the geometric Jordan-Lie functor is considered in [Lo85], and the important equation (4.1) has
been noted in [Lo77, Th. 2.10 (d)].
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Chapter IV: The classical spaces

In this chapter we present a fairly exhaustive collection of examples of “classical” symmetric
spaces with twist, and we explain the basic principles of their classification. The classification
itself is contained in the tables given in Chapter XII. As noted there (Remark XII.4.8), comparison
of the classification of simple real Lie triple systems (carried out by M. Berger, cf. [B57]) and the
classification of simple real Jordan triple systems (carried out by E. Neher, cf. [Ne80], [Ne81], and
implicitly in another way by B.O. Makarevič, cf. [Ma73]) leads to the following two remarkable
observations:

A. (Existence.) Every non-exceptional irreducible symmetric space has (possibly after a central
extension) a Jordan-extension. (A central extension is needed e.g. in the group case of
Sl(n,R) which does not admit any Jordan extension, but the central extension Gl(n,R)
does.)

B. (Uniqueness.) The number of (local) Jordan extensions of an irreducible non-exceptional
symmetric space is either 0, 1, 2 or 3 ; in most cases it is 1 .

Summarizing, we can say that the Jordan-Lie functor seems to be fairly close to being injective
and surjective. This has already been remarked by E. Neher, cf. [Ne85], where also the
exceptional spaces are considered.

The organizing principle both for our presentation of examples and for the classification is
the complexification diagram

↗ (4) MC ↘
(5) M → (3) MhC → (1) (MhC)C

↘ (2) MphC ↗

introduced in the preceding chapter. Objects of type (1), i.e. spaces having both invariant
straight and twisted complex structures, are most easily classified, next come objects of type (2)
(spaces having an invariant twisted para-complex structure), up to type (5) (having no invariant
complex or para-complex structure) which is the most difficult. Only spaces of type (5) (i.e. which
are not of type (1) – (4)) have a “generic” complexification diagram; by this we mean a diagram
containing no direct products. In contrast, spaces of type (1) have a trivial complexification
diagram: it contains only direct products. The types (2) – (4) show an intermediate behaviour.

In Section 1 we work out the most important examples: the general linear groups, Grass-
mannians and spaces of Lagrangian type, among them the orthogonal, symplectic and unitary
groups. In all of these cases, the twisted complexification MhC is given by a space of complex
structures, i.e. a certain symmetric space of operators X whose square is minus the identity.
The most famous example of these is the Siegel-space (cf. Section I.6.3). Similarly, the twisted
para-complexifications are given by certain spaces of polarizations. The last series of classical
spaces, containing the spheres and hyperbolic spaces, shows a different behavior.
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1. Examples

All symmetric spaces given in Sections I.6.1 – I.6.4 are symmetric spaces with twist. In fact,
once we have seen that Gl(n,F) admits a twist, we only have to verify that the Lie triple systems
q described in Section I.6 are in fact sub-JTS of the JTS defined on the space M(n,F) = gl(n,F).
Since the spaces q are always given as spaces fixed under one or two involutions, it is enough
to check that these involutions are also JTS-automorphisms of gl(n,F). This is straightforward.
However, this observation only tells us that the spaces in quesion do admit twisted (para-)
complexifications, but not how they are actually realized. We are going to describe them for the
most important examples.

1.1. The general linear groups.

Proposition IV.1.1.
(i) The space M = Gl(2n,R)/Gl(n,C) of complex structures on R2n is a twisted complex

symmetric space.
(ii) The space Mp,q = Gl(p+q,R)/(Gl(p,R)×Gl(q,R)) of polarizations on Rp+q with signature

(p, q) is a twisted polarized symmetric space.
(iii) The group Gl(n,R) is a real form of M and a para-real form of Mn,n . The complexification

diagram of Gl(n,R) is:

↗ Gl(n,C) ↘
Gl(n,R) → Gl(2n,R)/Gl(n,C) → Gl(2n,C)/(Gl(n,C)×Gl(n,C)).

↘ Gl(2n,R)/(Gl(n,R)×Gl(n,R)) ↗

The corresponding Jordan extension of the LTS gl(n,R) is given by

T (X,Y, Z) = XY Z + ZY X.

Proof. (i) Recall from Section I.6.3, Eqns. (I.6.33) and (I.6.35), the realization of the space
Gl(2n,R)/Gl(n,C) in M(2n,R) and of its LTS q = {X ∈ M(2n,R)|XJ = −JX} with Lie
triple product [X,Y, Z] = [[X,Y ], Z] . The space q is stable under left multiplication by the
matrix J , and the map

lJ : q→ q, X 7→ JX

is an invariant twisted complex structure on q : in fact, if X and Y anticommute with J , then
[X, JY ] = −[JX, Y ] , and moreover [X,Y ] commutes with J , whence [X,Y, JZ] = J [X,Y, Z] .
We have proved that q is twisted complex. The corresponding structure tensor is

T (X,Y, Z) =
1
2

([X,Y, Z] + J [X, JY, Z]) = XY Z + ZY X. (1.1)

(ii) The proof follows the same pattern as the proof of part (i), using the realizations (I.6.24)
and (I.6.26) of the space of polarizations, resp. of its LTS. The twisted polarized structure is
given by left multiplication with Ip,q on q , and the structure tensor is given by the same formula
as above.
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(iii) Let z = In,nz be the standard complex conjugation of R2n = Cn . Then τ(X) :=
−In,nX In,n is an involutive automorphism of the space M of complex structures on R2n fixing
the base point J . The τ -fixed subspace of M is

Mτ = {X ∈ Gl(2n,R)|X2 = −12n, In,nX = −X In,n}

= {
(

0 g
−g−1 0

)
}| g ∈ Gl(n,R)}.

(1.2)

This space is isomorphic to Gl(n,R) via the map Gl(n,R) → Mτ , g 7→
(

0
−g−1

g
0

)
. The LTS

gl(n,R) is imbedded into the LTS q of M via X 7→
(

0
X
X
0

)
, and the structure tensor is given

just by restricting (1.1) to this space.
Similarly, in the situation of part (ii) assume p = q = n and consider the map τ(X) :=

JXJ = −JXJ−1 . It is an involutive automorphism of Mn,n stabilizing the base point In,n .
The τ -fixed subspace is

Mτ
n,n = {X ∈ Gl(2n,R)| JXJ = X,X2 = 12n, sgn(X) = (n, n)}

= {
(

0 g
g−1 0

)
| g ∈ Gl(n,R)};

(1.3)

again this is seen to be isomorphic with Gl(n,R), and again the Jordan extension of gl(n,R) is
given by (1.1).

In a similar way as above one can prove that the space of complex structures in Gl(n,H)
is twisted complex and that Gl(n,H) is a real form:
(1.4) Complexification diagram of Gl(n,H) :

↗ Gl(2n,C) ↘
Gl(n,H) → Gl(2n,H)/Gl(2n,C) → Gl(4n,C)/(Gl(2n,C)×Gl(2n,C))

↘ Gl(2n,H)/(Gl(n,H)×Gl(n,H)) ↗

with structure tensor given again by formula (1.1). For Gl(n,C), twisted complexification and
twisted para-complexification are both isomorphic to the space Gl(2n,C)/ (Gl(n,C)×Gl(n,C));
again the structure tensor is given by Eqn. (1.1).

1.2. Grassmannians and spaces of Grassmannian type.

Proposition IV.1.2. The complex Grassmannians Grp,p+q(C) are twisted complex symmet-
ric spaces, and the real Grassmannians Grp,p+q(R) are real forms. They are para-real forms
of the twisted polarized space Mp,q defined in the preceding proposition. In other words, the
complexification diagram of the real Grassmannians M = O(n)/(O(p)×O(q)) is

↗ O(n,C)/(O(p,C)×O(q,C)) ↘
M → U(n)/(U(p)×U(q)) → Gl(n,C)/(Gl(p,C)×Gl(q,C)).

↘ Gl(n,R)/(Gl(p,R)×Gl(q,R)) ↗

The corresponding Jordan triple system of the real Grassmannian is isomorphic to the space
q = M(p, q; R) with the triple product

T (X,Y, Z) = −(XY tZ + ZY tX).

Proof. Recall from Section I.6.2 that we realize the complex Grassmannian as

Grp,p+q(C) = {g ∈ U(p+ q)| g2 = 1, sgn(g) = (p, q)}



68 Chapter IV: The classical spaces

with base point Ip,q and LTS

q = {X ∈M(p+ q,C)| Ip,qX = −XIp,q, X = X
t}

= {Xa =
(

0 a
at 0

)
| a ∈M(p, q; C)}.

The space q is stable under that map X 7→ iIp,qX (that is, Xa 7→ Xia ), and as in the proof
of Prop. IV.1.1 (i) it is easily verified that this is an invariant twisted complex structure on q .
The structure tensor can be calculated from the structure tensor T ′ of the complex version of
the space Mp,q from Prop. IV.1.1 (ii):

T (X,Y, Z) = iT ′(X, iY, Z) = −T ′(X,Y, Z);

this implies T (Xa, Xb, Xc) = XT (a,b,c) with T as in the claim. Ordinary complex conjugation is
a complex conjugation of Grp,p+q(C) w.r.t. Grp,p+q(R).

Similarly one proves that the real Grassmannian is a para-real form of the space Mp,q from
Prop. IV.1.1 (ii) (the para-conjugation is X 7→ X∗ ).

If p and q are even, the complex Grassmannians have another family of real forms, namely
the quaternionic Grassmannians.

(1.5) Complexification diagram of quaternionic Grassmannians M = Sp(n)/(Sp(p)× Sp(q)) :

↗ Sp(n,C)/(Sp(p,C)× Sp(q,C)) ↘
M → U(2n)/(U(2p)×U(2q)) → Gl(2n,C)/(Gl(2p,C)×Gl(2q,C)).

↘ Gl(n,H)/(Gl(p,H)×Gl(q,H)) ↗

The twisted para-complexification of the complex Grassmannian is isomorphic to its straight
complexification, that is, to Gl(n,C)/(Gl(p,C) × Gl(q,C)), and its twisted complexification is
just a direct product with itself. The complexification diagrams of the spaces O(l + j, k +
i)/(O(l, k) × O(j, i)), U(l + j, k + i)/(U(l, k) × U(j, i)) and Sp(l + j, k + i)/(Sp(l, k) × Sp(j, i))
are similar to those of the corresponding Grassmannians, and also the following are of the same
type:

(1.6) Complexification diagram of M = Sp(p+ q,R)/(Sp(p,R)× Sp(p,R)) :

↗ Sp(p+ q,C)/(Sp(p,C)× Sp(p,C)) ↘
M → U(n, n)/(U(p, p)×U(q, q)) → Gl(2n,C)/(Gl(2p,C)×Gl(2q,C))

↘ Gl(2n,R)/(Gl(2p,R)×Gl(2q,R)) ↗

(1.7) Complexification diagram of M = O∗(2n)/(O∗(2p)×O∗(2q)) :

↗ O(2n,C)/(O(p,C)×O(p,C) ↘
M → U(n, n)/(U(p, p)×U(q, q)) → Gl(2n,C)/(Gl(2p,C)×Gl(2q,C))

↘ Gl(2n,R)/(Gl(2p,R)×Gl(2q,R)) ↗

1.3. Spaces of Lagrangian type; orthogonal, symplectic and unitary groups.
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Proposition IV.1.3.
(i) The orthogonal group O(A,R) admits a twisted complexification given by the space MJ =

O(
(
A
0

0
A

)
,R)/U(A,C) .

(ii) The twisted para-complexification of O(A,R) is given by O(
(

0
A
A
0

)
,R)/Gl(n,R) . Thus the

complexification diagram of O(A,R) is:

↗ O(A,C) ↘
O(A,R) → O(

(
A
0

0
A

)
,R)/U(A,C) → O(

(
0
A
A
0

)
,C)/Gl(n,C).

↘ O(
(

0
A
A
0

)
,R)/Gl(n,R) ↗

The corresponding JTS is the space Asym(A,R) with the triple product T (X,Y, Z) =
−(XY Z + ZY X) .

Proof. (i) Recall from Section I.6.3, Eqn. (I.6.42) that MJ is a twisted complex symmetric
space which can be realized as the connected component of the space of complex structures in
O(
(
A
0

0
A

)
,R) containing the base point J . As in the proof of Prop. IV.1.1 (iii) we consider the

conjugation τ(X) := −In,nX In,n of MJ . The space of fixed points is

Mτ
J = {

(
0 g
g−1 0

)
| g ∈ O(A,R)}.

As a symmetric space, this is the space O(A,R).
(ii) As remarked in Section I.6.4, the space defined by Eqn. (I.6.51) is the subspace of the

space defined by Eqn. (I.6.48) under the automorphism τ(X) = D−1XtD . It is easily verified
that τ is a para-conjugation. Thus it follows from Eqn. (I.6.56) that O(A,R) is a para-real form
of O(

(
0
A
A
0

)
,R)/Gl(n,R). The associated JTS is given by restricting the JTS from Prop. IV.1.1

to the space q given by Eqn. (I.6.52).

(1.8) Complexification diagram of O(p, q) :

↗ O(n,C) ↘
O(p, q) → O(2p, 2q)/U(p, q) → O(2n,C)/Gl(n,C)

↘ O(n, n)/Gl(n,R) ↗

(1.9) Complexification diagram of Sp(n,R) :

↗ Sp(n,C) ↘
Sp(n,R) → Sp(2n,R)/U(n, n) → Sp(2n,C)/Gl(2n,C)

↘ Sp(2n,R)/Gl(2n,R) ↗
The corresponding diagrams for O(n,C) and Sp(n,C) are obtained by a straight complexification
of the above diagrams. The complexification diagrams of unitary groups are obtained in a similar
way as in Prop. IV.1.3. The results are:

(1.10) Complexification diagram of U(p, q) :

↗ Gl(n,C) ↘
U(p, q) → U(2p, 2q)/(U(p, q)×U(p, q)) → Gl(2n,C)/(Gl(n,C)×Gl(n,C))

↘ U(n, n)/Gl(n,C) ↗

(1.11) Complexification diagram of Sp(p, q) :

↗ Sp(n,C) ↘
Sp(p, q) → Sp(2p, 2q)/U(2p, 2q) → Sp(2n,C)/Gl(2n,C)

↘ Sp(n, n)/Gl(n,H) ↗
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(1.12) Complexification diagram of SO∗(2n) :

↗ SO(2n,C) ↘
SO∗(2n) → SO∗(4n)/U(n, n) → SO(4n,C)/Gl(2n,C)

↘ SO∗(4n)/Gl(n,H) ↗

Remark: what about the groups Spin(p, q)? Classification shows that they only admit locally a
twisted complexification (the one of O(p, q)), but not globally.

Proposition IV.1.4.
(i) The twisted complexification of the space M = Lag(J,R) ∼= U(n)/O(n) of Lagrangian

subspaces of the skew-symmetric form defined by J over R is the space Lag(J, τ,C) ∼=
Sp(n)/O(n) of Lagrangian subspaces of the standard skew-Hermitian form defined by J
over C .

(ii) The twisted para-complexification of M is the space Sp(n,R)/Gl(n,R) .
(iii) The complexification diagram of M = U(p, q)/O(p, q) is:

↗ Gl(n,C)/O(n,C) ↘
U(p, q)/O(p, q) → Sp(p, q)/U(p, q) → Sp(n,C)/Gl(n,C)

↘ Sp(n,R)/Gl(n,R) ↗

The corresponding JTS is the space Sym(n,R) with the triple product T (X,Y, Z) =
−(XIp,qY Ip,qZ + ZIp,qY Ip,qX) .

Proof. (i) The fact that Lag(A, τ,C) is the twisted complexification of Lag(A,R) is proved
as the corresponding fact for Grassmannians (Prop. IV.1.2; this relation appears already in
Diagram (1.8), where O(n) ∼= Lag(In,n,R), O(2n)/U(n) ∼= Lag(In,n, τ,C)).

(ii) In Section I.6.4 we have observed that Sp(n,R)/Gl(n,R) can be interpreted as a variety
of pairs of Lagrangians (cf. Eqn. (I.6.49)) and that the corresponding varieties of Lagrangians
are the fixed point spaces under an involution which is easily seen to be a para-conjugation (cf.
Eqn. (I.6.51)).

(iii) The case q = 0 follows from (i) and (ii), and the general case is verified in a similar
way.

(1.13) Complexification diagram of M = U(n, n)/O∗(2n) :

↗ Gl(2n,C)/O(2n,C) ↘
U(n, n)/O∗(2n) → Sp(2n,R)/U(n, n) → Sp(2n,C)/Gl(2n,C)

↘ Sp(n, n)/Gl(n,H) ↗

(1.14) Complexification diagram of M = U(2p, 2q)/ Sp(p, q) :

↗ Gl(2n,C)/Sp(n,C) ↘
U(2p, 2q)/ Sp(p, q) → SO(4p, 4q)/U(2p, 2q) → SO(4n,C)/Gl(2n,C)

↘ SO∗(4n)/Gl(n,H) ↗

(1.15) Complexification diagram of M = U(n, n)/ Sp(n,R) :

↗ Gl(2n,C)/Sp(n,C) ↘
U(n, n)/ Sp(n,R) → SO∗(4n)/U(n, n) → SO(4n,C)/Gl(2n,C)

↘ SO(2n, 2n)/Gl(2n,R) ↗

Finally, there are two rather special types of spaces which can be interpreted as certain
spaces of complex structures and whose complexification diagrams are (cf. Th. XI.5.6 and Table
XII.4.5):
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(1.16) Complexification diagram of M = SO∗(2n,R)/SO(n,C) :

↗ SO(2n,C)/(SO(n,C)× SO(n,C)) ↘
M → Gl(n,H)/Gl(n,C) → Gl(2n,C)/(Gl(n,C)×Gl(n,C))

↘ U(n, n)/Gl(n,C) ↗

(1.17) Complexification diagram of M = Sp(2n,R)/Sp(n,C) :

↗ Sp(2n,C)/(Sp(n,C)× Sp(n,C)) ↘
M → Gl(2n,R)/Gl(n,C) → Gl(2n,C)/(Gl(n,C)×Gl(n,C))

↘ U(n, n)/Gl(n,C) ↗

1.4. c-duality. In principle, the complexification diagrams of the c-dual spaces of the
spaces treated above are simply obtained by applying the c-dual functor to the whole diagram.
Since straight complex and twisted para-complex spaces are self c-dual, effectively only the
twisted complexification changes under duality (cf. remarks in Section III.4.3).

Example: the group cases. Note that Gc = GC/G for a Lie group G considered as a
symmetric space.

(Gl(n,C)/Gl(n,R))hC ∼= Gl(n,H)/Gl(n,C)

(Gl(2n,C)/Gl(n,H))hC ∼= Gl(2n,R)/Gl(n,C)

(Gl(n,C)/U(p, q))hC ∼= U(n, n)/(U(p, q)×U(p, q))

(O(n,C)/O(p, q))hC ∼= O(4n)/U(2p, 2q)

(Sp(n,C)/Sp(n,R))hC ∼= Sp(n, n)/U(n, n)

(Sp(n,C)/ Sp(p, q))hC ∼= Sp(2n,R)/U(n, n)

(SO(2n,C)/ SO∗(2n))hC ∼= SO(2n, 2n)/U(n, n)

1.5. Spheres and hyperbolic spaces.

Proposition IV.1.5.
(i) The projective completion of the complex sphere SnC is a symmetric space M = SO(n +

2)/(SO(n)× SO(2)) , and M is twisted complex.
(ii) The sphere Sn is a real form of M . The corresponding complexification diagram of Sn is

↗ SnC ↘
Sn → SO(n+ 2)/(SO(n)× SO(2)) → SO(n+ 2,C)/(SO(n,C)× SO(2,C)).

↘ SO(n+ 1, 1)/(SO(n)× SO(1, 1)) ↗
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The JTS belonging to this complexification diagram of Sn is given by the vector space Rn
with the triple product

T (x, y, z) = (x|z)y − (x|y)z − (z|y)x.

Proof. (i) We realize M as

M = {[z] ∈ PCn+2|
n+2∑
j=1

z2
j = 0}.

The group SO(n+2,C) and its maximal compact subgroup SO(n+2) = SO(n+2,C)∩SU(n+2)
act on M in the usual way. As base point we choose o = [(0, . . . , 0, i, 1)t] . The vector (i, 1)t is
an eigenvector of SO(2):(

cosϕ − sinϕ
sinϕ cosϕ

)(
i
1

)
=
(
i cosϕ− sinϕ
i sinϕ+ cosϕ

)
= eiϕ

(
i
1

)
.

This implies that the stabilizer of the base point o in SO(n + 2) is the subgroup of matrices(
a
0

0
b

)
with a ∈ SO(n), b ∈ SO(2); we identify it with SO(n) × SO(2), whence SO(n + 2).o ∼=

SO(n+ 2)/(SO(n)× SO(2)). This is a symmetric space; its associated involution is conjugation
by the matrix In,2 . The corresponding LTS is the space

q = {
(

0 −Xt

X 0

)
|X ∈M(2, n; R)} ⊂ so(n+ 2).

It has the same dimension as M ; therefore SO(n + 2).o is open in M , and since both sets are
compact and connected, they agree.

We identify q with M(2, n; R); then the LTS on q is the same as the one corresponding to
Gr2,n+2(R), i.e. given by

[X,Y, Z] = Y XtZ + ZXtY − (XY tZ + ZY tX) (X,Y, Z ∈M(2, n; R)).

For all X,Y ∈ M(2, n; R) the matrix XY t − Y Xt ∈ M(2, 2; R) is skew-symmetric, i.e. it is an
element of so(2) and therefore commutes with J = J2 . Using this, we get

[X,Y, JZ] = Y XtJZ + JZXtY − (XY tJZ + JZY tX) = J [X,Y, Z].

Next, the identity
[JX, JY, JZ] = J [X,Y, Z]

is immediately verified using that J tJ = 12 . These two properties are equivalent to saying
that X 7→ JX defines an invariant twisted complex structure on q (cf. Prop. III.2.2). The
corresponding structure tensor is

T (X,Y, Z) =
1
2

([X,Y, Z] + J [X, JY, Z])

=
1
2

(Y XtZ + ZXtY − (XY tZ + ZY tX)+

J(JY XtZ + ZXtJY +XY tJZ + ZY tJX))

=
1
2

((ZXt + JZXtJ)Y −XY tZ − JX(JY )tZ − ZY tX − JZ(JY )tJX).
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(ii) In order to see that the sphere is a real form of M , we have to use another realization
of M which is related to the first one via a simple change of coordinates, namely

M ′ = {[z] ∈ PCn+2|
n∑
j=1

z2
j + zn+1zn+2 = 0}.

(The change of coordinates can be intepreted as a sort of “Cayley transform”.) In these coordi-
nates let τ(z) = z be ordinary complex conjugation; then the fixed point space is isomorphic to
the real projective quadric

{[x] ∈ PRn+2|
n∑
j=1

x2
j + xn+1x

2
n+2 = 0} ∼= Sn.

Let us now verify the formula for the associated JTS: returning to the realization from Part (i),
the complex conjugation of q corresponding to the one of M just defined is given by X 7→ X .
(Here we identify R2 with C and q = M(2, n; R) with HomR(Rn,R2) ∼= HomR(Rn,C); then the
twisted complex structure of q is identified with X 7→ i ◦ X .) The corresponding fixed point
space of q is M(1, n; R) with the Jordan triple product

T (X,Y, Z) = ZXtY −XY tZ − ZY tX.

This proves the statement about the twisted complexification of Sn . The statement about the
twisted para-complexification is proved formally in the same way by replacing in all arguments
concerning M(2, n; R) the field C by the algebra of para-complex numbers. (The geometric
interpretation via the projective quadric does of course not carry over. It would be interesting to
have a good geometric interpretation relating Sn to the space SO(n+1, 1)/(SO(n)×SO(1, 1)).)

The c-dual space of the sphere and of the projective space RPn is the hyperbolic space
M := Hn(R) = SO(n, 1)/ SO(n). It has two different complexification diagrams obtained by
applying the c-dual functor to the diagrams from the preceding proposition and from Prop.
IV.1.2:

↗ SnC ↘
M → SO(n, 2)/(SO(n)× SO(2)) → SO(n+ 2,C)/(SO(n,C)× SO(2,C)).

↘ SO(n+ 1, 1)/(SO(n+ 1)× SO(1, 1)) ↗

↗ O(n+ 1,C)/(O(n,C)×O(1,C)) ↘
M → U(n, 1)/(U(n)×U(1)) → Gl(n+ 1,C)/(Gl(n,C)×Gl(1,C)).

↘ Gl(n+ 1,R)/(Gl(n,R)×Gl(1,R)) ↗

The first corresponds to the “conformal” JTS Rn with T (x, y, z) = (x|y)z+(z|y)x−(x|z)y ,
and the second to the “projective” JTS M(1, n; R) with T (x, y, z) = xytz + zytx .

The complex sphere SnC has three different local twisted complexifications of which two are
global: the first one is obtained by straight complexification of the diagram from Prop. IV.1.5,
leading to the global twisted complexification SO(n+ 2,C)/(SO(n,C)× SO(2,C)). The second
one is local; it comes from the local isomorphism of Sn and RPn and is obtained by straight
complexification of the diagram from Prop. IV.1.2, leading to the local twisted complexification
Gl(n + 1,C)/(Gl(n,C) × Gl(1,C)). The third one is again global; it is obtained by applying
formally some arguments from the proof of Prop. IV.1.4 to a “projective quaternionic quadric”.
One obtains the following complexification diagram:
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↗ SnC × SnC ↘
SnC → SO∗(2n+ 2)/(SO∗(2n)× SO∗(2)) → ...

↘ SO(n+ 1, n+ 1)/(SO(n, n)× SO(1, 1)) ↗

... SO(2n+ 2,C)/(SO(2n,C)× SO(2,C))

So far we do not have a good geometric interpretation of this complexification diagram. It would
be very interesting to know whether it is related to periodicity phenomena in the theory of
Clifford algebras.

1.6. The case dimM = 1 .

Lemma IV.1.6. Up to isomorphy, there exist exactly three one-dimensional real Jordan triple
systems. They are given by the following triple products on the underlying vector space V = R :

(1) T (+)(x, y, z) = 2xyz ,
(2) T (0)(x, y, z) = 0 ,
(3) T (−)(x, y, z) = −2xyz .

Proof. If T (1, 1, 1) = t ∈ R , then T is necessarily given by T (t)(x, y, z) = txyz . But since
x 7→ sx for 0 6= s ∈ R is an isomorphism from T (t) onto T (s2t) , there remain only the three
isomorphism classes mentioned in the claim.

The complexification diagrams associated to the three one-dimensional real JTS from the
preceding lemma are as follows:

↗ C ↘
R → D = SO(2, 1)/ SO(2) → S2

C = SO(3,C)/ SO(2,C),
↘ SO(2, 1)/ SO(1, 1) ↗

↗ C ↘
R → C → C× C,
↘ R× R ↗

↗ C∗ ↘
S1 → S2 = SO(3)/ SO(2) → S2

C = SO(3,C)/ SO(2,C).
↘ SO(2, 1)/ SO(1, 1) ↗

In fact, the first diagram is the one of Gl(1,R)o (and of H1(R)), the second one is trivial, and
the third one is the one of RP1 . Formally, it also obtained from the diagram of O(2) (Diagram
(1.8)) and noting that the group O(4) is not simple, but locally isomorphic to O(3)×O(3):

↗ O(2,C) ↘
O(2) → O(4)/U(2) → O(4,C)/Gl(2,C).

↘ O(2, 2)/Gl(2,R) ↗

2. Principles of classification

2.1. Classification of simple complex Jordan pairs. These objects can be classified
in various ways:
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(1) Recall from Section III.3 that Jordan pairs correspond to 3-graded Lie algebras. Complex
ones correspond to complex 3-graded Lie algebras, and simple Jordan pairs correspond
to simple Lie algebras (cf. Section V.3). The classification of simple complex 3-graded
Lie algebras is well-known (cf. [KoNa64], [KanKo85]), see Table XII.3.1 (where these Lie
algebras are the Lie algebras of “conformal groups”).

(2) A Jordan-theoretic classification of simple complex Jordan pairs can be found in [Lo75,
p.196], see Table XII.2.1. It turns out that simple (complex) Jordan pairs are always
underlying a simple (complex) JTS in the following sense:

Definition IV.2.1. If T is a JTS on a vector space V , then the Jordan pair equivalent to the
para-Hermitian complexification TphC of T (cf. Prop. III.4.6) is called the underlying Jordan
pair of (T, V ).

Recall that according to Prop. III.4.6, the underlying Jordan pair of (T, V ) is of the form
(V, V ) where the maps T± are obtained from T by choosing the arguments in the appropriate
factor. Note that non-isomorphic JTS may have the same underlying Jordan pair. In other
words, a twisted polarized JTS may have several non-isomorphic para-real forms. In general,
there is no distinguished one among them. In some cases there exists a para-real form associated
to a Jordan algebra via the formula T (x, y, z) = 2(x(yz)−y(xz)+(xy)z); then this para-real form
plays a somewhat distinguished role. This is the case for the first four series and the exceptional
pair no. 5 in Table XII.2.1.

2.2. Classification of simple real Jordan pairs. The same remarks as above apply.
We have to classify real forms of the complex objects; see Tables XII.2.2 and XII.3.1.

2.3. Para-real forms and structure variety. Next we explain how to obtain the
classification of JTS from the classification of Jordan pairs. Let (q, T ) be a real JTS and denote
by

PR(TphC) = {ν ∈ AutR(TphC)| ν2 = id, νJ = −Jν}

the variety of para-real forms of the para-complexification TphC . Two para-real forms are iso-
morphic iff they are conjugate under the action of the J -linear automorphism group AutJ(TphC)
via g.ν = g∗(ν) = g ◦ ν ◦ g−1 .

Lemma IV.2.2. The action of AutJ(TphC) is transitive on each connected component of
PR(TphC) .

Proof. By composition with the standard para-real form τ , we obtain an isomorphism

PR(TphC)→ {g ∈ AutJ(TphC)| τgτ = g−1}, ν 7→ ντ

onto the subspace of symmetric elements of AutJ(TphC) w.r.t. the involution g 7→ τgτ . The
given action on PR(TphC) is transferred by this isomorphism to the action of AutJ(TphC) by

g · ρ = gρ τg−1τ.

Now Lemma I.4.5, applied to the anti-involution g∗ := τg−1τ , implies the claim.

The previous lemma leaves us with the task of describing the connected components of the
variety PR(TphC). We first describe the automorphism group already considered above.

Lemma IV.2.3. If T is a JTS, then the group of J -linear automorphisms of the polarized
JTS TphC is given by

AutJ(TphC) = {(g, h) ∈ Gl(W+)×Gl(W−)| ∀x, y, z, u, v, w ∈ V :
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T (gx, hy, gz) = g T (x, y, z), T (hu, gv, hw) = hT (u, v, w)},

where the eigenspaces W± of J are identified with V as in the proof of Prop. III.4.6.

Proof. An automorphism of TphC commuting with J can be written in the form (g+, g−)
with g± ∈ Gl(W±). Using the definition of TphC , one verifies by a straightforward calculation
that an endomorphism of this form is an automorphism if and only if the condition stated in the
lemma holds.

Recall from Lemma III.4.5 that the α-modification of a JTS T is the JTS

T (α)(u, v, w) = T (u, αv, w), (2.1)

where α belongs to the structure variety Svar(T ), i.e. it satisfies Eqn. (III.4.2).

Proposition IV.2.4. Let T be a JTS. Then

Svar(T )→ PR(TphC), α 7→ τ ◦ (α, α−1)

is a bijection. All JTS having the same underlying Jordan pair as T are of the form T (α) , where
α belongs to the structure variety of T .

Proof. Let τ be the para-conjugation of TphC w.r.t. V (cf. Prop. III.4.6 and its proof) and
let ν be another para-conjugation of TphC . We write ν = τβ ; then β belongs to the group of
J -linear automorphisms of TphC .

Using the preceding lemma, we write β = (α+, α−). The condition id = ν2 = τβτβ then
reads α+ = α−1

− since τ is just exchange of W+ and W− . Let α := α+ . Now the condition
on (α, α−1) expressed by the preceding lemma is precisely the condition (III.4.2) from Lemma
III.4.5.

The space fixed under ν is
{(x, αx)|x ∈ V },

and
TphC((x, αx), (y, αy), (z, αz)) = (T (x, αy, z), αT (x, αy, z)).

It follows that the corresponding para-real form of TphC is T (α) .

Combining Propositions IV.2.2 and IV.2.4, we see that, in order to determine all para-real
forms of TphC , it is enough to classify the connected components of the structure variety of
T . For the case that T belongs to a simple Jordan algebra this has been carried out by B.O.
Makarevič (the result is given in [Ma73] without proof); see also [Sch85]. The result is given in
Tables XII.2.4 – XII.2.6. It turns out that in most cases it is possible to choose as representative
α of a connected component of the structure variety an involution, i.e. an automorphism of
T of order 2; in any case one can choose an element of order at most 4. Note that α is an
involution of T iff so is −α ; in general, there is no canonical choice between them. The para-real
forms T (α) and T (−α) = −T (α) are c-dual in the sense that the associated LTS are c-dual (cf.
Section III.4.3). In general, T (α) and −T (α) are not isomorphic. (They are isomorphic if T (α)

is already a complex or a polarized JTS and in some rather special cases.) In the tables we list
just one of these two dual modifications. In case T is a JTS associated to a Jordan algebra,
then if possible we choose α to be an involutive algebra-automorphism; in this case −α is just
a JTS-automorphism, but not an algebra-automorphism.

If T is a complex JTS, then we distinguish the cases that α is C -linear (Table XII.2.4) and
that α is C-conjugate linear (Table XII.2.5). In the latter case T (α) is a Hermitian JTS, and in
the former case T (α) is again a complex JTS.
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2.4. Classification: Geometric part. Having classified simple real JTS T , it remains
to describe (a) the symmetric spaces M = G/H belonging to RT and (b) the complexification
diagram belonging to T . The result is given in Tables XII.4.2 – XII.4.5. The preceding procedure
shows how to obtain ThC and TphC for the JTS T classified above, and thus a solution of task
(a) yields a solution of task (b). Now, task (a) is equivalent to describe the standard imbedding
of RT . Unfortunately, there is no direct and simple algorithm allowing to calculate the standard
imbedding of a given LTS. In our situation, we can use the strategy outlined in Section 1 of this
chapter: if a LTS is the LTS fixed under one or two involutions of gl(n,F), then the standard
imbedding will be the algebra fixed under the induced involution of the standard imbedding of
gl(n,F). However, calculations may become quite messy.

Later (cf. Prop. X.3.7) we will write the complexification diagram of the space M (α)

belonging to the JTS T (α) in the following form:

↗ Co(TC)ΘαC/ Str(T )Θα∗ ↘
Co(T )Θα∗/ Str(T )Θα∗ → Co(TC)Θα∗τ∗/ Str(T )Θα∗τ∗ → Co(TC)/ Str(TC)

↘ Co(T )/ Str(T ) ↗

where Θα∗ is an involution of the conformal group Co(T ) of T depending on α , and τ∗ is
induced by complex conjugation of TC w.r.t. T . In this realization the relation between T (α)

and the corresponding homogeneous space becomes more transparent (cf. Section XI.5).
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Notes for Chapter IV.

As already mentioned, the algebraic version of the observations A and B has first been
made by E. Neher ([Ne85]).

IV.1. The presentation of examples by means of the complexification diagram given here
is an extended version of examples given in [Be97b].

IV.2. The classification principle (Section 2.3) is a Jordan theoretic version of the clas-
sification principle from [Ri70] and [Ma73]; see also [Sch85]. The classification of simple real
JTS by E. Neher ([Ne80], [Ne81]) follows a different pattern: E. Neher classifies first the complex
(equivalently, the compact) JTS and then their straight real forms; this strategy has already been
used by K.H. Helwig in his classification of simple real Jordan algebras (cf. Notes to Ch.XII).
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Chapter V: Non-degenerate spaces

We distinguish the following three “degrees of non-degeneracy” for Lie groups: existence
of invariant forms; semisimplicity; simplicity; between the first two levels there is the class
of reductive Lie groups which we will not consider here. In all categories we have met so
far (symmetric spaces; prehomogeneous ones; twisted complex ones; twisted polarized ones;
symmetric spaces with twist) the same three degrees of non-degeneracy appear; we thus get
15 geometric categories of “regular” spaces. They correspond to 15 algebraic categories which
we describe in this chapter. For symmetric spaces, the three degrees of non-degeneracy are
geometrically described as follows (Section 1):

- existence of invariant forms: symmetric spaces with an invariant pseudo-Riemannian met-
ric;

- semisimple level: symmetric spaces with non-degenerate Ricci-tensor;
- simple level: symmetric spaces without proper ideal.

(Again, between the first two levels one could mention also the class of reductive spaces.) Semisim-
plicity has some remarkable consequences: homomorphisms of semisimple symmetric spaces are
automatically equivariant (Th. V.1.9), and semisimple prehomogenous symmetric spaces are au-
tomatically quadratic (Th. V.4.4). For simple symmetric spaces we prove an important structure
theorem on the algebra of invariant (1, 1)-tensor fields (Th. V.1.10) which among other things
implies that invariant complex structures on simple symmetric spaces always are either straight
or twisted (Cor. V.1.12).

Inside the category of Lie groups we have the important class of compact Lie groups. Since
it is closely related to negative definiteness of the Killing-form, we may consider the compact
Lie groups as “negative objects” in the category of Lie groups. (Of course, this terminology
depends on a sign-convention implicitly given by the definition of the Killing-form.) Similarly,
we may say that the compact symmetric spaces are the “negative objects” in the category of
symmetric spaces. In contrast to the situation for groups, there are also “positive objects” in the
category of symmetric spaces; these are the Riemannian symmetric spaces of non-compact type
which are c-dual to the compact ones. We characterize the “positive” and “negative objects” in
the category of symmetric spaces with twist by conditions on the trace form (Section 5). In the
category of Lie algebras, there are no positive objects, and in the category of Jordan algebras
there are no negative objects. Correspondingly, in the category of prehomogeneous symmetric
spaces there are no negative objects, but there are positive ones which play an important role.
They are called symmetric cones.
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1. Pseudo-Riemannian symmetric spaces

1.1. Invariant pseudo-metrics. Recall that a pseudo-metric g on a manifold M is a
smooth assignment of a non-degenerate symmetric bilinear form gp : TpM×TpM → R to p ∈M .
Morphisms of manifolds which are compatible with pseudo-metrics are called isometries.

Definition V.1.1. If M = G/H is a symmetric space, then a pseudo-metric g on M is called
G-invariant if G acts by isometries. It is called just invariant if it is invariant under G(M). This
is equivalent to the condition that ∇g = 0 for the canonical connection ∇ . A pseudo-Riemannian
symmetric space is a symmetric space M together with an invariant pseudo-metric.

If g is G-invariant, then H belongs to the orthogonal group of go and thus h acts skew-
symmetrically. Thus we get the following infinitesimal concept:

Definition V.1.2. An invariant symmetric bilinear form go on a LTS (q, Ro) is a symmetric
bilinear form go on q such that

∀u, v, x, y ∈ q : go(Ro(u, v)x, y) = −go(x,Ro(u, v)y).

Conversely, for germs or for simply connected spaces an invariant symmetric bilinear form
can be transported to any point, and if it is non-degenerate, it defines thus an invariant pseudo-
metric.

Lemma V.1.3. If go is a non-degenerate invariant symmetric bilinear form on a LTS (q, Ro) ,
then the relation

∀u, v, x, y ∈ q : go(Ro(u, v)x, y) = go(Ro(x, y)u, v)

holds.

Proof. Cf. [Lo69a, p. 146] or [Hel78, p. 69].

If g is positive definite, then the tensor field (U, V,X, Y ) 7→ g(R(U, V )X,Y ) is known as
the Riemannian curvature tensor.

1.2. Semisimple symmetric spaces. Recall that the Ricci-form of a connection ∇ with
curvature R is defined as the tensor field Ric given by

Ric(X,Y ) := Tr(R(X, ·)Y ).

If ∇ is the canonical connection of a symmetric space M , then the Ricci-form is invariant under
G(M) since so is R ; in particular, [q, q] belongs to the orthogonal Lie algebra of Rico , i.e. it
acts skew-symmetrically. Note further that R(X, ·)Y = R(Y, ·)X − R(Y,X); therefore Ric is
symmetric if and only if R(X,Y ) is trace-free for all X,Y ∈ X(M).

Definition V.1.4. A semisimple symmetric space is a symmetric space whose Ricci-form is
non-degenerate. A LTS q is called semisimple if the bilinear form (X,Y ) 7→ Tr[X, ·, Y ] is non-
degenerate.

The main features of the structure theory of Lie algebras may be generalized to Lie triple
systems. In particular, there is a notion of a radical of a LTS, and it can be proved that a LTS
is semisimple iff its radical is reduced to zero (cf. [Li52, Th.2.9]).
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Lemma V.1.5. If M is semisimple, then the Ricci-form is symmetric.

Proof. By the remarks preceding the definition, Ro(u, v) acts skew-symmetrically w.r.t. the
Ricci-form at the origin: Ro(u, v) ∈ o(Rico). If Rico is non-degenerate, then it follows that
TrRo(u, v) = 0. Again by the preceding remarks, this is equivalent to the symmetry of the
Ricci-form.

1.3. Irreducible symmetric spaces.

Definition V.1.6.
(1) An ideal of a LTS q is the kernel of some LTS-homomorphism ϕ : q→ q′ . A LTS is called

simple if its dimension is greater than one and it contains no ideals other than zero and the
whole space.

(2) A symmetric space and a germ of a symmetric space are called simple if the associated LTS
is simple.

An example of a simple symmetric space is the sphere Sn . There may exist non-trivial
homomorphisms from simple symmetric spaces into other spaces, as shows the example of the
double covering Sn → RPn (its kernel is the center of Sn , cf. [Lo69a]).

Lemma V.1.7. A subspace a of a LTS q is an ideal if and only if [q, a, q] ⊂ a .

Proof. If a is an ideal, then the three relations [a, q, q] ⊂ a , [q, a, q] ⊂ a and [q, q, a] ⊂ a hold,
and conversely, if they hold, then q/a has an obvious structure of LTS such that a is the kernel
of the canonical projection.

We have to show that the second relation is already equivalent to all three of them together.
It is clear that it is equivalent to the first. It implies the third because of (LT2).

1.4. Behavior of the standard-imbedding.

Proposition V.1.8. Let q be a LTS and g = [q, q]⊕ q be its standard-imbedding.
(i) The LTS q is simple if and only if the symmetric Lie algebra (g, σ) is simple (i.e. g has

no proper σ -invariant ideals); and this is the case if and only if either g is simple or q is
a simple Lie algebra considered as LTS.

(ii) The LTS q is semisimple if and only if g is a semisimple Lie algebra.

Proof. (i) [Lo69a, p.141] (Note that the standard imbedding of a simple Lie algebra considered
as LTS is isomorphic to a direct product of the algebra with itself.)

(ii) [Lo69a, p.142] (There it is also proved that semisimple LTS are precisely the direct
sums of simple ones.)

If q is a semisimple LTS, then q is equal to its derived LTS q′ , and every derivation is
inner. This follows easily from part (ii) of the proposition and the corresponding well-known
facts on semisimple Lie algebras. We now prove that in the category of semisimple symmetric
spaces homomorphisms are always equivariant maps (cf. Def. I.1.5).

Theorem V.1.9. Let M be a germ of a semisimple symmetric space which is equivalent to
the semisimple LTS q .

(1) If ϕ : q → q′ is a LTS-homomorphism, then there exists a unique Lie-algebra homomor-
phism ϕ̃ : g→ g′ of the respective standard-imbeddings such that ϕ̃|q = ϕ .

(2) Every homomorphism ϕ : M →M ′ of germs of symmetric spaces is equivariant.
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Proof. (1) Decomposing a semisimple LTS in a direct sum of simple ones (cf. [Lo69a, p.142]),
we see that images of semisimple LTS are again semisimple and that

g̃ := [ϕ(q), ϕ(q)]⊕ ϕ(q) ⊂ g′

is a semisimple subalgebra. We let h := [q, q] , h̃ := [ϕ(q), ϕ(q)] and define for H =
∑
i[Xi, Yi] ∈ h

(Xi, Yi ∈ q):
ϕ̃(H) :=

∑
i

[ϕ(Xi), ϕ(Yi)] ∈ h̃.

We have to show that ϕ̃(H) is well-defined, i.e. if H = 0, then ϕ̃(H) = 0. Assume that H = 0,
then for all Z ∈ q ,

[ϕ̃(H), ϕ(Z)] =
∑
i

[ϕ(Xi), ϕ(Yi), ϕ(Z)] = ϕ(
∑
i

[Xi, Yi, Z]) = ϕ([H,Z]) = 0.

Thus ϕ̃(H) lies in the center of g̃ . Since g̃ is semisimple, it follows that ϕ̃(H) = 0. Thus ϕ̃ is
well-defined on h . For X ∈ q we let ϕ̃(X) := ϕ(X) and define thus a linear map g → g̃ ⊂ g′ .
Then it is immediately verified that ϕ̃ is a Lie algebra-homomorphism.

(2): This follows from (1) (cf. remark after Def. I.1.5).

1.5. The algebra End(q)h . For a LTS q and h := [q, q] ⊂ Der(q), we denote by

End(q)h = {X ∈ End(q)| ∀Y ∈ h : [Y,X] = 0}

the algebra of h -invariants in End(q). If q is semisimple, we denote by End(q) = Sym(q) ⊕
Asym(q) the decomposition of End(q) into spaces of symmetric and skew-symmetric operators
w.r.t. the Ricci-form. Since the Ricci-form is h -invariant, the projectors onto Sym(q) resp.
Asym(q) are h-equivariant, and therefore we have a decomposition

End(q)h = Sym(q)h ⊕Asym(q)h. (1.1)

Theorem V.1.10. If q is a simple LTS, then precisely the following five cases can arise:
End(q)h Sym(q)h Asym(q)h

1. generic R R 0
2. straight complex generic C C 0
3. twisted complex generic C R R
4. twisted polarized generic R× R R R
5. all structures exist C× C C C
In this table, the isomorphy class of End(q)h as an associative algebra is given, and Sym(q)h and
Asym(q)h are described as vector spaces (and as sub-JTS of the JTS End(q)h ). By “generic” we
mean that the LTS q has no additional straight or twisted structure besides the one mentioned.

Proof. Step 1. We denote by g(u, v) = Tr([u, ·, v]) the Ricci-form of q . Let X ∈ Sym(q)h .
Using twice Lemma V.1.3, we have for all a, b, u, v ∈ q ,

g(R(Xa, b)u, v) = g(R(u, v)Xa, b) = g(R(u, v)a,Xb) = g(R(a,Xb)u, v),

and therefore R(Xa, b) = R(a,Xb) since g is non-degenerate. From Lemma III.1.7 we get

R(Xa, b) = R(a,Xb) = X R(a, b), (1.2)
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i.e. the Lie triple product on q is X -trilinear. Now we complexify the whole set-up, thus assuring
the existence of eigenvalues of X . From the complexified version of condition (1.2) it follows
immediately that the eigenspaces of X are ideals of qC . Now we have to distinguish two cases:

(a) The LTS qC is simple. Then X has just one eigenvalue t ∈ C , and the corresponding
eigenspace must be all of q , i.e. X = t idqC . It follows that t must have been already real. We
have shown that in case (a) Sym(q)h = R idq .

(b) The LTS qC is not simple. As in the case of Lie algebras, this means that q is
already a simple complex LTS, and qC ∼= q ⊕ q . Then the arguments from case (a) show that
Sym(q)h = C idq .

Step 2. If Asym(q)h = 0, then End(q)h = Sym(q)h , and we are in cases 1. or 2. of the
table. In the first case there exists no invariant almost (para-)complex structure, and in the
second case there exist precisely two invariant almost complex structures which are straight.

We now assume that Asym(q)h 6= 0 and let 0 6= X ∈ Asym(q)h . The arguments used in
the beginning of Step 1 show that for all u, v ∈ q ,

R(Xu, v) = −R(u,Xv). (1.3)

It follows that R(Xu, v)w +R(u,Xv)w +R(u, v)Xw = XR(u, v)w , i.e. X is a derivation of q .
Since q is simple, all derivations are inner, i.e. h = Der(q) (cf. remark after Prop. V.1.8), and
thus X ∈ h . By assumption, X commutes with h , therefore X ∈ z(h). Decomposing q into a
direct sum q = ⊕iqi of irreducible h -modules, we see that the restriction of X to qi is either
zero or bijective. Then the same is true for the element X2 of Sym(q). But according to Step
1, X2 ∈ Sym(q)h operates as a (real or complex) scalar t idq on q ; it follows that either X = 0
or X2 = t idq 6= 0. The former case being excluded, we conclude that X is bijective, and since
it commutes with all elements of End(q)h , the map

Sym(q)h → Asym(q)h, Y 7→ XY = Y X

is a bijection. Therefore only the cases that both are isomorphic to R or that both are isomorphic
to C can appear. If both are isomorphic to R , we can rescale X such that X2 = idq or
X2 = − idq . If X2 = id, then Eqn. (1.3) shows that it is an invariant twisted polarization, and
we are in case 4 of the claim. If X2 = − idq , then we are in case 3 of the claim. Finally, if both
Sym(q)h and Asym(q)h are isomorphic to C , then we can rescale X by a complex scalar such
that X2 = idq , and thus X is an invariant twisted polarization on a straight complex LTS, and
we are in case 5 of the claim.

Corollary V.1.11. If q is a simple LTS, then either q is a simple h-module or it is the direct
sum of two irreducible h-modules which are dual to each other. The latter case arises if and only
if q is twisted polarized, and then the irreducible h-modules are the eigenspaces of the invariant
polarization.
Proof. By the converse of Schur’s lemma, q is irreducible if End(q)h is a field. This happens
precisely in cases 1 – 3 of the preceding theorem, and in the other cases the determination
of End(q)h shows that there are precisely two irreducible submodules. They are dual w.r.t.
the Ricci-form: in fact, the eigenspaces of the invariant polarization are maximal isotropic
complementary subspaces w.r.t. the Ricci-form, and therefore the Ricci-form sets up a duality
between them.

Corollary V.1.12. If q is a simple LTS, then an invariant complex structure on q is either
straight or twisted.
Proof. In cases 1 and 4 of Th. V.1.10, there are no invariant almost complex structures; in
cases 2 and 3 there are precisely two, and they are straight in case 2 and twisted in case 3; in
case 5 there are four invariant almost complex structures, and two of them are straight and two
are twisted.
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Corollary V.1.13. If q is a simple LTS, then the representation h → gl(q) is never
quaternionic.

Proof. The claim means just that End(q)h is under the given assumptions never isomorphic
to H . This follows immediately from the table in Th. V.1.10.

Corollary V.1.14. Let M be an irreducible symmetric space.
(i) If M is not straight complex, the Ricci-form is (up to a real scalar) the only invariant

pseudo-Riemannian metric on M . If M is straight complex, then all invariant pseudo-
Riemannian metrics on M are of the form (X,Y ) 7→ tg(eϕJX,Y ) with t, ϕ ∈ R , where
g is the Ricci-form and J the straight invariant almost complex structure.

(ii) M admits an invariant symplectic form ω if and only if it is twisted complex or twisted
polarized. This form satisfies dω = 0 (i.e. M is pseudo-Kähler, resp. para-Kähler).

Proof. The Ricci-form, being non-degenerate, sets up an h-equivariant bijection

b : End(q)→ Bil(q) := (q⊗ q)∗, X 7→ Rico(X·, ·)

such that Sym(q) corresponds to symmetric and Asym(q) to skewsymmetric bilinear forms on q .
Moreover b(X) is non-degenerate iff X is non-singular. Under this correspondence, part (i) and
the first claim of (ii) follow directly from Th. V.1.10. For the last claim, recall (cf. e.g. [Gam91,
p. 74]), that for any p -form ω , the exterior differential dω is given by anti-symmetrizing ∇ω .
We apply this to the invariant 2-form ω equivalent to Ric(J ·, ·) where J is twisted. Then, by
invariance, ∇ω = 0, and therefore the three-form dω obtained by antisymmetrizing this tensor
field also vanishes.

2. Pseudo-Hermitian and para-Hermitian symmetric spaces

Definition V.2.1. A pseudo-Hermitian symmetric space (M,J , g) is a symmetric space
M = G/H with an invariant pseudo-metric tensor field g and an invariant almost complex
structure J such that g(J X,Y ) = −g(X,J Y ) for all vector fields X,Y on M . A para-
Hermitian symmetric space is defined similarly, with J 2 = − id replaced by J 2 = id.

Proposition V.2.2.
(1) A pseudo-Hermitian symmetric space is twisted complex, and a para-Hermitian symmetric

space is twisted para-complex.
(2) A semisimple twisted complex symmetric space is pseudo-Hermitian symmetric, and a

semisimple twisted involutive symmetric space is para-Hermitian.

Proof. In the following J denotes an invariant twisted almost complex structure or polariza-
tion.

(1) By the same argument as in Step 1 of the proof of Th.V.1.10 we get

g(R(J X,Y )V,W ) = g(R(V,W )J X,Y ) = −g(R(V,W )X,J Y ) = −g(R(X,J Y )V,W ),

and therefore R(J X,Y ) = −R(X,J Y ) since g is non-degenerate.
(2) If M is semisimple, the Ricci-form Ric(X,Y ) = trR(X, ·, Y ) is non-degenerate, and

since J is twisted,

Ric(J X,Y ) = trR(J X, ·, Y ) = − tr(R(X, ·, Y ) ◦ J ) = − trR(X, ·,J Y ) = −Ric(X,J Y ).

Definition V.2.3.
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(1) A form (· | ·) is called invariant w.r.t. a JTS T if

(T (x, y)u | w) = (u | T (y, x)w)

holds for all x, y, u, w ∈ V . Homomorphisms of JTS with an invariant form are JTS-
homomorphisms which are isometries.

(2) A real JTS (T, V ) is called non-degenerate if the trace form

b : V × V → R, (u, v) 7→ trT (x, y)

is non-degenerate.
(3) Ideals in Jordan triple systems are kernels of homomorphisms, and a JTS T is called simple

if T 6= 0 and it contains no ideals other than 0 and the space itself. (Hermitian) ideals in a
Hermitian JTS (T, J) are J -invariant ideals of T , and T is called simple (in the category
of Hermitian JTS) if it contains no Hermitian ideal other than 0 and the space itself.

Similarly as for Lie algebras and Lie triple systems, non-degeneracy is equivalent to semi-
simplicity which means that a suitably defined radical vanishes or in turn that one has a
decomposition into simple ideals (cf. [Lo75], [Lo77]).

Lemma V.2.4. The trace form of a JTS (T, V ) is an invariant bilinear form. If it is non-
degenerate, then it is symmetric.

Proof. From the defining identity (JT2) of a JTS we get

b(T (X,Y )U,W )− b(U, T (Y,X)W ) = tr(T (T (X,Y )U,W )− T (U, T (Y,X)W ))
= tr[T (X,Y ), T (U,W )] = 0.

Thus the trace form is invariant. This implies that R(X,Y ) = T (X,Y ) − T (Y,X) is skew-
symmetric for b , i.e. it belongs to the orthogonal Lie algebra o(b). Therefore, if b is non-
degenerate, trR(X,Y ) = 0, and since

b(X,Y )− b(Y,X) = tr(T (X,Y )− T (Y,X)) = trR(X,Y ),

it follows that then b is symmetric.

Theorem V.2.5.
(1) The category of germs of pseudo-Hermitian symmetric spaces is equivalent to the category

of Hermitian JTS with non-degenerate invariant symmetric bilinear form for which J is
orthogonal.

(2) The category of germs of semisimple twisted complex symmetric spaces is equivalent to the
category of non-degenerate Hermitian JTS.

(3) Germs of simple twisted complex symmetric spaces correspond bijectively to simple Hermi-
tian JTS.

Similar statements hold with “Hermitian” replaced by “para-Hermitian”.

Proof. (1) If (M,J , g) is a pseudo-Hermitian symmetric space, then by definition J is
orthogonal for g , and

g(T (X,Y )U, V ) =
1
2

(g(R(X,Y )U, V ) + g(J R(X,J Y )U, V ))

=
1
2

(−g(U,R(X,Y )V ) + g(U,J R(X,J Y )V )

= g(U, T (Y,X)V ),
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thus g is invariant for T .
Conversely, if (· | ·) is an invariant form on V for which J is orthogonal, then we can

reverse the calculation: R(X,Y ) is antisymmetric for (· | ·), and thus (· | ·) gives rise to a
Hermitian pseudo-metric.

(2) Using that J is twisted, we get

T (X,Y ) = T (·, Y,X) = −1
2

(R(·, Y,X)− J ◦R(·, J−1Y,X))

=
1
2

(R(Y, ·, X) + J ◦R(Y, ·, X) ◦ J−1),

and therefore
b(X,Y ) = trR(Y, ·, X) = Ric(Y,X).

Thus under the equivalence of categories from Prop. II.2.7, the respective trace forms on the
Jordan- und Lie-side correspond to each other, and the claim follows.

(3) Clearly under the equivalence of categories from Prop. II.2.7, ideals on both sides
correspond to each other, and the claim follows.

Note that the observation from part (2) of the proof does not hold for general JTS. For
example, the one-dimensional JTS R with T (x, y, z) = 2xyz clearly is non-degenerate, but the
corresponding LTS RT on R is flat and has therefore vanishing Ricci-form.

Proposition V.2.6. Every semisimple pseudo-Hermitian symmetric space has a real form.

Proof. By the general theory of Cartan involutions, the (straight) complexification of a
semisimple symmetric space M has a non-compact Riemannian real form Mr . If M is pseudo-
Hermitian, then Mr is Hermitian and has, according to [Sa80, Lemma 8.4], a real form. The
restriction of the complexification of this real form to M is a real form of M .

3. Pseudo-Riemannian symmetric spaces with twist

If (M,J , g) is a pseudo-Hermitian symmetric space, it is understood that a real form is a
complex conjugation of (M,J ) which is an isometry for g .

Theorem V.3.1. The category of real forms of germs of pseudo-Hermitian symmetric spaces
is equivalent to the category of Jordan triple systems with non-degenerate invariant symmetric
form.

Proof. From Th. V.2.5 (1) it is clear that the JTS of a real form of a pseudo-Hermitian
symmetric space has a non-degenerate invariant symmetric bilinear form. Conversely, if (T,B)
is such a JTS, then ThC together with the Hermitian extension of B given by

BhC(x+ Jy, u+ Jv) := B(x, u) +B(y, v) + i(B(y, u)− iB(x, v))

is a Hermitian JTS with a form having the properties of Th. V.2.5 (1).

Theorem V.3.2. The category of real forms of germs of semisimple pseudo-Hermitian sym-
metric spaces is equivalent to the category of non-degenerate Jordan triple systems.

Proof. We have to prove the following infinitesimal version of the claim: A JTS T is non-
degenerate if and only if its Hermitian complexification ThC is non-degenerate.
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From the fact that ThC is Hermitian on the vector space q ⊕ Jq , it follows that for all
u, v ∈ q

ThC(u, Jv) · q ⊂ Jq, ThC(u, Jv) · Jq ⊂ q;

thus ThC(u, Jv) is given by a matrix of the form
(

0
A
−A
0

)
and hence trThC(u, Jv) = 0. On

the other hand, ThC(u, v) = ThC(Ju, Jv) is given by a matrix of the form
(
B
0

0
B

)
, and thus

trThC(u, v) = trThC(Ju, Jv) = 2 trT (u, v). These two facts together imply that the trace form
of TphC is non-degenerate if and only if the trace form of T is non-degenerate.

Theorem V.3.3. The category of germs of symmetric spaces with twist which are irreducible
or have an irreducible twisted complexification is equivalent to the category of simple Jordan triple
systems.

Proof. We prove the following infinitesimal version which clearly implies the claim: If T is a
real JTS, the following are equivalent:

(1) T is a simple JTS.
(2) RT or RThC is a simple LTS.
(3) Either RT is a simple twisted complex JTS or RThC is a simple LTS.

It is clear that (3) implies (2). In order to prove that (2) implies (1), note that an ideal of
T is also an ideal of RT ; therefore T is simple if RT is simple. If RThC is simple, then ThC is
simple, and this implies that T is simple.

Before proving that (1) implies (3), let us remark that a Hermitian JTS T is simple if and
only if RT is simple. This is an immediate consequence of the equivalence of categories Prop.
II.2.7 and the fact that J is in the simple case always an inner derivation.

Now let T be a simple JTS and assume that RThC is not simple; then by the preceding
remark ThC is not simple. We have to show that then RT is simple. By assumption there
exists a proper ThC -ideal W ⊂ VC . Using that (V, T ) is simple, one deduces that (VC, ThC)
decomposes as a direct sum W ⊕ τ(W ) (where τ is the conjugation w.r.t. V ). Then T must
have been already a Hermitian JTS, isomorphic to W . Again by the above remark, for such
systems simplicity of T and RT is equivalent; thus RT is simple.

The fact that MhC is simple does not imply that M is simple: for example, the twisted
complexification of Gl(n,R) (Prop. IV.1.1) is a simple symmetric space, although Gl(n,R) has
a one-dimensional center. For the sake of completeness we quote the following result due to E.
Neher ([Ne85, Th.1.11]) which classifies the cases where T is simple, but RT is not simple:

Theorem V.3.4. If T is a simple real JTS, then either RT is simple or
(1) RT is the direct sum of a simple ideal and a one-dimensional center; this case appears

precisely if T is associated to a simple Jordan algebra via T (x, y, z) = 2(x(yz) − y(xz) +
(xy)z) ; or

(2) RT is the direct sum of two simple ideals; this case appears precisely in the cases of a JTS
associated to a quadratic form and a non-trivial reflection (Ch. XII, Tables XII.4.4 type
4.a and XII.4.5 type 4.1.a).

4. Semisimple Jordan algebras

Throughout this section, (V,G, σ, e) denotes a prehomogeneous symmetric space with open
symmetric orbit Ω = G · e ⊂ V and associated Lie triple algebra A(x ⊗ y) = L(x)y = xy (cf.
Section II.1). One may be tempted to call such a space pseudo-Riemannian, semisimple or
simple whenever Ω has the corresponding properties. However, this is misleading for we have
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seen (Section II.1) that Ω is always a cone, and correspondingly q = L(V ) has always a non-
trivial center containg RL(e) = R idV ; thus there would be no simple objects. Therefore we start
with the corresponding notions on the algebraic level which are at a first glance more canonical.

4.1. Semisimple Lie triple algebras.

Definition V.4.1. Let V be a vector space with a commutative algebra structure A : V ⊗V →
V and let xy := L(x)y := A(x⊗ y).

(1) A symmetric bilinear form b on V is called associative if for all x, y, z ∈ V ,

b(xy, z) = b(y, xz).

(2) The algebra (V,A) is called semisimple if the trace form of A

bA(x, y) := trL(xy)

is non-degenerate.
(3) An ideal of (V,A) is an L(V )-invariant subspace. The algebra (V,A) is called simple if V

has no proper ideals.

Lemma V.4.2. If (V,A) is a Lie triple algebra, then the trace form is associative.

Proof. Using the defining identity L(z(yx) − y(zx)) = [[L(y), L(z)], L(x)] of a Lie triple
algebra, we get

b(xy, z)− b(y, xz) = tr(L((xy)z − y(xz))) = tr([[L(y), L(z)], L(x)]) = 0.

If b is associative, then L(V ) acts by symmetric operators and thus [L(V ), L(V )] acts by
skewsymmetric operators w.r.t. b . In other words, the linear map

b̃ : V →W ∗, v 7→ b(v, ·)

is equivariant w.r.t. the algebra g = L(V )⊕ [L(V ), L(V )] , where W is the vector space V with
the action of G by g · w = σ(g)(w) and the g-action X · w = σ̇(X)(w).

Lemma V.4.3. A simple Lie triple algebra is semisimple.

Proof. Note that ideals in V are just g -submodules of V ; thus V is simple iff it is an
irreducible g -module. By the preceding lemma, the map b̃A : V →W ∗ is g -equivariant; hence it
is either zero or injective. It is not zero since b(e, e) = trL(e) = dimV . Therefore it is injective,
and bA is non-degenerate.

Note that, in contrast to the situation for Lie algebras, the one-dimensional unital algebra
is semisimple.

Theorem V.4.4. A semisimple Lie triple algebra is a Jordan algebra.

Proof. Let b be a non-degenerate associative symmetric bilinear form on the Lie triple algebra
V with product xy = L(x)y . For u, v, w ∈ V we let

J(u, v, w) := [L(u), L(vw)] + [L(w), L(uv)] + [L(v), L(uw)]

and prove that J(u, v, w) = 0; for u = v = w = x this is the Jordan identity (J2). Using the
associativity of b , we have for all x, y ∈ V ,

b([L(u), L(vw)]x, y) = b(u(x(vw))− (ux)(vw), y) = b(vw, [L(x), L(y)]u). (4.1)
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Now we use that [L(x), L(y)] is skew-symmetric w.r.t. b and then that it is a derivation of A
and obtain

b(vw, [L(x), L(y)]u) = −b([L(x), L(y)]v, wu)− b([L(x), L(y)]w, vu). (4.2)

Putting (4.1) and (4.2) together and applying again (4.1) to the right-hand side of the equation
thus obtained we get

b([L(u), L(vw)]x, y) = −b([L(v), L(wu)]x, y)− b([L(w), L(vu)]x, y),

whence b(J(u, v, w)x, y) = 0 for all x, y ∈ V and thus J(u, v, w) = 0 by non-degeneracy.

Putting the preceding three statements together, it follows that a simple Lie triple algebra
is the same as a simple Jordan algebra. It is easy to show that a semisimple Jordan algebra
(i.e. a Jordan algebra with non-degenerate trace form) can in a unique way be decomposed into
simple ideals (cf. [FK94, Cor. VIII.2.2]).

4.2. Completely reducible prehomogenous symmetric spaces.

Definition V.4.5. A prehomogenous symmetric space (G, σ, V, e) is called irreducible if V
is an irreducible G-module, and it is called completely reducible if V is a completely reducible
G -module.

Theorem V.4.6. Let (G, σ, V, e) be a prehomogeneous symmetric space with associated algebra
(V,Ae) . Then the following are equivalent:

(i) (G, σ, V, e) is completely reducible.
(ii) Ae is a semisimple Jordan algebra.
(iii) There is a symmetric non-degenerate bilinear form b such that for all g ∈ G , σ(g) = (g∗)−1

is the inverse of the adjoint w.r.t. b .
If these properties are verified, then (G, σ, V, e) is quadratic. Furthermore, irreducible spaces
correspond to simple Jordan algebras.

Proof. (i) ⇔ (ii): As we have remarked in the proof of Lemma V.4.2, irreducible g -modules
correspond to simple Lie triple algebras, and these are the same as simple Jordan algebras
(consequence of Th. V.4.4). Thus irreducible prehomogeneous symmetric spaces correspond to
simple Jordan algebras. By taking direct sums we obtain the claim.

(iii) ⇒ (ii): Taking g = exp(tX) with X ∈ L(V ) and deriving, we see that X is self-adjoint
w.r.t. b , i.e. b is associative. Now (ii) follows from Th. V.4.4.

(ii) ⇒ (iii): We choose b to be the trace form. Note that tr(L(uv)) = tr(T (u, v)), where
T (u, v) = [L(u), L(v)] + L(uv). Thus by equivariance of T ,

b(σ(g)u, v) = tr(T (σ(g)u, v)) = tr(σ(g)T (u, g−1v)σ(g)−1) = b(u, g−1v).

Finally, from (ii) it follows by Th. II.2.6 that (G, σ, V, e) is quadratic. The last claim has
already been proved above.

4.3. Geometric interpretation of associativity. The preceding results show that the
crucial property of the trace form b is its associativity. This property implies that b is invariant
under the stabilizer H of the base point e , und thus

bg.e(u, v) := b(gu, gv)

defines a G -invariant pseudo-metric on the open orbit Ω. However, H -invariance does not
imply associativity: for example, in the irreducible case associative forms are essentially unique,
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whereas changing such a form by an arbitrary choice for the value b(e, e) still defines an H -
invariant form. In the following we describe some properties which distinguish associative forms
from H -invariant ones.

1. Clearly b is associative if and only if the operator P (x) = 2L(x)2 − L(x2) is for all x
self-adjoint. This implies that the formula

bx(u, v) := b(P (x)−1u, v)

defines an invariant pseudo-metric not only on Ω, but on the whole dense open set V ′ (cf.
Section II.2.2). Composing with the Jordan inverse, we see that

Ω→ Bil(V ) = S2(V ∗), x 7→ bse(x)

extends to a quadratic polynomial V → S2(V ∗). Identifying (V ⊗ V )∗ with End(V ) via
be , this polynomial is equivalent to P itself.

2. A relative invariant of a prehomogenous symmetric space is a rational function f such that
for all g ∈ G there is a number χ(g) such that for all x ∈ V ,

f(g−1x) = χ(g)f(x).

We say that a prehomogenous symmetric is log-regular if there is a relative invariant f
and a point z ∈ Ω such that D2(log f)(z) is a non-degenerate bilinear form. Then (if
the prehomogenous space is symmetric) D2(log f)(z) is associative ([Be94, Lemma 4.6.8])
and corresponds thus to a semisimple Jordan algebra. Conversely, every Jordan algebra is
log-regular, the relative invariant being given by f(x) = DetP (x).

3. Finally, if we assume from the beginning that “regular” prehomogenous symmetric spaces
should be quadratic, we may consider them as special cases of the general theory of Jordan
triple systems. In fact, then

T (x, y, z) = 2(x(yz)− y(xz) + (xy)z)

is a JTS which extends the LTS L(V ). Thus by our general theory, Ω is a symmetric
space with twist and admits a Hermitian complexification (which we will later realize as a
generalized tube domain, cf. Chapter XI). Note that if a form b is associative for Ae , then
it is invariant for T :

b(T (u, v)x, y) = b(([L(u), L(v)] + L(uv))x, y)
= b(x, ([L(v), L(u)] + L(vu))y) = b(x, T (v, u)y),

and vice versa since L(v) = T (v, e) = T (e, v). Furthermore, the trace forms of Ae and T
are the same since

tr(T (u, v)) = tr(L(uv)).

Summing up, we get

Proposition V.4.6. Let (G, σ, V, e) be a quadratic prehomogenous symmetric space with open
orbit Ω and associated Jordan algebra Ae and JTS T . Then the following are equivalent:

(i) The Hermitian complexification of Ω is a pseudo-Hermitian symmetric space.
(ii) The Hermitian complexification of Ω is semisimple.
(iii) T admits an invariant symmetric non-degenerate bilinear form.
(iv) T is non-degenerate.
(v) Ae is a semisimple Jordan algebra.

Proof. By Section V.3, (i) and (iii) are equivalent, as well as (ii) and (iv). Since the trace
forms of Ae and T are the same, (v) and (iv) are equivalent. Finally, we have remarked above
that (iii) is equivalent to saying that Ae admits an associative non-degenerate symmetric bilinear
form. But then Ae can be decomposed into simple ideals and is semisimple, and (v) holds.
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Compared to the situation of general Jordan triple systems, the equivalence of (iii) and (iv)
is new. This is due to the existence of the unit element in Ae which excludes cases like T = 0
satisfying (iii) but not (iv).

5. Compact spaces and duality

5.1. Riemannian symmetric spaces. A symmetric space M = G/H is called Rie-
mannian if it has a G-invariant Riemannian metric tensor. Their theory is by now classical (cf.
[Hel78]). Let us recall without proof some basic facts. Each Riemannian symmetric space can
(locally) be decomposed into a direct product of spaces of the following kind:

– Euclidean type: M is flat.
– Compact type: M is compact and semisimple.
– Non-compact type: the c-dual space M c (cf. Section I.1.4) is of compact type.

In the first case M is a product of vector spaces and tori. The second type is usually defined by
negative definiteness and the third type by positive definiteness of the Ricci form. However, this
definition depends on the sign-convention used in the definition of the Ricci-form. The following
characterization is independent of the sign-convention: recall that the standard-imbedding

q→ g = h⊕ q

is the infinitesimal version of the quadratic map Q : M → G(M), and the symmetric subspaces

G(M)− := {g ∈ G(M)|σ(g)−1 = g}, G(M)+ := G(M)σ

intersect transversally and orthogonally (w.r.t.the Killing form) at the base point o . The Killing
form is (up to a scalar factor) just the Ricci form of the symmetric space G(M). Then M is of
compact type if and only if the restrictions of the Ricci form of G(M) to G(M)+ and to G(M)−

are definite and have the same sign (i.e. the restrictions are both positive or both negative
definite; with the usual sign-convention, they are then both negative), and M is of non-compact
type if and only if both restrictions are definite and have different signs.

5.2. Duality. Recall that, if g = h ⊕ q is the standard-imbedding of a LTS q , then the
c-dual LTS qc is defined by the standard-imbedding gc = h ⊕ iq . From this it is immediately
seen that qc is of compact type if and only if q is of non-compact type.

If q comes from a Lie group, then its standard-imbedding is a direct product where
both factors are canonically isomorphic. In particular, both restrictions of the Ricci form are
canonically isomorphic, and it cannot happen that one of it is positive and the other negative.
Thus a Lie group is never of non-compact type. On the other hand, every semisimple Lie group
G has a Cartan-involution giving rise to a space M = G/K of non-compact type whose compact
dual is U/K with U a compact real form of GC .

5.3. Hermitian symmetric spaces. The class of Hermitian symmetric spaces is the
intersection of the class of Riemannian symmetric spaces and the class of pseudo-Hermitian
symmetric spaces. As mentioned above, such a space has a unique decomposition into a Euclidean
space, a space of compact type and of non-compact type. The Euclidean spaces are locally
isomorphic to complex vector spaces. Since Ricci form and the trace form of the structure tensor
are the same for pseudo-Hermitian symmetric spaces (cf. proof of Th.V.2.5), the spaces of non-
compact type correspond bijectively to positive Hermitian Jordan triple systems (i.e. the trace
form is positive definite) and the spaces of compact type to negative Hermitian Jordan triple
systems.
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5.4. Compact symmetric spaces with twist. When passing to real forms of (pseudo-)
Hermitian symmetric spaces, the problem arises that the Ricci form of the real form and the
trace form of its structure tensor need no longer be the same.

Definition V.5.1. A JTS T is called positive (negative) if its trace form is positive (negative)
definite. A symmetric space with twist T is called of non-compact type if its JTS T is positive
and of compact type if its JTS T is negative.

Proposition V.5.2. A symmetric space M with twist T is of compact (resp. of non-compact)
type if and only if its twisted complexification is a Hermitian symmetric space of compact (resp.
of non-compact) type.

Proof. The arguments proving Th. V.3.2 show that the trace form of ThC is negative (positive)
iff so is the trace form of T . But since the trace form of ThC is equal to the Ricci form of MhC ,
this proves the claim.

Note that a symmetric space with twist of the non-compact type need not be semisimple
– see example of symmetric cones below. Symmetric spaces with twist of compact type are the
same as the class of symmetric R-spaces (cf. Sections 0.3 and X.6). Their classification is given
in Table XII.3.3.

5.5. Symmetric cones and Euclidean Jordan algebras. If Ω = G/H is the open
symmetric orbit of a prehomogeneous symmetric space (G, σ, V, e), then Ω is never compact (if
it were compact, it would be open and closed in V , whence Ω = V . But V is not compact:
contradiction). If Ω is quadratic with Jordan-extension T , then trT (e, e) = tr idV = dimV > 0,
showing again that Ω is never a symmetric space with twist of compact type.

Definition V.5.3. A Jordan algebra is called Euclidean if its trace-form is positive definite.

Proposition V.5.4. If (G, σ, V, e) is a quadratic prehomogeneous symmetric space, then the
following are equivalent:

(i) The associated algebra Ae is a Euclidean Jordan algebra.
(ii) The twisted complexification ΩhC of Ω is a Hermitian symmetric space of the non-compact

type.

Proof. This is an immediate consequence of Prop. V.4.6 and the remarks in Section 5.3.

If the conditions of the preceding proposition are verified, then Ω is called a symmetric
cone.

Example V.5.5. Consider the spaces defined in Section II.3.3: b is a non-degenerate symmetric
bilinear form on a vector space V , e ∈ V with b(e, e) = 1, and Ω = (O(b) × R+).e . Then a
short calculation shows that the trace form of the corresponding Jordan algebra is defined by

tr(L(x2)) = n(2b(x, e)2 − b(x, x)).

Thus, if b has the signature (p, q), then the trace form has the signature (q+1, p−1). Therefore
V is Euclidean iff b has the signature (1, n− 1). In this case Ω is an open Lorentz cone.

The example shows that it is not possible to characterize the symmetric cones as the
Riemannian symmetric spaces among the open symmetric orbits Ω. In fact, if b is positive
definite, then Ω = Sn−1 × R+ carries also an invariant Riemannian metric, but it is not a
symmetric cone.

The following geometric characterization of symmetric cones is by now classical (cf. [FK94,
Ch.I]): they are the homogeneous and self-dual open convex cones in Euclidean vector spaces.
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Using the theory of Jordan algebras, one can also prove that the symmetric cones are precisely the
convex ones among the open symmetric orbits associated to semisimple Jordan algebras. It would
be interesting to have a simple direct argument relating convexity to the positive definiteness of
the trace form.
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Notes for Chapter V.

V.1. For the material of Sections 1.1 – 1.3, [Lo69a] and [Li52] are standard references.
Theorem V.1.9 (1) is due to N. Jacobson ([Jac51, Th.7.3]). Jacobson defines, besides the
standard-imbedding, a universal imbedding of a LTS which in all cases has the extension-property,
and then proves that in the semisimple case the standard-imbedding is already universal. This
basic result on symmetric spaces seems not to be very well known. For instance, it would have
simplified parts of the exposition in [Sa80] (cf. [Sa80, Prop.I.9.1] where a special case of Th.
V.1.9 is proved). Theorem V.1.10 summarizes various results due to S. Koh ([Koh65, Th. 3, 5, 6,
7, 8]); the presentation given here is new. For a different proof of Cor.V.1.11 see [HO96, Lemma
1.3.4].

V.2. and V.3. Theorems V.2.5, V.3.1 and V.3.2 generalize the correspondence between
Hermitian symmetric spaces and positive Hermitian JTS already mentioned in the introduction
(Section 0.3 (b)). However, our proofs are different from the original ones and are considerably
simpler. The correspondence between positive real JTS and real forms of Hermitian symmetric
spaces has already been investigated by O. Loos ([Lo77, Ch.11]); from another point of view such
spaces have been classified by H.A. Jaffee [Jaf75]. The correspondence between non-degenerate
polarized JTS (Jordan pairs) and para-Hermitian symmetric spaces is known by the work of S.
Kaneyuki ([KanKo85], [Kan92]).

V.4. The main result on semisimple Lie triple algebras, Th. V.4.4., is due to M. Koecher
([Koe58]; cf. [FK94, Ch.III, Exercise 8]) and E.B. Vinberg ([Vi60]); our presentation follows
[Sa80, Lemma I.8.6]. For a different proof cf. [Be94, Prop.4.2.6]. The equivalence of (i) and (ii)
in Th. V.4.6 is due to H. Shima ([Shi75]).

V.5. Jordan theoretic aspects of compact symmetric spaces with twist (symmetric R -
spaces) have been studied by O. Loos ([Lo85]). For a very detailed exposition of the theory
of symmetric cones see [FK94]. The particular role symmetric cones play for causal symmetric
spaces with twist will be discussed in Chapter XI.3.
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Chapter VI: Integration of Jordan structures

In Chapter III we established the equivalence of Jordan triple systems and Jordan pairs
with certain geometric objects (symmetric spaces with some additional structure). However,
the method used there does not give much insight into the geometry of the symmetric spaces in
question. If we want to understand the geometry, we have to pass from tensors to the spaces
itself. The fundamental tool to be used in this process is the integrability of invariant almost
complex structures and polarizations on symmetric spaces. The fact that such structures are
integrable is well-known and easy to prove (we don’t need to invoke the theorem of Newlander
and Nirenberg; cf. Appendix VI.A), but it has important consequences.

In three steps we define “integrated versions” of the three basic Jordan theoretic “infinites-
imal” concepts: Hermitian Jordan triple systems, Jordan pairs, general Jordan triple systems.
In doing this, we follow the model of the theory of symmetric spaces: the multiplication map µ
(Def. I.4.4) is the integrated version of the associated LTS which is an infinitesimal concept. The
geodesic symmetry sx(y) = µ(x, y) can be seen as an extension of the scalar −1 acting on the
tangent space TxM . Similarly, the integration of Jordan structures yields extensions of other
non-zero complex or real scalars r . The Jordan-Lie functor is nothing but specialization to the
value r = −1. Let us explain this in some more detail.

In the first step (Section 1) we characterize the twisted complex symmetric spaces as circled
spaces: bounded symmetric domains M are well-known to be circled in the sense that they are
stable under the action S1×M →M , (u, y) 7→ ux(y) of the circle group S1 fixing a given point
x which we may choose to be the origin of a Harish-Chandra realization of M , and then the
circle group acts by automorphisms of the domain. In other words, for all u ∈ S1 we have a
multiplication map

M ×M →M, (x, y) 7→ ux(y) =: u(x, y).

Its axiomatic properties give rise to our definition of circled spaces; they are very similar to those
of the multiplication map µ defining a symmetric space. In fact, the underlying symmetric space
structure of M is given by µ(x, y) = (−1)x(y). In this first step the integrability is not yet used.

Let us skip for the moment the second step and pass to the third one: we want to
characterize geometrically real forms of circled spaces. Thus we have to select a structure feature
of circled spaces which is stable under complex conjugations. The structure tensor introduced
in Section III.2 is such a feature; the action of S1 attached to a point clearly is not. Here the
example of the unit disc D is quite helpful: we complexify the action of S1 = SO(2) and get
the action of C∗ = SO(2,C) by multiplication with complex scalars, and then restrict attention
to the action of the non-compact real form R+ of SO(2,C) by multiplication with real positive
scalars. It is clear that any real form of D containing the origin is locally stable under this
action. This local action defines a vector field Eo on the real form; it is the Euler operator, i.e.
the vector field having value x at a point x . We will use the concept of “Euler operators on
symmetric spaces” in the next chapter; here we focus our attention on the corresponding (germs
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of) multiplication maps
M ×M →M, (x, y) 7→ rx(y)

parametrized by real scalars r , which in a sense are just the local flows of Euler vector fields.
The algebraic properties of such maps are more complicated than those defining circled spaces:
for r 6= ±1, the dilatation by r can never be an automorphism of a curvature tensor and thus rx
cannot be realized as an automorphism of the whole structure in the way explained for circled
spaces.

It is the concept of a Jordan pair which shows the way we have to go (Section 2): Polarized
symmetric spaces have locally the structure of a direct product; this is precisely the point where
integrability is used. The two leaves M+ and M− through a base point o ∈ M correspond to
the two spaces forming the Jordan pair. If the structure is twisted, then we may think of M+

and M− as the eigenspaces of the usual action of the small Lorentz group O(1, 1) on R2 : on M+

an element of this group acts by a scalar r and on M− by r−1 ; the other orbits are hyperbolas.
Now we have to keep in mind that to any point of M such an action is attached (in the example,
M is the one-sheeted hyperboloid and R2 is the chart of M obtained by stereographic projection
w.r.t. an arbitrary point). The properties of the family of multiplication maps thus obtained,
summarized in Def. VI.2.4, show a remarkable similarity with the defining properties of a Jordan
pair in the sense that the latter are formally obtained by differentiating the former. The one-
sheeted hyperboloid is indeed a typical example of such a structure which in a sense generalizes
the ruled surfaces known from analytic geometry; therefore we call our spaces ruled spaces. By
adding the structure of a para-real form, we get a similar integrated version of general real Jordan
triple systems (Th. VI.3.1).

Summarizing, we may say that integrability allows to extend in a canonical way multipli-
cation by real scalars from tangent spaces to the space itself (at least locally). In other words,
we have laws relating a re-scaling on a tangent space to the geometry of the ambient space. If
we agree to consider the effects of scaling a primary topic in conformal geometry, then it is clear
that the concepts presented in this chapter are a step towards understanding Jordan theory as
an aspect of a “generalized conformal geometry”.

1. Circled spaces

Definition VI.1.1. A smooth manifold M together with a smooth map

j : M ×M →M, (x, y) 7→ j(x, y) =: jx(y)

is called a circled space if, for all x, y, z ∈M ,
(c1) j(x, x) = x ,
(c2) (jx)4 = idM ,
(c3) jx(j(y, z)) = j(jx(y), jx(z)),
(c4) The fixed point x of (jx)2 is isolated.

Theorem VI.1.2. The (germs of) circled spaces are precisely the (germs of) twisted complex
symmetric spaces.

Proof. Let (M, j) be a circled space. For x, y ∈M we let sx := (jx)2 and µ(x, y) := sx(y) =
j(x, j(x, y)). Then the properties (M1) – (M4) from Lemma I.4.2 follow immediately from the
properties (c1) – (c4), and therefore M carries the structure of a symmetric space (Def. I.4.4).
Now let Jx := Tx(jx). Then (Jx)2 = Tx(sx) = − idTxM , i.e. J := (Jx)x∈M is an almost
complex structure on M . It is invariant since from (c3) we get that the sx are automorphisms
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of j : sx(j(y, z)) = j(sx(y), sx(z)), which implies that G(M) acts as a group of automorphisms
of j and therefore also of J . Finally, it is twisted because from (c3) it follows also that jx acts
as an automorphism of µ (jx(µ(y, z)) = µ(jx(y), jx(z))), and therefore Jx is an automorphism
of the curvature Rx at x .

Conversely, assume (M,∇,J ) is a twisted complex symmetric space. Since, for all x ∈M ,
Jx is an automorphism of Rx , it has a unique (local) extension to an automorphism jx of M
(Cor. I.2.10). We let j(x, y) := jx(y). Then clearly j(x, x) = x , i.e. (c1); (c3) is verified since
jx is an automorphism of µ and of J and therefore of the whole structure; (c2) and (c4) follow
since Tx(jx)2 = − idTxM , whence (jx)2 = sx is the geodesic symmetry w.r.t. x .

Definition VI.1.1 parallels the algebraic definition of a symmetric space (Def. I.4.4). As for
symmetric spaces, one can also give a differential geometric characterization of circled spaces in
terms of smooth manifolds M with affine connection ∇ and almost complex structure J such
that
(c1’) J is invariant under ∇ (i.e. ∇J = 0),
(c2’) Jp extends, for all p , to a local (resp. global) affine map jp (cf. Def. I.A.1).
Recall that, by definition, (∇J )(X,Y ) = ∇X(J Y ) − J (∇XY ), and condition (c1’) can be
written ∇X(J Y ) = J ∇XY for all X,Y ∈ X(M). The proof that the conditions (c1’) and (c2’)
describe precisely the twisted complex (locally) symmetric spaces is easy and will be left to the
reader.

Proposition VI.1.3. If (M,∇,J ) is a twisted complex symmetric space, then the operator
etJp has, for all p ∈M and t ∈ R , a unique affine extension.

Proof. According to Prop. III.2.2, Jp is a derivation of Rp . Therefore etJp is an automor-
phism of Rp for all t ∈ R . From Cor. I.2.10 it then follows that etJp has an affine extension.

Let u ∈ S1 = eiR . According to the proposition, for all x ∈M , there exists a unique affine
and almost-holomorphic map ux with ux(x) = x and Tx(ux) = u idTxM . Let u(x, y) := ux(y);
then

u : M ×M →M

is a smooth map having properties similar to (c1) – (c4). In particular, (c3) is generalized by

ux(w(y, z)) = w(ux(y), ux(z))

for all u,w ∈ S1 , x, y, z ∈ M . In other words, we can attach to any point x ∈ M an action of
the circle group S1 by automorphisms of the whole structure and fixing x . Such a situation is
considered in greater generality by O. Loos in [Lo72].

Proposition VI.1.4. If (M,∇,J ) is a twisted complex symmetric space, then for all p , Jp
has a unique vector field extension (cf. Def. I.A.1) to an affine vector field Jp of ∇ .

Proof. This is the differentiated version of Prop. VI.1.3 (cf. Lemma I.A.2).

2. Ruled spaces

The preceding two propositions carry over to twisted polarized symmetric spaces because
we only needed that Jp is a derivation of Rp , and this property holds by Lemma III.3.4 also for
twisted polarized symmetric spaces. However, an axiomatic characterization of these spaces in
the spirit of Def. VI.1.1 is less straightforward than in the twisted complex case. The reason for
this is, of course, that the operator etJp can no longer be interpreted as multiplication by a real
or complex scalar.
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Definition VI.2.1. A ruled space is a manifold M together with a family of smooth maps

µr : M ×M →M, (x, y) 7→ µr(x, y) =: r̃x(y),

parametrized by r ∈ R∗ , such that for all x, y, z ∈M and r, t ∈ R∗ ,
(p1) rx(x) = x

(p2) r̃x ◦ t̃x = (̃rt)x , 1̃x = idM ,
(p3) r̃x(µt(y, z)) = µt(r̃x(y), r̃x(z))
(p4) The tangent map Tx(r̃x) is diagonalizable with two eigenvalues, r and r−1 .

Theorem VI.2.2. The (germs of) ruled spaces are precisely the (germs of) twisted polarized
symmetric spaces.

Proof. We use the same arguments as in the proof of Th. VI.1.2: If (M, (µr)r∈R∗) is
a ruled space, then it follows immediately from (p1) – (p4) that µ := µ−1 defines on M
the structure of a symmetric space in the sense of Def. I.4.4. From (p3) with r = −1 it
follows that the whole structure is invariant under G(M). Therefore the polarization defined by
Jp := d

dr |r=1(Tp(r̃p)) is G(M)-invariant. It is twisted: Jp is a derivation of Rp because all r̃p
are, by (p3), automorphisms.

Conversely, assume (M,∇,J ) is a twisted polarized symmetric space. Since, for all x ∈M ,
Jx is a derivation of Rx , etJx is an automorphism and therefore extends to unique affine
automorphism of M , denoted by r̃x if r = et . We let µr(x, y) := r̃x(y) for positive r . If
r is negative, then we let r̃x(y) := µ(x, µ−r(x, y)), where µ is the multiplication map of the
symmetric space M . The properties (p1) – (p4) are now easily verified, cf. the proof of Th.
VI.1.2.

Let us denote by X(M) = X(M)+ ⊕X(M)− the eigenspace decomposition of the operator
J : X(M) → X(M), and write X = X+ + X− for the corresponding decomposition of a
vector field X . By a integral submanifold for X(M)+ we mean a submanifold N ⊂ M such
that TxN ⊂ (TxM)+ for all x ∈ N . We say that N is maximal if the stronger condition
TxN = (TxM)+ holds, and similarly for X(M)− .

Proposition VI.2.3. Let J be an invariant polarization on the germ (M,o) of a symmetric
space.

(i) There exist (germs of) maximal integral submanifolds M+ and M− for X(M)+ resp.
X(M)− intersecting transversally at o . The spaces M+ and M− are (germs of) subsym-
metric spaces of M and define a product chart around o .

(ii) Every almost para-holomorphic (local) diffeomorphism g : M → M is actually para-
holomorphic, i.e. it is a direct product of (local) diffeomorphisms g+ : M+ → M+ ,
g− : M− →M− :

g((x, a)) = (g+(x), g−(a)) (x ∈M+, a ∈M−).

Proof. (i) In Appendix A (Prop. VI.A.3) it is proved that J is integrable in the sense that
the invariance algebra g(J ) of J decomposes into a direct sum of ideals:

g(J ) = g(J )+ ⊕ g(J )−; g(J )± ⊂ X(M)±.

Thus the projections pr± : g(J )→ g(J)± , X 7→ X± are Lie algebra homomorphisms. Since J
is invariant under g , we have g ⊂ g(J ). Let g± := pr±(g) and

M± := (germ of) exp(g±).o.



99

Then the M± are maximal integral submanifolds of X(M)± : in fact, the tangent vectors
v ∈ (TpM±) are all of the form v = Xp with X ∈ g± , and therefore Tp(M±) = (TpM)± .
It follows that M+ and M− intersect transversally at o because ToM = ToM

+ ⊕ ToM− . Next
we are going to show that

M+ ×M− →M, (exp(X).o, exp(Y ).o) 7→ exp(X + Y ).o
(X ∈ g+, Y ∈ g− ) defines a product chart of M : it is well-defined since X and Y commute,
and it is smooth by standard arguments. It is a local diffeomorphism since (under the natural
identification To(M+×M−) ∼= To(M+)×To(M−)) its differential at the origin is just the identity.

(ii) Let us write, in local product coordinates V = V +×V − , g((x1, x2)) = (g1(x1, x2), g2(x1, x2))
with locally defined smooth maps g1 : V → V + , g2 : V → V − . Then the condition g∗ J = J
reads in these coordinates ∂J Xg = J ∂Xg . For X ∈ X+ (i.e. J X = X ) this implies that
J ∂Xg is a map from V to V + , and thus ∂Xg2 = 0. Similarly, ∂Y g1 = 0 for all Y ∈ X− . This
implies that g = g+ × g− with g+(x) = g1(x, o), g−(a) = g2(o, a). (One could also use other
coordinates in which J is given by the matrix

(
0
1

1
0

)
; if we write g = (u, v) in these coordinates,

the condition ∂J Xg = J ∂Xg takes the form of the “para Cauchy-Riemann equations”
∂xu = ∂yv, ∂yu = ∂xv,

where x and y are related to the coordinates (x′, y′) used above via x′ = x+ y , y′ = x− y .)

Now we are ready to decompose the (germ of) the multiplication map
µr : M ×M ∼= M+ ×M− ×M+ ×M− →M ∼= M+ ×M−

in the product chart and to obtain an integrated version of the Jordan pair concept:

Theorem VI.2.4.
(i) Let (M, (µr)r∈R∗) be a (germ of a) ruled space and let for (x, a) ∈M ∼= M+ ×M− ,

r+
x,a := (r̃(x,a))+ : M+ →M+, r−a,x := (r̃−1

(x,a))− : M− →M−,

and
µ±r : M± ×M∓ ×M± →M±, (x, y, z) 7→ r±x,y(z).

Then the following holds: for all a, b, c ∈M+ , x, y, z ∈M− , r, s ∈ R∗ ,
(p1’) µ+

r (x, a, x) = x , µ−r (a, x, a) = a ,
(p2’) r+

x,as
+
x,a = (rs)+

x,a , 1+
x,a = idM+ ,

r−a,xs
−
a,x = (rs)−a,x , 1−a,x = idM− ,

(p3’) r+
x,a(µ+

s (y, b, z)) = µ+
s (r+

x,a(y), (r−1)−a,x(b), r+
x,a(z)) ,

r−a,x(µ−s (b, y, c)) = µ−s (r−a,x(b), (r−1)−x,a(y), r−a,x(c)) ,
(p4’) Txr

+
x,a = r idTxM+ , Tar−a,x = r idTaM+ .

(ii) Conversely, if M± are manifolds and µ±r : M±×M∓×M± →M± (r ∈ R∗ ) maps having
the properties (p1’) – (p4’), then

µr : M ×M →M, µr((x, a), (y, b)) := (µ+
r (x, a, y), µ−r−1(a, x, b))

defines on M = M+ ×M− a (germ of a) ruled space.
Proof. The properties (p1’) – (p4’) are equivalent to (p1) – (p4), written out by decomposing
elements of M into M+ - and M− -parts.

Note that the map
rx,a × ra,x : M →M

has differential r idT(x,a)M at (x, a) ∈M and can therefore be interpreted as a sort of “mulitpli-
cation by r on M w.r.t. the point (x, a)”; however, unlike r̃(x,a) : M×M (which has differential
r idTxM+ ×r−1 idTaM− at (x, a)) it is in general not an automorphism of the whole structure –
the only exception are the values r = 1 and r = −1; as already remarked, the value r = −1
belongs to the symmetric space structure of M .
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3. Integrated version of Jordan triple systems

As we have seen in Ch. III, general Jordan triple systems are para-real forms of twisted
polarised Jordan triple systems (=Jordan pairs). Thus we have to describe the structure obtained
by adding a para-conjugation τ to the structure from the preceding section. Let M = M+×M−
be a polarized space with base point o = (o+, o−). A para-conjugation is an automorphism τ of
M of order 2 such that τ∗ J = −J . It induces an involution τ∗(g) := τgτ on G(M), and we
have the formulae

(τ∗g)+ = g−, (τ∗g)− = g+.

Assume further that τ(o) = o . Then τ : M+ → M− is a local diffeomorphism which we use to
identify M+ with M− , thus considering τ as given by the formula

τ((x, a)) = (a, x)

and the τ -fixed subspace as the (germ of the) diagonal in M :

Mτ = {(x, x) ∈M+ ×M−|x ∈M+}.

Under τ , the maps µr : M± ×M∓ ×M± →M± correspond to a single map

πr : M+ ×M+ ×M+ →M+, (x, y, z) 7→ πr(x, y, z) =: rx,y(z),

and (p1’) – (p4’) translate to

(p1”) πr(x, a, x) = x ,
(p2”) rx,y ◦ sx,y = (rs)x,y , 1x,y = idM ,
(p3”) rx,y(πs(a, b, c)) = πs(rx,y(a), r−1

y,x(b), rx,y(c)),
(p4”) Tx(rx,y) = r idTxM+ .

Taking r = −1 and restricting to the diagonal, we get the symmetric space structure of the
τ -fixed space Mτ ; i.e.

µ((x, x), (y, y)) = (π−1(x, x, y), π−1(x, x, y)).

Since M+ , M− and Mτ are diffeomorphic, we may also transfer this structure to M+ . Summing
up, we have

Theorem VI.3.1.
(i) There is a bijection between (real finite-dimensional) Jordan triple systems and germs

(M+, o) of manifolds with a family of germs of diffeomorphisms πr : M ×M ×M → M
satisfying (p1”) – (p4”).

(ii) The integrated version of the Jordan-Lie functor is the map associating to (πr)r∈R∗ the
multiplication map µ(x, y) := π−1(x, x, y) .

It is in fact possible to give an explicit formula for the maps πr in terms of the corresponding
JTS T (see Section X.3.2). It turns out that this formula is rational and thus allows to globalize
the germs of structures described in this chapter.
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Appendix A: Integrability of almost complex structures

Definition VI.A.1. Recall that an almost complex structure (resp. polarization) is a tensor
field J of type (1,1) such that J 2

p = −1p (resp. J 2
p = 1p ) for all p ∈M . It is called integrable

if its torsion tensor

N(X,Y ) := [J X,J Y ] + J 2[X,Y ]− J [X,J Y ]− J [J X,Y ]

vanishes.

Proposition VI.A.2. Let J be a G-invariant almost complex structure or polarization on a
symmetric space M = G/H . Then J is integrable.
Proof. We use the canonical connection ∇ of M defined in Prop. I.2.1. Since [X,Y ] =
∇XY −∇YX for all X,Y ∈ X(M), we get

N(X,Y ) = ∇J X J Y −∇J Y J X + J 2(∇XY −∇YX)
− J (∇X J Y −∇J YX −∇J XY +∇Y J X).

As remarked in Section I.2, G · J = J implies ∇J = 0; this means that ∇Z J S = J ∇ZS for
all Z, S ∈ X(M). Using this property, all terms in the above expression of N(X,Y ) cancel out.

We consider the invariance group G(J ) of J ; this is the group of diffeomorphisms g of
M such that for all Y ∈ X(M), g∗(J Y ) = J g∗Y holds. We call G(J ) also the group of almost
(para-) holomorphic transformations of (M,J ). The corresponding infinitesimal object is the
Lie algebra

g(J ) := {X ∈ X(M)| ∀Y ∈ X(M) : [X,J Y ] = J [X,Y ]}. (A.1)

We remark that for all X,Y ∈ g(J ),

N(X,Y ) = [J X,J Y ]− J 2[X,Y ],

and therefore, if J is integrable, then we have for all X,Y ∈ g(J ),

[J X,J Y ] = J 2[X,Y ]. (A.2)

Proposition VI.A.3. Let J be an integrable almost complex structure or a polarization on a
manifold M and assume that g(J ) contains for any point p ∈M a local basis of X(M) around
p . Then g(J ) is stable under the map X 7→ J X . In particular,

(i) if J 2 = − idX(M) , then g(J ) is a complex Lie algebra with complex structure J ;
(ii) if J 2 = idX(M) , then g(J ) is the direct sum of its ideals

g(J )± := {X ∈ g(J )|X = ±J X}.

Proof. Let X ∈ g(J ) and Y ∈ X(M). On a neighbourhood of a point p ∈ M we can write
Y =

∑m
i=1 fiYi with smooth functions fi and Yi ∈ g(J ). Without loss of generality we may

assume that m = 1 and write Y = fỸ . Then using Equation (A.2), locally,

[J X,J Y ] = [J X, f J Ỹ ] = df(J X) · J Ỹ + f [J X,J Ỹ ]

= J (df(J X) · Ỹ + f [J X, Ỹ ])
= J [J X,Y ].

Using a partition of unity, we get the same relation for general Y ∈ X(M), whence J X ∈ g(J ),
proving the claim. Now (i) is an immediate consequence, and in order to prove (ii), it remains
only to show that g(J )± are indeed ideals of g(J ): let X ∈ g(J )+ , Y ∈ g(J )− ; then
[X,Y ] = [J X,Y ] = J [X,Y ] = [X,J Y ] = −[X,Y ] , and therefore [g(J )+, g(J )−] = 0.
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Proposition VI.A.4. Let J be an integrable almost para-complex structure on M satisfying
the assumptions of the preceding proposition. Assume τ is a para-conjugation, i.e. a diffeomor-
phism with τ∗(J ) = −J and τ2 = idM . Then the maps

p± : g(J )→ g(J )τ∗ , X 7→ 1
2

(X + τ∗X ± J (X − τ∗X))

are Lie-algebra homomorphisms.

Proof. We can write p± = r± ◦ pr± , where

pr± : g(J )→ g(J )+, X 7→ 1
2

(X ± J X)

are the projections onto the ideals introduced in the preceding proposition, and

r± : g(J )± → g(J )τ∗ , X 7→ X + τ∗X.

We prove that the maps r± are Lie algebra homomorphisms: if X ∈ g(J )± , then τ∗X ∈ g(J )∓

and therefore [X, τ∗X] = 0. Thus for X,Y ∈ g(J )± ,

[τ∗X +X, τ∗Y + Y ] = [τ∗X, τ∗Y ] + [X,Y ] = τ∗[X,Y ] + [X,Y ].

Notes for Chapter VI.

With some suitable modifications, the properties (p1’) – (p4’) carry over to the case of
more general base fields, and thus one can base on them a more general global theory of Jordan
structures than presented here (work in progress).

Appendix A. It is well-known that invariant almost complex structures on symmetric
spaces are integrable (cf. [KoNo69]); for the corresponding fact on para-complex structures
cf. [KanKo85].
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Chapter VII: The conformal Lie algebra

There is a by now classical construction associating to a Jordan triple system or a Jordan
pair a 3-graded Lie algebra of quadratic polynomial vector fields; it has been found independently
by Kantor, Koecher and Tits and is therefore often referred to as the Kantor-Koecher-Tits
construction. This chapter is devoted to a geometric version of this constructon. Essentially,
this means that we proceed in the same way as in the preceding chapter, but on the level of Lie
algebras instead of working with local diffeomorphisms.

As explained in the introduction to Chapter VI, the infinitesimal version of the dilatation
maps rx : M → M is the Euler vector field Ex := d

dr |r=1rx , and the distribution (Ex)x∈M
of Euler vector fields is the infinitesimal version of the multiplication map M × M → M ,
(x, y) 7→ rx(y). The (inner) conformal Lie algebra or Kantor-Koecher-Tits algebra is then the
Lie algebra generated by all Euler vector fields; it contains the Lie algebra of the transvection
group G(M) of the symmetric space M as a proper subalgebra. A fixed Euler vector field induces
a 3-grading on the conformal Lie algebra, which naturally leads to a realization of the algebra
as an algebra of polynomial vector fields on a vector space V . This vector space V can be seen
as a natural chart (which we call Jordan coordinates) of the space M around a given point.
The Jordan coordinates are the generalization of the well-known Harish-Chandra imbedding of
a Hermitian symmetric space. In case of the unit disc it is the natural realization in the vector
space V = C .

It is clear that, as in the preceding chapter, we use the integrability in a crucial way. Most
of the results of this chapter could have been derived from what we have done there; but in
order to treat the Kantor-Koecher-Tits construction as a topic in its own right we have kept the
exposition rather independent of Chapter VI by using only Lie-algebraic methods.

1. Euler operators and conformal Lie algebra

1.1. The twisted complex and twisted polarized case. Assume that M = G/H is a
symmetric space with an invariant (1,1)-tensor field J such that J 2 = −1 or J 2 = 1 . Let us
assume that G = G(M) and denote by g = g(M) its Lie algebra. By invariance of J , the Lie
algebra g belongs to the invariance algebra g(J ) of J . If a base point o ∈ M is chosen, then
g = h⊕ q is the usual decomposition w.r.t. this base point.

Lemma VII.1.1. The vector space

gb := g(M) + J g(M)

is a Lie-subalgebra of g(J ) . Denote by

co(M,J ) := {X ∈ g(J )| [X, gb] ⊂ gb}
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its normalizer in g(J ) . If J 2 = −1 , then both algebras are complex Lie algebras, with multipli-
cation by i represented by J , and if J 2 = 1 , then both split into a direct sum of ideals which
are the eigenspaces of J .

Proof. This is an immediate consequence of the integrability of J , cf. Appendix VI.A, in
particular Prop. VI.A.3.

If J is straight, then it is easily seen that g is already stable under J , and the preceding
lemma is uninteresting. Therefore let us assume from now on that J is twisted.

Definition VII.1.2. Let T be a twisted complex or polarized JTS and (M,J ) be the
associated (germ of a) twisted complex resp. polarized symmetric space. The Lie algebra

co(T ) := co(M,J )

defined in the preceding lemma is called the conformal Lie algebra of T , and the Lie algebra gb

is called the inner conformal Lie algebra of T .

Lemma VII.1.3. If (M,J ) is twisted complex or twisted para-complex and Jp denotes, for
p ∈M , the vector field extension of Jp from Prop. VI.1.4, then the vector field

Ep := J−1 Jp ∈ gb

is a vector field extension of the operator 1p = idTpM .

Proof. We remark first that (Ep)p = J−1
p (Jp)p = 0. Next, since Jp ∈ g(J ) by construction

and since g(J ) is stable under J (Prop. V.A.3), Ep = J−1 Jp belongs to g(J ). Fix p ∈ M
and choose a vector field extension v of v ∈ TpM such that v ∈ g(J ), e.g. take v = lp(v) (cf.
Section I.2.1). Now

[v, Ep]p = [v,J−1 Jp]p = J−1
p [v, Jp]p = J−1

p J p v = v;

thus Ep is a vector field extension of 1p .

In the following proposition we use the notation

q̂ := ad(Eo)q = {[Eo, X]|X ∈ q} ⊂ gb (1.1)

and
qb := q + q̂ ⊂ gb. (1.2)

Proposition VII.1.4. In the situation of the preceding lemma, the following holds:
(E1) [[q̂, q̂], q̂] ⊂ q̂ and [[qb, qb], qb] ⊂ qb (i.e, q̂ and qb are Lie triple-systems).
(E2) [[q, q̂], q] ⊂ q̂ .
(E3) For all X ∈ qb , ad(Eo)2X = X .
(E4) For all X,Y ∈ qb , ad(Eo)[X,Y ] = 0 .

Proof. Let us assume first that J is twisted complex. Since J defines on g(J ) the structure
of a complex Lie algebra, the inclusion

ι : g→ g(J )

has a unique C -linear extension to a homomorphism

ιC : gC = g⊕ ig→ g(J ), (X + iY ) 7→ X + J Y.
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The vector field Jo is an affine vector field vanishing at the origin, i.e. Jo ∈ h . Thus
ιC(i−1Jo) = J−1 Jo = Eo , and since ιC is a homomorphism, the diagram

gC
ιC−→ g(J )

− ad(iJo) ↓ ↓ ad(Eo)
gC

ιC−→ g(J )

commutes. Using that [Jo, q] = q , this implies q̂ = J [Jo, q] = J q = ιC(iq) and qb = ιC(qC).
Since iq and qC are Lie triple systems, so are their images under ιC , proving (E1). The relation
[[q, iq], q] = i[[q, q], q] ⊂ iq yields (E2).

By assumption, ad(Jo) is an invariant twisted complex structure on q ; therefore ad(Jo) :
qC → qC , being its C -linear continuation, is an invariant twisted complex structure on qC . Since
(i ad(Jo))2 = i2(ad(Jo))2 is the identity on qC , it follows that ad(Eo)2 is the identity on qb ,
whence (E3). Since, for all X ∈ hC , [iJo, X] = i[Jo, X] = 0, it follows that [Eo, Y ] = 0 for all
Y ∈ ιC(hC), in particular for all [U, V ] , U, V ∈ qb = ιC(qC); whence (E4).

The twisted polarized case can be treated in a similar way, replacing gC by a direct sum
g⊕ g .

Note that (E3) and (E4) imply that [ad(Eo)X,Y ] + [X, ad(Eo)Y ] = ad(Eo)[X,Y ] = 0, i.e.

(E5) ∀X,Y, Z ∈ qb : [[ad(Eo)X,Y ], Z] = −[[X, ad(Eo)Y ], Z]

holds. Using the terminology introduced in Def. III.3.2, (E3), (E4) and (E5) say that ad(Eo) is
a twisted invariant polarization on the LTS qb , and (E1) and (E2) say that q has the essential
properties of a para-real form of this polarized LTS. In fact, if the homomorphism ιC from the
preceding proof is injective, then qb is isomorphic to the polarized LTS qC ; we return to this
point below (Section 2.4).

Definition VII.1.5. An Euler operator on a symmetric space M = G/H is given by a vector
field extension E := Eo of 1o := idToM having properties (E1) – (E4). Property (E4) allows to
define a vector field extension Ep of 1p for all p ∈ M in a G-invariant way which is uniquely
determined by Eo ; then (Ep)p∈M will be called a distribution of Euler operators on M .

We will soon see that, in a suitable chart, an Euler operator on a symmetric space is
realized by the usual Euler operator (see Example I.A.3). Note that according to Lemma I.A.2,
the flow ϕt of Ep is a (local) extension of et1p ; in the notation of the preceding chapter we have
ϕt(x) = rp,p(x) with r = et .

1.2. The Euler operator of a symmetric space with twist. Euler operators can be
restricted to (para-) real forms, and the restriction defines an Euler operator on the corresponding
symmetric space with twist:

Proposition VII.1.6. If τ is a (para-)conjugation of the twisted complex (resp. twisted
polarized) space (M,J ) such that τ(o) = o , then the Euler vector field Eo is invariant under
τ∗ , and it defines an Euler operator on the real form Mτ of M .

Proof. We have τ∗(Jo) = −Jo since τ∗(Jo) is an affine vector field extending τ∗(Jo) = −Jo .
Using this, we get

τ∗(Eo) = τ∗(J−1 Jo) = −J−1 τ∗(Jo) = Eo.

Thus Eo can be restricted to a (locally defined) vector field on Mτ , and qτ + ad(Eo)qτ is the
real form (qb)τ of qb ; the properties (E1) – (E4) continue to hold for all X,Y, Z ∈ (qb)τ .
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Definition VII.1.7. Let T be a para-real form of a twisted polarized JTS TphC w.r.t. the
para-conjugation τ . The conformal Lie algebra of T is the τ -fixed subalgebra

co(T ) := (co(TphC))τ

of the conformal Lie algebra of TphC . The inner conformal Lie algebra of T is the subalgebra
(gb)τ of co(T ).

The conformal Lie algebra is then also the normalizer of the inner conformal Lie algebra in
X(M) (cf. Lemma VII.1.1). The Euler operators associated to Mτ belong by definition to the
conformal Lie algebra of Mτ , and since gb = g + J g , we have

(gb)τ = gτ + [Eo, gτ ].

Next we describe how the JTS T corresponding to the symmetric space with twist Mτ can be
recovered from the Euler operator:

Proposition VII.1.8. Let (Ep)p∈M be a distribution of Euler operators on a symmetric space
M = G/H and recall from Section I.2.1 the bijection lp : TpM → qp , inverse of the evaluation
map qp → TpM .

(i) The formula

T (X,Y, Z)p := [[lp(Xp),
lp(Yp) + ad(Ep)lp(Yp)

2
], lp(Zp)]p

defines a Jordan-extension of the curvature tensor R of M .
(ii) If M is a symmetric space with twist and (Ep)p∈M is the associated distribution of Euler

operators, then T is equal to the structure tensor of M .

Proof. (i) From the definition of T it is clear that T is a tensor field (i.e. it is function-linear
in all three arguments) and that it is G -invariant. Thus we have to show that To is a Jordan-
extension of Ro . If we identify ToM with q and let X,Y, Z ∈ q , then, using that Eo is an
extension of 1o ,

To(X,Y, Z) =
1
2

([[X,Y ], Z]− ad(Eo)[[X, ad(Eo)Y ], Z]). (1.3)

As we have remarked after the proof of Prop. VII.1.4, ad(Eo) is an invariant twisted polarization
on the LTS qb , cf. Def. III.3.2. Therefore the formula

T̃ (X,Y, Z) :=
1
2

([[X,Y ], Z]− ad(Eo)[[X, ad(Eo)Y ], Z])

defines a Jordan-extension of the LTS qb (Prop. III.3.6). Because of (E1), (E2) and (E3), q is
stable under T̃ , and the restriction of T̃ to a triple product To on q (given by Eqn. (3.1)) is a
Jordan-extension of q .

(ii) Let us assume first that M is a twisted complex symmetric space and (Ep) its associated
field of Euler operators. Then the structure tensor of M , evaluated at the base point and
multiplied by a factor 2, is for X,Y, Z ∈ q given by

−(R(X,Y )Z − J R(X,J−1 Y )Z)o = ([[X,Y ], Z]− ad(Jo)[[X, ad(Jo)−1Y ], Z])o
= ([[X,Y ], Z]− J ad(Eo)[[X, ad(Eo)−1 J−1 Y ], Z])o
= ([[X,Y ], Z]− ad(Eo)[[X, ad(Eo)Y ], Z])o
= ([[X,Y ], Z]o + [[X, ad(Eo)Y ], Z]o)

where we have used that J commutes with ad(H) for all H ∈ g(J ). It follows that the structure
tensor is is precisely the tensor To defined in the claim. Passing to real forms, the claim follows
since both Euler operator and structure tensor can be restricted to real forms.
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2. The Kantor-Koecher-Tits construction

2.1. Jordan coordinates and the local Harish-Chandra imbedding. Let Eo be an
Euler operator on the (germ of a) symmetric space M = G/H with base point o .

Lemma VII.2.1. The inner conformal Lie algebra gb is 3-graded. More precisely, gb is stable
under the derivation ad(Eo) and decomposes as a direct sum

gb = m−1 ⊕m0 ⊕m1

of the eigenspaces mk for the eigenvalues k = −1, 0, 1 of ad(Eo) , and [mk,ml] ⊂ mk+l . In
particular, the spaces m±1 are abelian and [[m1,m−1],m±1] ⊂ m±1 . Moreover,

qb = m−1 ⊕m1, [qb, qb] = m0.

Proof. The algebra g is generated by q , and therefore the algebra gb = g+[Eo, g] is generated
by qb = q + [Eo, q] . More precisely, gb = [qb, qb] + qb since qb is a LTS. The space qb is stable
under ad(Eo) whose square is, by (E3), the identity there; therefore qb ⊂ m1⊕m−1 . On the other
hand, by (E4), [qb, qb] ⊂ m0 , and we actually have equalities. This establishes the decomposition
of gb into eigenspaces.

Now, since ad(Eo) is a derivation, for all X ∈ mk , Y ∈ ml : ad(Eo)[X,Y ] = [ad(Eo)X,Y ]+
[X, ad(Eo)Y ] = [kX, Y ] + [X, lY ] = (k + l)[X,Y ] , proving the statement about the grading.

We will use the notation m± := m±1 , hb := m0 . Note that Xo = [X,Eo]o = 0 for all
X ∈ hb , and also Xo = 0 for all X ∈ m+ since Xo = [Eo, X]o = −[X,Eo]o = −Xo , using again
that Eo is an extension of 1o .

Lemma VII.2.2. Every tangent vector v ∈ ToM has a unique vector field extension by an
element of m− ; this element is given by the formula

v :=
1
2

(lov − [Eo, lov]),

where lo is the inverse of the bijective evaluation map q→ ToM .

Proof. Since ad(Eo)2 = id on qb , it follows that the projector onto m− is P := 1
2 (id− ad(Eo)).

Its image is equal to P (q) because qb = q + ad(Eo)q . Thus m− = P (q) = {v| v ∈ ToM} . We
evaluate at the base point:

vo =
1
2

(lov + [lov,Eo])o =
1
2

(v + 1o(lov)o) = v.

It follows that the evalution map m− → ToM is bijective.

Definition VII.2.3. If Eo is an Euler operator on a symmetric space M , we define a chart,
called Jordan coordinates, as follows: to a vector v lying in a suitable neighborhood U of 0 in
V := ToM we assign the value of the integral curve ϕt(o) of v at t = 1.

Having fixed the base point o , we will consider Jordan coordinates as an identification of
an open neighborhood U of o ∈M with an open domain U in V = ToM , i.e. we use the same
notation v for v ∈ U and for the corresponding point in M . Vector fields on U will be identified
with smooth functions U → V ; thus the vector fields v ∈ m− are identified with the constant
vector fields (cf. Appendix I.A).
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The notion of Jordan coordinates can be seen as a local Harish-Chandra imbedding: in fact,
integrating the vector fields X ∈ q yields a local realization of M as an open domain in the vector
space V ∼= m− . When M is a Hermitian symmetric space, this realization is known to be global
and is precisely the well-known Harish-Chandra imbedding. More generally, when M is twisted
complex or twisted polarized, then Jordan coordinates define a complex resp. para-complex atlas:
since m− ⊂ gb ⊂ g(J ), it follows that v · J = 0 for all v ∈ V , i.e. J is a translation invariant
(=constant) tensor field on V . Thus the chart we have defined is indeed (para-) holomorphic,
and almost (para-) holomorphic local diffeomorphisms of M are actually (para-) holomorphic.
This can be seen as an elementary version of the theorem of Newlander and Nirenberg for twisted
(para-) complex symmetric spaces.
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2.2. Geometric version of the Kantor-Koecher-Tits construction.

Theorem VII.2.4. Let Eo be an Euler operator on a symmetric space M and gb the
associated inner conformal Lie algebra. Then gb is represented in Jordan coordinates as a Lie
algebra of quadratic vector fields, i.e. by polynomial maps V → V of degree at most two, such
that the grading

gb = m− ⊕ hb ⊕m+

(cf. Lemma VII.2.1) coincides with the grading given by the degree. More precisely, if we define
for v ∈ V a polynomial pv by

pv(x) :=
1
2
T (x, v, x),

where T = To is the trilinear map on V = ToM defined in Prop. VII.1.8, then
(1) m− = {v| v ∈ V } ,
(2) m+ = {pv| v ∈ V } ,
(3) q = {v − pv| v ∈ V } ,
(4) q̂ = {v + pv| v ∈ V } ,
(5) hb = [m+,m−] = Span{T (w, v)| v, w ∈ V } , where T (u, v)p := T (u, v, p) ,
(6) Eo is identified with the usual Euler operator on V , i.e. Eo(x) = x .

Proof. (1) is true by definition of the Jordan coordinates. In order to prove the other relations,
recall formula (I.A.2) for the Lie bracket of two vector fields X,Y , considered as smooth functions
on V . This formula implies that for any Y and v ∈ V ,

ad(v)kY (p) = DkY (p) · (⊗kv),

where DkY : V → Hom(SkV, V ) is the ordinary k -th total differential of Y : V → V . Now, it
follows from Lemma VII.2.1 that [m−, [m−, [m−, gb]]] = 0, and therefore, for all Y ∈ gb and p in
the domain of the Jordan coordinates,

D3Y (p) = 0.

Integration shows that Y is quadratic as claimed.
Let us prove (6): Eo is a linear vector field since [v, [v, Eo]] = −[v,v] = 0 and (Eo)o = 0.

Since [v, Eo] = vo = v , Eo = idV .
Now, the solutions of the Euler differential equation

[Eo, X](p) = DX(p) · p−X(p) = kX(p)

for k ∈ N0 are precisely the homogeneous polynomials of degree k+1; therefore hb is represented
by linear vector fields and m+ by homogenous quadratic ones.

It remains to calculate the second differential of the vector field low ∈ q for w ∈ V . We
use that for all w ∈ q , low = w + w̃ with w̃ := 1

2 (low + [Eo, low]) is the decomposition of low
in a constant term plus a homogeneous quadratic polynomial. Using the commutativity of m+

and of m− , we get [v, low] = [v, w̃] = [lov, w̃] and

(D2(low))(0) · v ⊗ v = [v, [v, low]]o
= [v, [lov, w̃]]o
= [lov, [lov, w̃]]o
= To(v, w, v)
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when comparing with the formula from Prop. VII.1.8. Since D2w = 0, we have D2(low) =
D2(w̃); the vector field w̃ being homogeneous quadratic, it is given by the formula

w̃(x) =
1
2
D2(low)(0)(x, x) = −1

2
T (x,w, x) = −pw(x).

This proves (2) and gives the formula

(low)(x) = w − 1
2
T (x,w, x),

proving (3). Next, [Eo,v − pv] = −v − pv , proving (4).
We prove (5): Clearly, [qb, qb] = [m+,m−] , and we have explicitly

[pv,w](p) = −(Dpv)(p)w = −T (w, v, p) = −T (w, v)p; (2.1)

this implies the claim.

Proposition VII.2.5. There is a canonical bijection between Jordan-extensions of the curva-
ture tensor and Euler operators on a symmetric space M .

Proof. In Prop. VII.1.8 we have associated to an Euler operator Eo a Jordan-extension T of
R . Conversely, given a Jordan-extension T of R , we let Eo be the Euler operator induced from
the twisted complexification given by T .

These two constructions are indeed inverse to each other: Starting with a Jordan-extension
T , we get again T from the associated Euler operator Eo (Prop. VII.1.8 (ii)). Starting with an
Euler operator Eo , let T be the associated Jordan-extension. Then it is easily verified that in
Jordan coordinates associated to Eo the Euler operator derived from T is again the usual Euler
operator on V and thus coincides with Eo by part (6) of the preceding theorem.

2.3. Local Borel imbedding.

Proposition VII.2.6. The LTS q̂ = ad(Eo)q is isomorphic to the dual of q (i.e. its Lie
triple bracket is isomorphic to the negative of the one in q). Consequently, the c-dual symmetric
space of M has locally a canonical realization with base point o on the underlying manifold of
M .

Proof. From (E3) and (E4) we get for all X,Y, Z ∈ q ,

[[ad(Eo)X, ad(Eo)Y ], ad(Eo)Z] = ad(E0)[[X,− ad(Eo)2Y ], Z] = − ad(Eo)[[X,Y ], Z];

therefore ad(Eo) is an isomorphism from q onto the LTS obtained from q̂ by taking the negative
of the usual triple Lie bracket. The second statement is obtained by integrating locally at o the
vector fields X ∈ q̂ .

If M is a bounded symmetric domain, then it is well-known that M can be globally
imbedded into its compact dual (the Borel imbedding). Thus the preceding proposition is indeed
a local generalization of the Borel imbedding. The corresponding global statement will be more
complicated: an imbedding of one space into its c-dual is globally only possible in the Riemannian
case (see Ch. X).

2.4. Faithful Jordan triple systems.
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Proposition VII.2.7. Let Eo be an Euler operator on a symmetric space M corresponding
to a Jordan-extension T . Then the following are equivalent:

(1) q ∩ q̂ = 0
(2) The map A : V → Hom(V ⊗ V, V ) , v 7→ T (·, v, ·) is injective.

If these properties hold, then the formula

Θ(X + Y ) := X − Y, X ∈ q, Y ∈ q̂

defines an involutive automorphism of the LTS qb such that Θ ◦ ad(Eo) = − ad(Eo) ◦ Θ . This
automorphism extends to an involution of the inner conformal Lie algebra gb given in the notation
of Th. VII.2.4 by the formula

Θ(v + T (a, b) + pw) = −w − T (b, a)− pv.

Proof. The equivalence of (1) and (2) follows immediately from a comparison of formulas (3)
and (4) of Th. VII.2.4.

Now we assume that Eo = −J Jo is the Euler operator of a twisted complex symmetric
space, and as in the proof of Prop. VII.1.4 we consider the inclusion ι : q → g(J ) and its
complexification

ιC : qC = q⊕ iq→ g(J ), X + iY 7→ X + J Y.
Its kernel is

ker ιC = {X + iJ X|X ∈ q,J X ∈ q} = {Z ∈ qC| iJ Z ∈ qC}.
Thus

ker ιC = (q ∩ q̂)C,

and we see that (1) holds iff ιC is injective. If this is the case, Θ|qC is nothing but complex
conjugation of qC w.r.t. q , which has clearly the properties stated. Moreover, automorphisms
of LTS extend always to automorphisms of the standard imbedding; thus Θ extends to an
automorphism of gb . It is one on q and minus one on q̂ , i.e. it is determined by the conditions

Θ(v − pv) = v − pv, Θ(v + pv) = −(v + pv)

which together with [pv,w] = −T (w, v) imply the last formula of the claim.
Passing to real forms of twisted complex symmetric spaces, the claim now follows in the

general case of a symmetric space with twist.

Definition VII.2.8. A Jordan triple system T is called faithful if Condition (2) from the
preceding proposition holds.

Theorem VII.2.9. Let (M,T ) be a (germ of a) symmetric space with twist and (MphC, TphC)
its twisted para-complexification. Denote by g(MphC) the Lie algebra of G(MphC) , by der(MphC)
the Lie algebra of the automorphism group of MphC and by τ the para-conjugation w.r.t. M ,
and let r+ be as in Prop. VI.A.4. Then

r+ : g(MphC)→ gb

and
r+ : Der(MphC)→ co(T )

are surjective homomorphisms of Lie algebras. They are injective if and only if T is faithful, and
in this case Θ = r+ ◦ τ∗ ◦ (r+)−1 is the involution described in Prop. VII.2.7.

Proof. The proof is the para-complex version of the proofs of Prop. VII.1.4 and of Prop.
VII.2.7.

Faithfulness is a rather “weak” condition which is satisfied in all interesting cases:
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Proposition VII.2.10. A JTS T is faithful in the following two cases:
(i) T is non-degenerate.

(ii) T is associated to a unital Jordan algebra via the formula T (x, y, z) = 2(x(yz) − y(xz) +
(xy)z) .

Proof. (i) By definition, T is non-degenerate iff the map

∗ : V → V ∗, v 7→ v∗ := (x 7→ trT (x, v))

is injective. But ∗ is a composition of A and

κ : Hom(V ⊗ V, V )→ V ∗, B 7→ (x 7→ tr(B(x, ·))).

Therefore A has to be injective, i.e. T is faithful.
(ii) If e is the unit element of the Jordan algebra V , we have the formula A(v)(e⊗e) = 2v ,

forcing A to be injective.

Corollary VII.2.11. In the category of semisimple symmetric spaces with twist the conformal
Lie algebra depends functorially on the JTS T .

Proof. JTS-homomorphisms induce homomorphisms of the corresponding twisted para-
complexifications (Th. III.4.7). In the semisimple case, the standard imbedding g(MphC) of
the LTS RphC also depends functorially on the LTS (Th. V.1.9). But g(MphC) is isomorphic to
the inner conformal Lie algebra gb (Prop. VII.2.10 and Th.VII.2.9). Finally, in the semisimple
case, the algebra g(MphC) and therefore gb are semisimple (cf. Section V.3); thus all derivations
of gb are inner and it follows that gb = co(T ). Summing up, co(T ) depends functorially on T .

3. General structure of the conformal Lie algebra

3.1. Conformal Lie algebra and structure algebra. We are going to show that the
only distinction between the conformal Lie algebra and the inner conformal Lie algebra is in the
linear part, leading to the important notion of the structure algebra of a JTS:

Theorem VII.3.1. The conformal Lie algebra co(T ) is 3-graded; more precisely, it is the
Lie algebra

co(T ) = m− ⊕ str(T )⊕m+

of quadratic vector fields, where m− and m+ are as in Th. VII.2.4, and the linear part str(T )
is given by

str(T ) = {X ∈ gl(V )| [X,m+] ⊂ m+}
= {X ∈ gl(V )| ∃X] ∈ gl(V ) : ∀u, v, w ∈ V :

XT (u, v, w) = T (Xu, v, w) + T (u,X]v, w) + T (u, v,Xw)}.

The endomorphisms T (u, v) (u, v ∈ V ) belong to str(T ) , and one may choose T (u, v)] =
−T (v, u) .

Proof. The Lie algebra co(T ) is the normalizer of gb in the Lie algebra of vector fields on M .
Thus [m−, co(T )] ⊂ gb and therefore [m−, [m−, [m−, [m−, co(T )]]]] = 0. As in the proof of Th.
VII.2.4 we conclude that co(T ) is a Lie algebra of polynomial vector fields of degree at most 3.
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Since [Eo, co(T )] ⊂ gb , the Euler differential equation implies that co(T ) is actually a space of
quadratic vector fields. It contains gb ; in particular, all constant vector fields belong to co(T ).

The homogeneous quadratic part of co(T ) is equal to m+ : in fact, if X ∈ co(T ) is
homogeneous quadratic, then X = [E0, X] ∈ gb , and hence X ∈ m+ .

Let us determine the linear part: a linear vector field normalizes gb if and only if it
normalizes the homogeneous quadratic part m+ of gb . This is expressed by the first equality
for str(T ). More explicitly, it means that [X,pv] = pw for some w ∈ V . The choice of w is in
general not unique, but we can make it unique by requiring w to lie in a fixed complementary
subspace V1 of the kernel of V → m+ , v 7→ pv . We define X] by X](v) := −w , and then the
relation [X,pv] = p−X]v = p[X],v] holds for all v ∈ V . Written in terms of T , this means that
for all p ∈ V ,

XT (p, v, p)− T (Xp, v, p)− T (p, v,Xp) = T (p,X]v, p),

which leads to the second equality.
The operators T (u, v) belong to gb and hence to co(T ), and from the defining identity

(JT2) of a JTS it follows that one may choose T (u, v)] = −T (v, u).

Definition VII.3.2. The structure algebra str(T ) of a JTS T is the linear part

str(T ) = {X ∈ gl(V )| ∃X] ∈ gl(V ) : ∀u, v, w ∈ V :

XT (u, v, w) = T (Xu, v, w) + T (u,X]v, w) + T (u, v,Xw)}

of the conformal Lie algebra, and the inner structure algebra of T is the linear part

T (V ⊗ V ) = Span({T (u, v)|u, v ∈ V })

of the inner conformal Lie algebra.

If T is faithful, then the argument proving Prop. VII.2.7 shows that

Θ(X) = X]

for all X ∈ str(T ).

Proposition VII.3.3. If T is a non-degenerate JTS, then for all X ∈ str(T ) the relation
X] = −X∗ holds, where ∗ denotes the adjoint w.r.t. the trace form.
Proof. We use the notation from the proof of Prop. VII.2.10 (i). By definition of ] , A has
the equivariance property X ·A(v) = A(X]v), and κ is natural, i.e κ(X ·B) = −X∗κ(B). When
we identify V and V ∗ via ∗ , this proves the claim.

3.2. T -conformality and T -projectivity

Definition VII.3.4. A (possibly only locally defined) vector field X on V is called T-
conformal if it is of class C3 and, for all p ∈ V where X is defined, the first differential DX(p)
belongs to str(T ). It is called T-projective if in addition, for all p where X is defined, the second
differential D2X(p) : V ⊗ V → V belongs to the space

W := A(V ) = {T (·, v, ·)| v ∈ V } ⊂ Hom(V ⊗ V, V ).

Proposition VII.3.5. The Lie algebra co(T ) is a Lie algebra of T -conformal and T -
projective vector fields.
Proof. Both properties are trivial for the vector fields belonging to m− or str(V ). Let us
assume that X = pv ∈ m+ . Then DX(p) = T (p, v) ∈ str(T ) and D2X(p) = T (·, v, ·) ∈W .

We will prove later (Th. IX.1.2) that in the non-degenerate case the converse also holds.

3.3. Derivations and normalizer.



114 Chapter VII: The conformal Lie algebra

Theorem VII.3.6. Every derivation of the conformal Lie algebra is an inner derivation, and
the adjoint representation

ad : co(T )→ der(co(T )), X 7→ ad(X)

is an isomorphism onto.

Proof. Let us first show that ad is injective, i.e. the center of co(T ) is trivial. Note that, for
any X ∈ X(V ),

[X,v](p) = −DX(p) · v,
[X,E](p) = X(p)−DX(p) · p,

where E = Eo , and thus
X(p) = [X,E](p)− [X,p](p). (3.1)

Therefore, if X centralizes co(T ), then X = 0; in particular, the center of co(T ) is reduced to
zero.

Let δ be a derivation of co(T ). We prove that δ is inner. W.l.o.g. we may assume that
δE ∈ str(T ): In fact, writing δE = S + Z with S ∈ str(T ) and Z ∈ m+ ⊕ m− , we have
(δ + ad([E,Z]))E = S + Z + [[E,Z], E] = S + Z − Z = S ∈ str(T ).

We claim that then δE = 0: In fact, for all v ∈ m− ,

−δv = δ[E,v] = [δE,v] + [E, δv].

We evaluate at 0 and use that [E,Z](0) = −[Z,E](0) = −Z(0) for all Z ∈ co(T ). We obtain
[δE,v](0) = 0. But [δE,v] ∈ [str(T ),m−] ⊂ m− , and therefore [δE,v] = 0 and δE = 0.

This implies [δ, ad(E)] = ad(δE) = 0; i.e. δ preserves the eigenspaces of ad(E). Now,
any derivation δ preserving the grading is uniquely determined by its restriction to m− : δX for
X ∈ str(T ) is uniquely determined by the condition δ[X,v] = [δX,v] + [X, δv] , and similarly
δ[v,pw] = [δv,pw] + [v, δpw] . The same arguments hold for the Lie algebra Pol(V, V ) of all
polynomial vector fields on V : in fact, ad(H) with H ∈ gl(V ) given by H(v) = −(δv)(0)
is the unique extension of δ|m− to a derivation of Pol(V ) preserving the grading. By unicity,
we must have δ = ad(H)|co(T ) . This means that co(T ) is stable under ad(H), and moreover
[H,m+] ⊂ m+ since ad(H) respects the grading. But according to Th. VII.3.1, this means
precisely that H ∈ str(T ), und thus δ = ad(H) is an inner derivation.

Note that, in view of Eqn. (3.1), we have the explicit formula

δ = ad(X), X(p) = (δE)(p)− (δp)(p)

for an arbitrary derivation δ of co(T ).

Corollary VII.3.7. The Lie algebra co(T ) is equal to its normalizer in X(V ) :

{X ∈ X(V )| [X, co(T )] ⊂ co(T )} = co(T ).

Proof. If ad(X)|co(T ) is a derivation, there exists by the preceding theorem X ′ ∈ co(T ) such
that ad(X −X ′)|co(T ) = 0; i.e. X −X ′ centralizes co(T ). In the preceding proof we have seen
that then X −X ′ = 0.
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3.4. Conformal Lie algebra and complexification functors.

Proposition VII.3.8. The complexification functors from Th.III.4.9 induce the following
“complexifications” of conformal Lie algebras:

co(TC) ∼= co(T )C

co(ThC) ∼= co(T )C

co(TphC) ∼= co(T )× co(T ).

Proof. The three isomorphisms are easily established using the definition of the complexi-
fication functors for T (Prop. III.4.6) and the explicit realization of the (inner) conformal Lie
algebra in Th. VII.2.4: co(TC) is given by the continuation of elements of co(T ) to holomor-
phic quadratic polynomials onto VC and is thus canonically isomorphic to co(T )C . Next, from
Th. VII.2.4 it follows that co(TC) and co(ThC) are the same algebras of vector fields and that
co(TphC) and co(Td) are the same algebras of vector fields. But the latter clearly is isomorphic
to co(T )× co(T ).

Notes for Chapter VII.

VII.2. The Kantor-Koecher-Tits construction associates to a Jordan algebra the polynomial
Lie algebra described in Th. VII.2.4; see [Koe68]. Later K. Meyberg defined Jordan triple systems
and extended the Kantor-Koecher-Tits construction for these ([Mey70], cf. [Sa80, Prop. I.7.1]).
The original proofs are more computational, using the axiomatic properties of a JTS in order
to verify that the given space of polynomials is indeed closed under the Lie bracket. Corollary
VII.2.11 is due to E. Neher (cf. [Sa80, footnote on p.40]).

VII.3. Theorem VII.3.6 is due to Koecher ([Koe69b, Satz 3.1]).
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Chapter VIII: Conformal group and conformal completion

Having defined the conformal Lie algebra co(T ), the next step in our program is obviously
the definition of a suitable group Co(T ) belonging to this Lie algebra which will be called the
conformal group. This is not an abstract group, but a group coming in a particular realization,
namely as a group of birational maps of a vector space, corresponding to the realization of the
conformal Lie algebra as a Lie algebra of polynomial vector fields. Following Koecher ([Koe69a,b])
one may define the conformal group to be the group of birational maps of V which preserve the
conformal Lie algebra, and this definition even makes sense over quite general base fields. Since
we are working over the base field of real numbers, we can avoid the assumption of rationality and
consider just locally defined smooth maps which preserve the conformal Lie algebra. It follows
automatically that they are birational. Thus we start with a pseudogroup of diffeomorphisms
(which is a useful concept in differential geometry, cf. [Ko72]) and end up with a group. We
show that this group is a Lie group whose Lie algebra is the conformal Lie algebra (however,
keeping in mind the sign-convention from Appendix I.A.1 and being pedantic, we should say that
co(T ) is the Lie algebra of the opposite group Co(T )op ).

The term conformal group is explained by the property that its elements are Str(T )-
conformal in the sense that their total differential (at every regular point) belongs to a certain
linear group, namely to the structure group Str(T ). In the case of a Jordan algebra belonging to
a non-degenerate quadratic form b , the structure group is precisely the group of similarities of b
(cf. Section II.3), and the condition just mentioned is equivalent to conformality in its usual sense.
However, Str(T )-conformality is not sufficient for a characterization of the conformal group in the
general case as shown by the example of the JTS M(1, n; R): in this case, Co(T ) = P Gl(n+1,R)
is the projective group and Str(T ) = Gl(n,R) is the whole general linear group; thus Str(T )-
conformality is an empty condition. We introduce a property called T-projectivity which is
satisfied by all elements of Co(T ); this is a condition on second differentials generalizing the
description of the usual projective group by a basic theorem in differential geometry due to H.
Weyl.

The birational maps forming the conformal group in general have singularities on the
underlying vector space V . Put another way: the vector fields forming the conformal Lie algebra
are in general not complete vector fields on V . One can remove the singularities und make the
vector fields complete by adding “points at infinity” to the vector space V ; the space V c thus
obtained is called the conformal completion of V (w.r.t a JTS T ). It contains V as an open
dense domain. For example, in the case corresponding to the Jordan algebra of a positive definite
quadratic form, the conformal completion is the sphere Sn , obtained by adding a single point
to Rn . In the case where the conformal group is the ordinary projective group the conformal
completion is the ordinary imbedding of Rn into the projective space RPn . These and other
classical examples are described explicitly in Section 4. In all these cases the space V c is actually
compact and may also be called the conformal compactification of V .
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1. Conformal group: general properties

1.1. Definition of the conformal group and of the structure group. We assume
in the following that T is a JTS on a vector space V and co(T ) its conformal Lie algebra,
considered as a Lie algebra of quadratic vector fields on V .

Theorem VIII.1.1. Let ϕ : U → ϕ(U) ⊂ V be a local (C1 -regular) diffeomorphism of V
such that

ϕ∗(co(T )) = co(T ),

i.e. for all X ∈ co(T ) , the vector field ϕ∗(X) coincides on ϕ(U) with an element of co(T ) .
Then ϕ has a unique extension to a birational map ϕ̃ of V such that ϕ̃∗(co(T )) = co(T ) . The
birational maps thus obtained form a group.

Proof. Recall formula (I.A.5):

(ϕ∗X)(p) = (Dϕ−1(p))−1 ·X(ϕ−1(p)).

We remark first that, since (ϕ−1)∗ = (ϕ∗)−1 = ϕ∗ , the conditions ϕ∗(co(T )) = co(T ) and
ϕ∗(co(T )) = co(T ) are equivalent.

Let X = v with v ∈ V (constant vector field). By assumption, ϕ∗v coincides on U with
an element of co(T ). Since co(T ) is a Lie algebra of (quadratic) polynomial vector fields (Th.
VII.2.4), the map U → V , p 7→ (ϕ∗v)(p) = (Dϕ(p))−1v is a (quadratic) polynomial for all
v ∈ V , and thus

dϕ : U → Gl(V ) ⊂ End(V ), p 7→ dϕ(p) := (Dϕ(p))−1

is (quadratic) polynomial. Now consider the Euler operator Eo ∈ co(T ). The same arguments
as before show that

nϕ : U → V, p 7→ (ϕ∗Eo)(p) = (Dϕ(p))−1 · ϕ(p)

is (quadratic) polynomial. Therefore

ϕ : U → V, p 7→ ϕ(p) = dϕ(p)−1 · nϕ(p)

is rational. We extend nϕ and dϕ to polynomials on V , and define

ϕ̃(x) := dϕ(x)−1 · nϕ(x)

for all x with det dϕ(x) 6= 0 (since det dϕ is a non-zero polynomial, this is a non-empty Zariski-
open set). Then ϕ̃ is a birational map, its inverse given by ϕ̃−1 , and for all X ∈ co(T ),

((ϕ̃)∗X)(p) = (Dϕ̃(p))−1X(ϕ̃(p)) = dϕ(p)X(ϕ̃(p))

is rational in p , coinciding for p ∈ U with the polynomial Y := ϕ∗X ∈ co(T ) and coincides thus
everywhere with Y . In other words, (ϕ̃)∗(co(T )) ⊂ co(T ). The same being true for ϕ−1 , we
have actually equality.

If ϕ and ψ with ϕ∗(co(T )) = co(T ) and ψ∗(co(T )) = co(T ) are given, then (although ϕ

and ψ may be not composable) ϕ̃ and ψ̃ are always composable on a dense open set, and

(ϕ̃ ◦ ψ̃)∗(co(T )) = ϕ̃∗(ψ̃∗(co(T ))) = co(T ).

This, and the remark made above that (ϕ̃)−1 = ϕ̃−1 , prove the last claim.
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Definition VIII.1.2. The group of birational maps of V defined in the preceding theorem
is denoted by Co(T ) and is called the conformal group of T . For any g ∈ Co(T ), the quadratic
polynomial

dg : V → End(V ),

defined by the property
dg(x)v = (g∗v)(x) (x, v ∈ V ),

is called its denominator, and the quadratic polynomial

ng : V → V,

defined by the property
ng(x) = (g∗E)(x),

is called its numerator (cf. the preceding proof).

According to preceding proof, if g is non-singular at x , we have the relations

dg(x) = Dg(x)−1; g(x) = dg(x)−1 · ng(x). (1.1)

Theorem VIII.1.3. The representation

∗ : Co(T )→ Aut(co(T )), g 7→ g∗

is injective, and its image Co∗(T ) is an open subgroup of Aut(co(T )) ; in particular, Co(T ) has
the structure of a Lie group with Lie algebra co(T ) . The center of Co(T ) is trivial.

Proof. We have seen above that g(p) = dg(p)−1ng(p) with dg(p)v = (g∗v)(p) and ng(p) =
(g∗E)(p). This defines an inverse of ∗ from Co∗(T ) onto Co(T ); thus ∗ is injective.

In order to prove that Co∗(T ) is open in Aut(co(T )) we are going to describe some special
elements in Co(T ). For X ∈ co(T ) let ϕt be the local flow of X . If X ∈ m− or X ∈ str(T ), then
the flows are global on V ; we write exp(X) := ϕ1 . Explicitly, we have exp(v) = tv (translation
by v , cf. Eqn. (I.A.6)), and for X ∈ str(T ), exp(X) is given by the usual exponential of a
matrix.

Next we consider X ∈ m+ . Since X vanishes of order 2 at 0, there is a neighborhood U
of 0 in V such that ϕt(x) is defined for x ∈ U and t = 1 (cf. Appendix A to this chapter). We
let

expX : U → V, x 7→ ϕ1(x).

Since X ∈ co(T ), it follows that (ϕt)∗ preserves co(T ) in the sense of Th.VIII.1.1; in particular
exp(X) ∈ Co(T ). For simplicity of notation, we identify exp(X) with its rational continuation
guaranteed by Th.VIII.1.1. Then the relation

∀Y ∈ co(T ) : (expX)∗Y = e− ad(X)Y

holds (the sign is explained by Eqn. (I.A.6)). Summing up, ead(X) belongs to Co∗(T ) for
all X ∈ m± and X ∈ str(T ); thus the identity component of the group Int(co(T )) of inner
automorphisms, generated by ead(co(T )) , belongs to Co∗(T ). But this is equal to the identity
component of Aut(co(T )) because ad(co(T )) = Der(co(T )) (Th. VII.3.6). Thus Co∗(T ) is open
in Aut(co(T )).

Finally, if g belongs to the center of Co(T ), then it commutes with all elements of ead(co(T )) ;
therefore g∗ = idco(T ) and g = idV since ∗ is injective.

It is possible to give an algebraic description of the image of ∗ (cf. the Notes). We content
ourselves here with the corresponding result for the linear part of the conformal group.



119

Definition VIII.1.4. The linear part

Str(T ) := Co(T ) ∩Gl(V )

of the conformal group is called the structure group of T . Its closure in End(V ) is called the
structure monoid.

Proposition VIII.1.5.
(i) The structure group has the following descriptions:

Str(T ) = {g ∈ Gl(V )| g∗(m+) = m+}
= {g ∈ Gl(V )| ∃g] ∈ Gl(V ) : ∀u, v, w ∈ V : gT (u, v, w) = T (gu, g]v, gw)}.

It is a closed subgroup of Gl(V ) whose Lie algebra is str(T ) .
(ii) The homomorphism

∗ : Str(T )→ {ϕ ∈ Aut(co(T ))|ϕ(E) = E}, g 7→ g∗

is a bijection.

Proof. (i) An element g ∈ Gl(V ) normalizes co(T ) if and only if it normalizes m+ and str(T ),
and this is the case if and only if it normalizes m+ (because str(T ) is the normalizer of m+ in
gl(V )). This explains the first description. The second description is deduced as in the proof of
Th. VII.3.1: the condition g∗(m+) = m+ means that, for every v ∈ V , there exists w ∈ V such
that g∗(pv) = pw . If we denote by V0 the kernel of the linear map p : V → m+, v 7→ pv ,
and require w to be in a fixed complementary subspace V1 of V0 , then the choice of w becomes
unique. Now we define g] to be arbitrary invertible on V0 and let g](v) := w for v ∈ V1 . Then
clearly the condition

g∗(pv) = pg]v

holds for all v ∈ V ; it is equivalent to the relation given in the second description of Str(T ).
It is clear from these descriptions that Str(T ) is a closed (even algebraic) subgroup of

Gl(V ) and that str(T ) is its Lie algebra.
(ii) The homomorphism is injective by the preceding theorem. In order to prove that it is

surjective, we note first that the condition ϕ(E) = E implies that ϕ preserves the eigenspaces
of ad(E). In particular, ϕ(m−) = m− , i.e. for all v ∈ m− there exists a unique w ∈ m− such
that ϕ(v) = w . We define the linear map g by g(v) := w and claim that ϕ(X) = g∗X for all
X ∈ co(T ). For X ∈ m− this is true by definition of g . For X ∈ str(T ), the condition

ϕ[v, X] = [ϕ(v), ϕ(X)]

yields g(X(v)) = (ϕ(X))(g(v)) for all v ∈ V . Applied once more, this argument proves our
claim also for X ∈ m+ . Therefore ϕ = g∗ , and now the condition g∗(m+) = m+ implies as
above that g ∈ Str(T ).

Proposition VIII.1.6. If T is faithful and Θ denotes the involution of gb described in
Prop. VII.2.7, then for all g ∈ Str(T ) the element g] is unique, it belongs again to Str(T ) , and
] : g 7→ g] is an involutive automorphism of Str(T ) , determined by the condition

(g])∗ = Θ ◦ g∗ ◦Θ.

Proof. Everything follows by comparing the equations g∗(pv) = pg]v and

g∗pv = g∗(Θ(−v)) = Θ ◦ (Θ ◦ g∗ ◦Θ)(−v) = p(Θ◦g∗◦Θ)(v)

and noting that g 7→ g∗ is injective.
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If T is semisimple, then the involution ] is given by

g] = (g∗)−1,

where the adjoint is taken w.r.t. the trace form; the proof is the same as of Prop. VII.3.3.

1.2. Conformality. We will make precise in which sense the conformal group is indeed
“conformal”. The question whether all conformal maps belong to the group Co(T ) leads to the
Liouville theorem to be discussed in the next chapter.

Definition VIII.1.7. Let V be a vector space and G ⊂ Gl(V ) a closed subgroup. We say
that a locally defined diffeomorphism g of V is G-conformal, if, for all x where g is defined,

Dg(x) ∈ G.

Theorem VIII.1.8. All elements of Co(T ) are Str(T )-conformal.

Proof. Given x ∈ V with det dg(x) 6= 0, we let y := g(x) and g′ := t−y ◦ g ◦ tx . Then
g′ ∈ Co(T ), g′(0) = 0 and Dg′(0) = Dg(x). Replacing g by g′ , we may assume that x = 0 and
g(0) = 0.

We claim that then g∗(m+) ⊂ m+ . In order to prove this, note that m+ is the subalgebra
of elements of co(T ) vanishing of order 2 at the origin. Differentiating the expression (g∗X)(p) =
Dg(g−1(x)) ·X(g−1(p)), we obtain

D(g∗X)(p) =
(
D2g(g−1(p)) ·X(g−1(p))

)
◦Dg−1(p)

+ Dg(g−1(p)) ◦DX(g−1(p)) ◦Dg−1(p).
(1.2)

It follows that, if g(0) = 0, X(0) = 0 and DX(0) = 0, then D(g∗X)(0) = 0. Since also
(g∗X)(0) = 0, we have g∗(m+) ⊂ m+ .

Next we want to show that for all X ∈ m+ , g∗X = (Dg(0))∗X . Since both sides of this
equality are homogeneous quadratic vector fields, this is equivalent to the statement that

D2(g∗X)(0) = D2((Dg(0))∗X)(0).

In order to prove this, we differentiate the expression (1.2) once again and evaluate at 0. Then,
under our assumptions on g and X , only one term remains, namely

D2(g∗X)(0) = Dg(0) ◦D2X(0) ◦ (Dg(0)−1 ⊗Dg(0)−1).

If we replace in this expression g by Dg(0), the right-hand side does not change, and therefore
g∗X = (Dg(0))∗X .

We have shown that m+ = g∗(m+) = (Dg(0))∗(m+). According to Prop. VIII.1.5 (i),
Dg(0) belongs thus to the structure group.

Corollary VIII.1.9. For all g ∈ Co(T ) , the image of the polynomial dg is contained in the
structure monoid.

Proof. This is an immediate consequence of the definition of the structure monoid as the
closure of the structure group in End(V ).

1.3. Projectivity. Conformality was defined by a condition on the first differential.
Similarly, projectivity will be defined by an additional condition on the second differential. The
question whether all transformations which are projective in this sense belong to Co(T ) leads to
the fundamental theorem (Ch. IX).
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Definition VIII.1.10. A locally defined diffeomorphism g of V is called T -projective if it is
Str(T )-conformal and in addition for all x where g is defined,

(Dg(x))−1 ◦D2g(x) ∈W,

where W = {T (·, v, ·)| v ∈ V } ⊂ Hom(V ⊗ V, V ) is the subspace introduced in Def. VII.3.4.

We give a more conceptual definition of this condition: it is equivalent to requiring that

(g∗∇−∇)x ∈W, (1.3)

where ∇ is the canonical flat connection of V (cf. Eqn. (I.B.4)). In other words, g∗∇−∇ is a
section of the subbundle W of Hom(S2(TV ), V ) with constant fiber Wp = W . Conformality
means just that g preserves W . Therefore, if both g and h are T -projective, then

(gh)∗∇−∇ = h∗(g∗∇−∇) + g∗∇−∇

is again a section of W . This means that the composition of two T -projective maps, if it is
defined, is again T -projective. In other words, locally defined T -projective diffeomorphisms form
a pseudogroup of diffeomorphisms (cf. [Ko72] for the formal definition).

Theorem VIII.1.11. All elements of Co(T ) are T -projective.

Proof. We know already that all elements of Co(T ) are Str(T )-conformal (Th. VIII.1.8). In
order to prove T -projectivity, we reduce as in the proof of Th. VIII.1.8 to the case x = 0 and
g(x) = x ; composing with Dg(0)−1 , we may further reduce to the case Dg(0) = idV .

We specialize Eqn. (1.2) to the Euler operator X = E :

D(g∗E)(p) =
(
D2g(g−1(p)) · g−1(p)

)
◦Dg−1(p) + idV .

Thus, under our assumptions on g , D(g∗E)(0) = idV . Differentiating further and evaluating at
0, we find that

D2(g∗E)(0) = (D2g)(0).

Since g∗E ∈ co(T ) by definition of Co(T ), it follows from Prop. VII.3.5 that (D2g)(0) ∈W .

2. Conformal group: fine structure

2.1. Generators of the conformal group and generalized Harish-Chandra de-
composition.

Proposition VIII.2.1. An element g ∈ Co(T ) is uniquely determined by its 2-jet (i.e. by
the values g(p) , Dg(p) and D2g(p)) at one point p ∈ V with det dg(p) 6= 0 .

Proof. Let g1, g2 ∈ Co(T ) have the same 2-jet at a point p ∈ V . Then g := g−1
1 g2 has the

2-jet of the identity at p . Replacing g by t−g(p) ◦ g ◦ tp , we may further assume that p = 0. We
thus have to show that the only element g ∈ Co(T ) with g(0) = 0, Dg(0) = idV and D2g(0) = 0
is the identity. The arguments proving Th. VII.1.11 show that, under these conditions on g ,
g∗E = E . Then, for all v ∈ V ,

[E, g∗v] = [g∗E, g∗v] = g∗[E,v] = −g∗v.

However, the only solutions of the differential equation [E,X] = −X are the constant vector
fields, therefore (g∗v)(p) = (Dg−1(p))−1v is constant; this means that Dg−1 : V → End(V ) is
constant and thus g−1 is linear. Since Dg(0) = idV by assumption, this implies that g = idV .
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Proposition VIII.2.2. Let Co′(T ) := {g ∈ Co(T )| dg(0) 6= 0} . Then the map

κ : Co′(T )→ V × Str(T )×W, g 7→ (g(0),Dg(0),Dg(0)−1 ◦D2g(0))

is bijective.

Proof. The map is well-defined since g is regular at 0 by definition of Co′(T ), and Dg(0) and
Dg(0)−1D2g(0) lie in the correct spaces according to Th. VIII.1.8 and VIII.1.11. Since these
data describe precisely the 2-jet of g , the preceding proposition implies now that κ is injective.

In order to prove that κ is surjective, we have to calculate the 2-jet of the element expX
with X ∈ m+ (defined in the proof of Th. VIII.1.3). Note first that (expX)(0) = 0 and
(D expX)(0) = idV (Lemma VIII.A.3). Therefore, as we have seen in the proof of Th. VIII.1.11,

D2(expX)(0) = D2((expX)∗E)(0),

and we can calculate
D2(expX)(0) = D2(e− ad(X)E)(0)

= D2(E − [X,E])(0)

= −D2(X)(0)

since [X,E] = −X for all X ∈ m+ und thus ad(X)kE = 0 for all k > 1.
Now, given v, w ∈ V , h ∈ Str(T ), we let g := tv ◦ h ◦ exp(pw) ∈ Co(T ) and prove

that κ(g) = (v, h, 2T (·, w, ·)): In fact, g(0) = v , Dg(0) = h and Dg(0)−1 ◦ D2g(0) =
(D2 exp(pw))(0) = D2(pw)(0) = 2T (·, w, ·).

We collect the preceding results. By

Co(T )0 := {g ∈ Co(T )| dg(0) 6= 0, g(0) = 0}

we denote the “stabilizer of the base point”, and by

Co(T )00 := {g ∈ Co(T )0|Dg(0) = idV }

the kernel of the first isotropy representation g 7→ Dg(0) of Co(T )0 . These are subgroups of
Co(T ) lying in Co′(T ).

Theorem VIII.2.3. Co(T ) is a Lie group with Lie algebra co(T ) . It is generated by exp(m−) ,
exp(m+) and Str(T ) . More precisely:

(1) Co(T )00 = exp(m+) .
(2) Co(T )0 = Str(T ) exp(m+) ; this is a semidirect product.
(3) Co′(T ) = exp(m−) Str(T ) exp(m+) , and this decomposition is unique, i.e. every element

g of the open dense set Co′(T ) ⊂ Co(T ) has a unique decomposition

g = tg(0) Dg(0) exp(pw), tg(0) ∈ exp(m−), Dg(0) ∈ Str(V ), pw ∈ m+.

(4) Co(T ) = exp(m−) Str(T ) exp(m+) exp(m−) (the corresponding decomposition is not unique).
(5) If T is faithful, then Co(T ) carries an involution Θ such that Θ(Co′(T ))−1 = Co′(T ) and

for all v, w ∈ V , h ∈ Str(T ) ,

Θ(tvh exp(pw))−1 = tw(h])−1 exp(pv). (2.1)

The decomposition from part (3) can be written

g = tg(0) Dg(0) Θ(t−Θ(g)−1(0)), (2.2)
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and the relation
D(Θ(g−1))(0) = Θ(Dg(0))−1 (2.3)

holds.
(6) If T is associated to a unital Jordan algebra with Jordan inversion j via T (u, v, w) =

2(u(vw)−v(uw)+(uv)w) , then Co(T ) is generated by the translations, elements of Str(T )
and j . In this case, T is faithful and Θ is given by conjugation with j .

Proof. Claims (1), (2) and (3) are a direct consequence of Prop. VIII.2.2.
(4) If g ∈ Co(T ), we choose a point p with dg(p) 6= 0; we let g′ := g ◦ tp ; then dg′(0) 6= 0,

and we can apply (3).
(5) The involutive automorphism Θ of co(T ) described in Prop. VII.2.7 induces by

conjugation an involution of the group Aut(co(T )) which is again denoted by Θ. We have
to show that the subgroup Co∗(T ) ⊂ Aut(co(T )) is stable under Θ. But this is easily checked
on the generators of Co(T ) exhibited in Part (4):

Θ(tv) = Θ(exp(v)) = exp(Θ(v)) = exp(−pv)

and Θ(g) = g] for g ∈ Str(T ) (cf. Prop. VIII.1.6). This also proves Equation (2.1) and that
Θ(Co′(T ))−1 = Co′(T ).

If g = vhn abbreviates the decomposition (3) of g ∈ Co′(T ), then

Θ(g)−1 = Θ(n)−1Θ(h)−1Θ(v)−1

is the corresponding decomposition of Θ(g)−1 , and the uniqueness statement in (3) implies that
Θ(n)−1 = tΘ(g)−1(0) and Θ(h)−1 = D(Θ(g)−1)(0). This yields formulas (2.2) and (2.3).

(6) Recall (Prop. II.2.9) that j is a birational map of V with differential Dj(x) = −Q(x).
Thus, for v ∈ V , jttvj is a one-parameter group of birational maps of V . It is generated by the
vector field

X(p) =
d

dt
|t=0j(tv + jp) = Dj(j(p)) · v = −Q(x)v = −pv(p).

It follows that m+ = j∗(m−); therefore j∗(co(T )) = co(T ) and j ∈ Co(T ). Comparing with
Prop. VII.2.7, we see that Θ = j∗ .

2.2. Quasi-inverse and Bergman operator. We are going to derive explicit formulae
for the objects introduced in the preceding sections. For any JTS T on a vector space V we
define:

Definition VIII.4.1.
(i) For y ∈ V we let

t̃y := exp(py) ∈ exp(m+).

If t̃y is defined at x ∈ V , then xy := t̃y(x) is called the quasi-inverse of x with respect to
y .

(ii) The polynomial

B : V × V → End(V ), (x, y) 7→ B(x, y) := idV −T (x, y) + P (x)P (y),

where P (z) = 1
2T (z, ·, z), is called the Bergman operator of the JTS T .

The term “quasi-inverse” is explained in [Lo77, Ch. 7]. If T is faithful, then t̃y = Θ(ty)−1 .
In the general case, it would be more conceptual to define t̃y for y ∈ W with W as in
Def. VII.3.4 and not for y ∈ V , and similarly to consider the Bergman operator as a map
B : V ×W → End(V ).
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Proposition VIII.2.5.
(i) For all x, y ∈ V ,

dexp(py)(x) = B(x, y).

In particular, exp(py) is regular at x if and only if B(x, y) is invertible, and then

B(x, y)−1 = (D(exp(py)))(x) = (D(exp(py ◦ tx))(0).

(ii) For all x, y ∈ V ,
nexp(py)(x) = x− P (x)y.

(iii) If detB(x, y) 6= 0 , then B(x, y) ∈ Str(T ) and

exp(py)(x) = B(x, y)−1(x− P (x)y).

Proof. (i) We are going to use the formula [pa,b] = −T (b, a) (Eqn. (VII.2.1)) and the
equivariance property [X,pa] = −pX]a . According to the definition of the denominators, we
have for all v ∈ V ,

(dexp(py)(x)) · v = (exp(py)∗v)(x) = (ead(py)v)(x)

= (v + [py,v] +
1
2

[py, [py,v]])(x)

= v − T (v, y, x) +
1
2

[T (v, y),py](x)

= v − T (x, y)v +
1
2
pT (y,v,y)(x)

= v − T (x, y)v +
1
4
T (x, T (y, v, y), x) = B(x, y)v.

The following claim now is a consequence of Eqn. (1.1).
(ii) We calculate the numerator

nexp(py)(x) = (exp(py)∗E)(x) = (ead(py)E)(x)

= x+ [py, E](x)
= x− py(x) = x− P (x)y.

(iii) According to Th. VIII.1.8, dexp(py)(x) belongs to the structure group whenever it is
non-singular. Thus the first claim follows from Part (i). The second claim follows from (i) and
(ii) because exp(py)(x) = (dexp(py)(x))−1 · nexp(py)(x).

Proposition VIII.2.6.
(i) If T is faithful and detB(x, y) 6= 0 , then

B(x, y)−1 = Θ(B(y, x)).

(ii) If T comes from a unital Jordan algebra, we have for all invertible elements x ,

B(x, y) = P (x)P (j(x)− y).

Proof. (i) From part (i) of the preceding proposition together with Eqn. (2.3), letting
g = exp(px)ty , we get

Θ(B(y, x)) = Θ(D(exp(px)ty)(0))−1 = D(Θ(t−y exp(p−x)))(0)

= D(exp(pytx))(0) = B(x, y)−1.
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(ii) Using that Θ = j∗ is conjugation by j (Th. VIII.2.3 (6)) and the formula Dj(s) =
−P (x)−1 together with the chain rule, we have

B(x, y)−1 = (D exp(py))(x) = (DΘ(−ty))(x)
= (D(jt−yj))(x) = Dj(j(x)− y) ◦Dj(x)

= P (j(x)− y)−1P (x)−1.

Taking inverses, we obtain the claim.

Proposition VIII.2.7. Let T be faithful. Then, for all x, y ∈ V with detB(x,−y) 6= 0 ,

Θ(ty)tx = tΘ(ty)x B(x,−y)−1 Θ(tΘ(tx)(y)).

Proof. Since detB(x,−y) 6= 0, Θ(ty)tx belongs to Co′(T ). Now the unique decomposition
according to formula (2.2) along with D(Θ(ty)tx)(0) = B(x,−y)−1 and (− id) Θ(tz) (− id) =
Θ(t−z) yields the claim.

The analogs of VIII.2.6 (i) and VIII.2.7 hold also for general JTS, and moreover one can
show that any three homomorphisms of the groups exp(m−), Str(T ) and exp(m+) into an
arbitrary group Γ which are compatible with the relation just proved, have a unique common
extension to a group homomorphism Co(T ) → Γ (cf. [Lo77, Th.8.11 (b)]). In this sense
the preceding proposition completes the description of the conformal group by generators and
relations.

Next we record the covariance properties of the Bergman-polynomial and of the quasi-
inverse with respect to the conformal group. We assume in the following that T is faithful. For
g ∈ Co(T ) and x ∈ V with det dg(x) 6= 0, we have the canonical decomposition of gtx from
Eqn. (2.2):

gtx = tgx p(g, x) (2.5)

with
p(g, x) = Dg(x)Θ(t−Θ(gtx)−1(0)) ∈ Co(T )0 = Str(T ) exp(m+). (2.6)

The term p(g, x) can be interpreted as a version of the second order tangent map of g at x , cf.
Prop. VIII.2.2.

Proposition VIII.4.5. For all x, y ∈ V and g ∈ Co(T ) for which the following expressions
are defined, we have the equalities

Θ(tΘ(g)y)−1tgx = Θ
(
p(Θ(g), y)

)
Θ(ty)−1tx p(g, x)−1, (2.7)

Θ(tΘ(g)y)−1(gx) = Θ
(
p(Θ(g), y)

)
(Θ(ty)−1(x)), (2.8)

B(gx,Θ(g)y) = Dg(x)B(x, y) Θ(D(Θ(g))(y))−1. (2.9)

Proof. With tgx = gtxp(g, x)−1 and tΘ(g)y = Θ(g)typ(Θ(g), y)−1 we get

Θ(tΘ(g)y)−1tgx = Θ
(
Θ(g)typ(Θ(g), y)−1

)−1
gtx p(g, x)−1

= Θ
(
p(Θ(g), y)

)
Θ(ty)−1tx p(g, x)−1,

proving (2.7). Now, (2.7) is an equation between conformal transformations, and taking the
value of these transformations at the base point 0 and noting that p(g, x)−1(0) = 0 yields (2.8).
Taking the first total differential in (2.7) together with the relations D(Θ(tu)−1tv)(0) = B(v, u)−1

(Prop. VIII.2.5 (i)), (Dp(g, x))(0) = Dg(x) and noting that Θ(p(Θ(g), y)) is an affine map of V
and thus has constant differential yields (2.9).
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Remark VIII.2.9. (1) Specialization of the covariance properties from the preceding propo-
sition to elements of the form g = B(u, v), g = tu or g = Θ(tu) gives interesting algebraic
identities – see Appendix B to this chapter.
(2) The covariance properties just proved can be understood as invariance properties of sections
of certain bundles over the conformal completion (cf. next section).

3. The conformal completion and its dual

3.1. The conformal completion. We denote by P := Str(T ) exp(m+) the stabilizer
Co(T )0 and by p := str(T )⊕m+ its Lie algebra. Then P is closed in Co′(T ) and in Co(T ).

Definition VIII.3.1. The space V c := Co(T )/P as well as the map

V → V c, v 7→ tvP

are called the conformal completion of V (w.r.t T ). If V c is compact, then it is also called the
conformal compactification of V .

Proposition VIII.3.2. The conformal completion is an imbedding with open dense image.

Proof. The map V → V c is injective since P ∩ tV = {idV } . Its image is open dense
since it is the image of the open dense set Co′(T ) ⊂ Co(T ) under the surjective submersion
π : Co(T )→ V c , g 7→ gP .

We identify V with the corresponding open dense domain of V c . It is clear that co(T ) is
realized as an algebra of vector fields on V c , and Thm. VIII.1.1 now says that Co(T ) is precisely
the group normalizing this algebra. It suffices to assume that diffeomorphisms normalizing co(T )
are only locally defined in order to conclude a global continuation onto V c ; in particular, all
elements of co(T ) are complete vector fields on V c , and in this sense V c is “complete”. It is
known that, if T is non-degenerate, then P is a parabolic subgroup of the semisimple group
Co(T ) and hence V c is compact (cf. Section X.6).

3.2. The dual space. Let us denote by Aff(V ) the affine group of the vector space V
and by

P ′ := Co(T ) ∩Aff(V )

the group of affine conformal maps. The elements of P ′ are defined at 0, and from Th. VIII.2.3
we get P ′ = tV Str(T ).

Definition VIII.3.3. The space W c := Co(T )/P ′ as well as the map

W →W c, w 7→ exp(w)P ′

(where we identify W with m+ by identifying an element X ∈ W ⊂ Hom(S2V, V ) with the
vector field X(p) := X(p, p); cf. Def. VII.3.4) are called the dual space of V c .

As above it is shown that W → W c is an imbedding with open dense image. If T is
faithful, then P ′ = Θ(P ), and therefore W c → V c , gP ′ 7→ Θ(g)P is an isomorphism onto V c

with the action g.x := (Θ(g))(x).
The dual space W c can be interpreted as the space of conformal affinizations of V c : the

inclusion V ⊂ V c provides a chart of an open dense domain of the conformal completion V c .
An element g ∈ Co(T ) is an automorphism of this affine chart iff it preserves V together with
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its affine structure, i.e. iff it is an element of the group P ′ . Therefore the collection of all affine
charts of the form “V ⊂ V c ” can be identified with Co(T )/P ′ .

In the semisimple case, the interpretation of the dual space shows an even closer analogy
with the case of classical projective geometry: the complement of the open dense set V ⊂ V c

plays the role of a “hyperplane at infinity”; we denote it by

H∞ := V c \ V.

The group P ′ preserves H∞ ; the converse is true if and only if T is semisimple (because an
element of exp(m+) preserves V if and only if it corresponds to an element in the radical of
T , cf. [Lo75, 4.1]). Thus in the semisimple case W c may also be interpreted as the “space of
hyperplanes of type H∞ ”. The algebraic equations of these hyperplanes in the general case are
as follows:

Proposition VIII.3.4. For all h ∈ Co(T ) ,

h−1.H∞ = {x ∈ V c|x = g(0), g ∈ Co(T ),det dhg(0) = 0};

in particular, H∞ = {g(0)| g ∈ Co(T ),det dg(0) = 0} . In Jordan coordinates w.r.t. the origin,
h.H∞ is described by the equation

V ∩ h−1.H∞ = {x ∈ V | det dh(x) = 0}.

Proof. The point g(0) belongs to V if and only if det dg(0) 6= 0: in fact, if g(0) ∈ V , then g
is a local diffeomorphism of a neighborhood of 0 into V , and therefore det Dg(0) 6= 0; conversely,
if det dg(0) 6= 0, then the formula g(x) = dg(x)−1ng(x) defines locally on a neighborhood of 0
a diffeomorphism with values in V , and thus in particular g(0) belongs to V . Therefore V is
characterized by the condition det dg(0) 6= 0 and H∞ by the condition det dg(0) = 0.

The description of h−1.H∞ follows immediately, and if we choose g = tx , we get the
“affine” equation of this hyperplane.

In the important special case where T is associated to a Jordan algebra with Jordan inverse
j , we get

V ∩ j.H∞ = {x ∈ V | detP (x) = 0}. (3.1)

The set j.H∞ is invariant under P since H∞ is invariant under P ′ . Thus, if g(0) =: a ∈ V ,
then

V ∩ g−1j.H∞ = {x ∈ V | detP (x− a) = 0} (3.2)

because w.l.o.g. we may choose g = ta . In the case of a general JTS we have

V ∩ t̃−1
v .H∞ = {x ∈ V | detB(x, v) = 0} (3.3)

and
V ∩ (t̃vtw)−1.H∞ = {x ∈ V | detB(x+ w, v) = 0}. (3.4)

Since tV × t̃V → W c , (tv, t̃w) → tv t̃wP
′ is surjective, the last equation is already the most

general equation of a “hyperplane of type H∞”. The equations given above can be interpreted
in terms of vector bundles. Recall from Appendix VIII.B the relation between representations
induced from subgroups Q of a group L and sections of vector bundles over L/Q .
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Lemma VIII.3.5. The formula F0(g) := dg(0) defines a tV -invariant element of the repre-
sentation indCo(T )

P π0 induced from the representation

π0 : P → Gl(End(V )), p 7→ (X 7→ Dp(0) ◦X).

Proof. The transformation property under P follows from the equation

F0(gp) = Dp(0)−1dg(0) = π0(p)−1F0(g)

and tV -invariance from dtvg(0) = dg(0).

The lemma implies that g 7→ det dg(0) defines a tV -invariant section of the bundle induced
from det ◦π0 , and H∞ is precisely the set of zeroes of this section. As explained in Appendix
B, elements of the representation induced from the first isotropy representation p 7→ Dp(0)
correspond to vector fields; therefore elements of the representation induced from π0 correspond
to sections of the bundle T (V c)⊗ V ∗ (where V ∗ is considered as a trivial bundle over V c ), and
elements induced from det ◦π correspond to sections of the bundle ΛnT (V c), the dual of the
canonical bundle ΛnT ∗(V c).

3.3. The global polarized space. We let the group Co(T ) act on the direct product
V c ×W c by g.(v, w) := (gv, gw). The origin (0V , 0W ) of V c ×W c is often also denoted by
(0, 0).

Definition VIII.3.6. A point (x, y) ∈ V c ×W c is called finite if x belongs to the range of
the affine chart defined by y ; i.e., if y = h.0W ∈ W c with h ∈ Co(T ), then x belongs to the
open dense subset Uy := h.V of V c (which is independent of the choice of h).

The condition x ∈ h.V is equivalent to g.x ∈ gh.V for all g ∈ Co(T ), and therefore the
set of finite points is a Co(T )-invariant set in V c ×W c .

Theorem VIII.3.7. The set of finite points in V c ×W c is precisely the orbit

X := Co(T ).(0, 0) ⊂ V c ×W c.

The orbit X is open dense in V c ×W c and can be described as

X = {(g.0, h.0)| g, h ∈ Co(T ),det(dh−1g(0)) 6= 0}.

Proof. Since (0, 0) is finite, so is g.(0, 0) for all g ∈ Co(T ). Conversely, (x, y) = (g.0, h.0) is
a finite point iff so is h−1.(x, y) = (h−1g.0, 0), and this is finite iff h−1g.0 belongs to V , i.e. iff

det(dh−1g(0)) 6= 0.

If this is the case, then there exists p ∈ P ′ (e.g. p = th−1g(0) ) with p.(0, 0) = (h−1g.0, 0). It fol-
lows that (x, y) = hp.(0, 0). (Moreover, we have the explicit equation (g.0, h.0) = hth−1g(0).(0, 0);
similarly one gets the equation

(g.0, h.0) = gt̃g−1h.0.(0, 0) (3.5)

which will have important consequences in Ch. X.)
Finally, the orbit is open dense in V c ×W c since it is the image of the open dense subset

{(g, h) ∈ Co(T )× Co(T )| det(dh−1g(0)) 6= 0}

of Co(T )× Co(T ) under the surjective submersion Co(T )× Co(T )→ V c ×W c .
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From the theorem one reads off that a point (x, y) = (tx(0), t̃y(0)) ∈ V ×W is finite if and
only if

det(d
t̃−ytx

)(0) 6= 0.

If T is faithful, then we identify W c and V c via Θ, and X is described by

X ∩ (V × V ) = {(x, y) ∈ V × V | detB(x, y) 6= 0}. (3.6)

Theorem VIII.3.8. As a homogenous space, the orbit X = Co(T ).(0, 0) is isomorphic to
Co(T )/ Str(T ) . This is a twisted polarized symmetric space, and the integral submanifolds of the
invariant polarization are given by the product structure of V c ×W c .

Proof. The condition g.(0, 0) = (0, 0) is equivalent to g ∈ P ∩ P ′ = Str(T ), and thus
X ∼= Co(T )/ Str(T ) as a homogeneous space. It is a symmetric space since Str(T ) is open in the
fixed point group of the involution (− idV )∗ of Co(T ) (to see this, it suffices to remark that the
Lie algebra str(T ) is precisely the subalgebra of co(T ) fixed under (− idV )∗ ; this is follows from
the polynomial realization of co(T )).

The space X carries an invariant polarization: by definition of the action of Co(T ) on
V c ×W c , the subsets of the form {v} ×W c resp. V c × {w} are permuted under the action
of g ∈ Co(T ) and thus their intersections with X define integral submanifolds of an invariant
polarization on X .

Finally, this polarization is twisted: in order to prove this, consider the element r idV ∈
Co(T ) (r ∈ R∗ ). It acts on W by scalar multiplication with the inverse of r since for all
w ∈W ∼= m∗ ,

(r idV ). exp(w)P ′ = exp((r idV )∗w)P ′ = exp(r−1w)P ′.

Therefore the linear map r idV ×r−1 idW is given by the action of an element of Co(T ) and
hence is an automorphism of the polarized symmetric space X . Taking the derivative d

dr |r=1 ,
we see that J = idV ×(− idW ) is a derivation of the curvature at the origin, and according to
Lemma III.3.4, this means that J is twisted.

3.4. The structure bundle. We may consider V c×W c as a bundle over V c with typical
fiber W c . (It can be realized as the fiber bundle Co(T )×P W c .) Note that this bundle does not
have a well-defined zero-section, but it has a distinguished subbundle: the fiber over x ∈ V c is
the set of finite points having the form (x, y). This bundle can be realized as follows:

Proposition VIII.3.9. The subbundle W of Hom(S2(TV ), TV ) with constant fiber Wp =
W (where W is as in Def. VI.4.7) has a unique extension to a Co(T )-invariant subbundle (again
denoted by W) of the bundle Hom(S2(T (V c)), T (V c)) over V c .

Proof. We only have to check that W = W0 is invariant under the natural action of the
stabilizer P . But this is clear since, for all p ∈ P , Dp(0) belongs to Str(T ) which is precisely
the linear group preserving W .

The arguments of the preceding proof show that, more generally, a locally defined diffeo-
morphism preserves the structure bundle if and only if it is Str(T )-conformal.

Definition VII.3.10. The subbundle W of Hom(S2T (V c), T (V c)) is called the structure
bundle associated to T .
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4. Conformal completion of the classical spaces

4.1. Conformal completion of M(n,F) . We consider the JTS defined on V = M(n,F)
(F = R,C,H) by the formula

T (X,Y, Z) = XY Z + ZY X;

it is associated to the usual Jordan algebra structure on V having as Jordan inverse j(X) = X−1

the usual matrix inverse (cf. Section II.3).

Proposition VIII.4.1. The conformal completion of V = M(n,F) is equivalent to the
imbedding

Γ : M(n,F)→ Grn,2n(F), X 7→ ΓX = {(v,Xv)| v ∈ Fn}
into the Grassmannian of n-dimensional subspaces of F2n associating to a linear map its graph.
The identity component of the conformal group of V is

Co(T )o = P Gl(2n,F)o

acting in the natural way on Grn,2n(F) .

Proof. Note that Γ(V ) ⊂ Grn,2n(F) is open dense, and since
(
a
c
b
d

)
ΓA = Γ(aA+b)(cA+d)−1

for
(
a
c
b
d

)
∈ Gl(2n,F) and A ∈ M(n,F), the action of Gl(2n,F) in the coordinates given by

V ∼= Γ(V ) is given by the usual formula(
a b
c d

)
.X = (aX + b)(cX + d)−1. (4.1)

The effective group of this action is P Gl(2n,F). Note that(
0 1n
1n 0

)
.X = X−1 = j(X), (4.2)(

1n Z
0 1n

)
.X = X + Z = tZ(X), (4.3)(

1n 0
Z 1n

)
.X = X(ZX + 1)−1 = (Z +X−1)−1 = (jtZj)(X), (4.4)(

g 0
0 h

)
.X = gXh−1. (4.5)

Eqn. (4.3) describes the translation group, (4.5) describes the (identity component of) the
structure group (cf. Section II.3) and (4.2) describes the Jordan inverse. According to Th.
VIII.2.3 (6) these elements generate Co(T )o . On the other hand, it is easily checked that
the corresponding matrices generate Gl(2n,R); therefore the rational actions of Co(T )o and
of P Gl(2n,F)o on V are the same. Since V ∼= Γ(V ) ⊂ Grn,2n(F) is open dense and Gr2n,n(F)
is homogeneous under P Gl(2n,F), it follows that Grn,2n(F) is the conformal completion of V .

4.2. Conformal completion of spaces of symmetric and skew-symmetric matri-
ces. Given an non-degenerate ε -sesquilinear form (x|y) = xtAε(y) on F2n , we denote by

Lag(A, ε,F) := {W ∈ Grn,2n(F)| (W |W ) = 0}

the set of Lagrangian subspaces w.r.t. this form. This is the fixed point set of the map
Grn,2n(F)→ Grn,2n(F), W 7→W⊥ assigning to a subspace its orthocomplement.
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Proposition VIII.4.2. Let A be a Hermitian resp. a skew-Hermitian non-degenerate matrix.
Then restriction of the imbedding from Prop. VII.5.1 to subspaces of M(n,F) yields the following
conformal completions and conformal groups:

V V c Co(T )o
Sym(A,F) Lag(

(
0
−A

A
0

)
,F)0 PO(

(
0
−A

A
0

)
,F)o

Asym(A,F) Lag(
(

0
A
A
0

)
,F)0 PO(

(
0
A
A
0

)
,F)o

Herm(A, ε,F) Lag(
(

0
−A

A
0

)
, ε,F)0 PU(

(
0
−A

A
0

)
, ε,F)o

Aherm(A, ε,F) Lag(
(

0
A
A
0

)
, ε,F)0 PU(

(
0
A
A
0

)
, ε,F)o

Proof. Let X∗ = A−1XtA be the adjoint of X ∈M(n,F) w.r.t. the form given by A . Then,
for all u, v ∈ Fn ,

0 = (Xu|v)− (u|X∗v) = −b1((u,Xu), (v,X∗v)) (4.6)

with the form
b1((x1, x2), (y1, y2)) = (x1|y2)− (x2|y1) (4.7)

on F2n which is given by the matrix
(

0
−A

A
0

)
. Thus b1(ΓX ,ΓX∗) = 0, and by reasons of dimension

we have
ΓX∗ = (ΓX)⊥ (4.8)

w.r.t. the form b1 . Therefore X = X∗ is equivalent to ΓX ∈ Lag(
(

0
−A

A
0

)
, ε,F).

The group PU(
(

0
−A

A
0

)
, ε,F) acts on V = Herm(A, ε,F) by birational maps in the same way

as P Gl(2n,F) acts on M(n,F). The identity component of U(
(

0
−A

A
0

)
, ε,F) is generated by the

matrices
(
1n
0
X
1n

)
,
(
g
0

0
(g∗)−1

)
,
(
1n
X

0
1n

)
with X ∈ V and g ∈ Gl(n,F) which yield, respectively,

the actions of the translation group tV , the structure group and the group Θ(tV ). Thus the
rational actions of Co(T )o and PU(

(
0
−A

A
0

)
, ε,F) on V are the same.

By Witt’s theorem (cf. [Bou59, 4, no.3, Cor 2]), the group U(
(

0
−A

A
0

)
, ε,F) acts transitively

on the connected components of the variety of Lagrangian subspaces. (Note that the whole variety
of Lagrangian subspaces is in general not connected – example: F = R , A = 12n+1 – and hence
is not a conformal completion of V .) As in the proof of the preceding proposition, it follows that
the connected component containing Γ0 is a conformal completion of V = Herm(A, ε,F). For
the other spaces the proof is carried out similarly.

The preceding proof shows that the involutive automorphism “adjoint”

a : M(n,F)→M(n,F), X 7→ a(X) := X∗

extends to the whole Grassmannian as the map “orthocomplement w.r.t. the form given by(
0
−A

A
0

)
”. A special case of the proposition is:

Sym(n,R)c = Lag(J,R)0, Co(Sym(n,R))o = P Sp(n,R).

For Asym(n,R), we use the real Cayley transform R (cf. Eqn. (I.6.6)) in order to diagonalize
the matrix

(
0
1

1
0

)
. Thus

Asym(n,R)c = R · Lag(In,n,R)0, Co(Asym(n,R))o = P(RO(n, n)oR−1).

For A = 1 and F = C,H , normal forms are obtained in the same way. The cases A = F and
A = Ip,q are reduced to the case A = 1 by the following lemma:
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Lemma VIII.4.3. The following maps are isomorphisms of sub-JTS of the JTS M(2n,F) ,
resp. M(p+ q,F) :

Herm(12m,F)→ Aherm(J,F), X 7→ JX,

Aherm(12m,F)→ Herm(J,F), X 7→ JX,

Herm(Ip,q,F)→ Herm(p+ q,F), X 7→ Ip,qX.

Proof. The relation J−1(JX)tJ = −JXt implies that the first two maps are isomorphisms,
and the relation Ip,q(Ip,qX)tIp,q = Ip,qX

t implies that the third map is an isomorphism.

In particular, normal forms for the conformal completions and conformal groups of the
Jordan algebras Sym(F,R) and Sym(F,C) can now be determined (see Table XII.3.1 for a
complete list of normal forms). Finally we show that some varieties of Lagrangians can be
identified with orthogonal resp. unitary groups:

Proposition VIII.4.4. The graph-imbedding X 7→ ΓX yields open imbeddings

O(A,F)→ Lag(
(A

0
0
−A

)
,F), U(A, ε,F)→ Lag(

(A
0

0
−A

)
, ε,F).

In particular, if we identify linear operators with their graphs, we have

Asym(n,R)c = R ·O(n)o,
Herm(n,C)c ∼= Aherm(n,C)c = R ·U(n),

Aherm(n,H)c = R · Sp(n).

Proof. As in the proof of Prop. VIII.4.2 we see that

Γ(g∗)−1 = (Γg)⊥,

this time the orthocomplement taken w.r.t. the form given by
(
A
0

0
−A
)

, and the first claim follows.
For the proof of the second statement, note that varieties of Lagrangian subspaces, being closed
in a Grassmannian, are always compact. Thus, if the orthogonal or unitary group imbedded as an
open subset in the variety of Lagrangians is also compact, it follows that connected components
agree if they have a point in common. Now the second claim follows since

R ·Aherm(A, ε,F)c = Lag(
(A

0
0
−A

)
.ε,F)Γ1 ⊃ U(A, ε,F)o,

and the last inclusion is an equality if U(A, ε,F) is compact.

4.3. Conformal completion of the spaces M(p, q; F) . For F = R or C we realize the
space V = M(p, q; F) as the −1-eigenspace

V = {
(

0 X
Xt 0

)
|X ∈M(p, q; F)} ⊂ Sym(p+ q; F)

of the involution Z 7→ Ip,qZIp,q of Sym(p + q; F) with the Jordan triple product induced from
the ambient space. For F = C or H we have a similar realization inside Herm(p+ q,F); the two
realizations in the complex case are modifications of each other in the sense of Lemma III.4.5.
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Proposition VIII.4.5. The conformal completion of M(p, q; F) is isomorphic to the graph-
imbedding

Γ : M(p, q; F)→ Grp,p+q(F), X 7→ ΓX ,

and the identity component of its conformal group is isomorphic to the group P Gl(p+q; F) acting
in the usual way on the Grassmannian.

Proof. The claim is proved by the same arguments as Prop. VIII.4.1, with the only difference
that for p 6= q Eqn. (4.2) no longer makes sense. Eqns. (4.3) and (4.5) still describe the
translation group, resp. the structure group, as is easily verified; one just has to check that Eqn.
(4.4) still describes the group Θ(tV ). But this is clear from our realization of V as a subspace
of Herm(p+ q,F): the condition

d

dt
|t=0Θ(ttZ)X = −XZX

holds on the ambient space M(p + q,F) and therefore also on the subspaces in question. Now
the proof can be finished as in the case M(n,F).

Of particular interest is the special case

Fn = M(1, n; F)→ FPn, X 7→
(

1
X

)
which is the usual imbedding of affine n -space into the projective n -space. In case F = R
the structure group is the whole linear group Gl(n,R), and therefore we can conclude that
Co(M(1, n; R)) = P Gl(n + 1,R)); this group is connected for n even and has two connected
components for n odd.

4.4. Projective quadrics. We use notation introduced in Section IV.1.5.

Proposition VIII.4.6.
(i) The identity component of the conformal group of the symmetric space with twist Sn

is the group P SO(n + 1, 1) acting in the natural way on the projective quadric {[x] ∈
P(Rn+2)|

∑n+1
j=1 x

2
j − x2

n+2 = 0} ∼= Sn . This space is the conformal completion of the JTS
Rn , T (x, y, z) = (x|z)y − (y|x)z − (y|z)x .

(ii) The identity component of the conformal group of the symmetric space with twist (Sn)hC =
SO(n + 2)/(SO(n)× SO(2)) is the group P SO(n + 2,C) acting in the natural way on the
projective quadric {[z] ∈ P(Cn+2)|

∑n+2
j=1 z

2
j = 0} ∼= (Sn)phC . This space is the conformal

completion of the JTS Cn , T (x, y, z) = (x|z)y − (y|x)z − (y|z)x .

Proof. (ii) Multiplication by i w.r.t. the base point o in the space (Sn)hC is given by an
element of the subgroup SO(2) of the stabilizer SO(n)×SO(2). The complexified group SO(2,C)
acts holomorphically on the projective quadric in the natural way. According to our definition
of the conformal Lie algebra in Ch. VI, the corresponding vector field (Euler operator) together
with the vector fields induced from the SO(n + 2)-action generate the (inner) conformal Lie
algebra. It follows that the action of SO(2,C) together with the action of SO(n + 2) generate
the identity component of the conformal group. But the subgroup of SO(n + 2,C) generated
by SO(n + 2) and SO(2,C) is the whole group SO(n + 2,C) which is therefore the identity
component of the conformal group. In Section IV.1.5 we have seen that the corresponding JTS
is Cn with the triple product T (x, y, z). This is a modification of T and therefore has the same
conformal group and conformal completion; the latter is given by the projective quadric since
the group SO(n+ 2,C) acts transitively on it.

(i) This follows from part (ii) by passing to the real form Sn of (Sn)hC (cf. Prop. IV.1.5).
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In the same way, passing to other real forms of the complex projective quadric, we see that
the conformal completion of the JTS Rp,q , which is the space Rn with the triple product

T (x, y, z) = xIp,qz
ty − xIp,qytz − zIp,qytx,

is the projective completion of the quadric defined by the form with signature (p+1, q) in Rn+1 ,
and the identity component of its conformal group is SO(p+1, q+1). The projective completion
itself can be described as the space

P(SO(p+ 1)× SO(q + 1))/P(SO(p)× SO(q)) = Sp × Sq/((x, y) ∼ (−x,−y)).

The Jordan algebra V = Rn (p > 0) with product xy = b(x, e)y + b(y, e)x − b(x, y)e ,
where b is the bilinear form given by Ip,q and e is the first vector of the canonical basis, is the
modification T (α) of the JTS Rp,q by the automorphism α with matrix I1,n−1 . Therefore the
projective quadric Sp × Sq/ ∼ is also the conformal completion of this Jordan algebra.

Appendix A: The flow of a vector field with a zero of order two

Proposition VIII.A.1. If a vector field X on a vector space V vanishes of order 2 at the
origin, then there exists a neighborhood U of 0 and a constant L , 0 < L < 1 , such that the flow
ϕt(x) of X is defined for all x ∈ U and |t| < 1/L .

Proof. From X(0) = 0 we deduce that ϕt(0) = 0 for all t ∈ R . Since DX(0) = 0, there is
a neighborhood U of 0 such that X|U satisfies a Lipschitz-condition with a Lipschitz-constant
L < 1. The proof of the existence theorem of Picard-Lindelöf (cf. [A74, p. 217]) shows that then
ϕt(x) is defined for all x ∈ U and |t| < 1/L .

Definition VIII.A.2. In the situation of the preceding proposition, we let

expX : U → V, x 7→ ϕt(1).

Lemma VIII.A.3. If X and expX are as above, then (D(expX))(0) = idV .

Proof. Let α(t) := (Dϕt)(0). Then α(t) is defined at t = 1, and we have α(0) = idV ,
d
dt |t=0α(t) = (D d

dt |t=0ϕt)(0) = (DX)(0) = 0, whence α(t) = 0 for all t where α is defined; in
particular α(1) = 0.

Appendix B: Equivariant bundles over homogeneous spaces

In this appendix we describe a standard construction of fiber bundles over homogeneous
spaces: our base space will be a smooth manifold M = L/Q which is homogenous under the
action of a Lie group L , and the typical fiber will be modelled on a smooth manifold U with a
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smooth action Q×U → U , (q, u) 7→ π(q)u . We consider the following space of smooth functions
from L to U :

indLQπ = {F ∈ C∞(L,U)| ∀q ∈ Q, g ∈ L : F (gq) = π(q)−1F (g)}. (B.1)

The group L acts on this space by ordinary left translations: g.F = F ◦ g−1 . In the important
case where U is a vector space and π is a representation of Q , this construction is known as the
induced representation (induced from Q to L).

Just as in the case of induced representations, we associate to the space (A.1) a fiber bundle

L×Q U →M = L/Q (B.2)

over M which is by definition the quotient space of L × U under the equivalence relation
(g, v) ∼ (gq, π(q)−1v) for q ∈ Q . We write [g, v] for the equivalence class of (g, v). The group L
acts by l.[g, v] = [lg, v] . Then the projection [g, v] 7→ gQ is L-equivariant, and the map v 7→ [g, v]
sets up a (non-canonical) bijection of U with the fiber over gQ . The relation [gq, v] = [g, π(q)v]
allows to associate to a function F ∈ indLQπ a well-defined section sF (gQ) := [g, F (g)] , and
standard arguments show that F 7→ sF is an L-isomorphism from indLQπ onto the space of
smooth sections of L×Q U (cf. e.g. [BtD85, p.144]). If π is a linear representation of Q , then
we can define a vector bundle structure on L×QU by [g, v]+[g, w] := [g, v+w] , r[g, v] := [g, rv] .

Example VIII.B.1. (Tangent bundles) Consider the first isotropy representation π = To : we
denote by U = ToM the tangent space at the base point o = eQ of M , and

To : Q→ Gl(ToM), q 7→ Toq. (B.3)

Then indLQ(To) is identified with the space X(M) of vector fields on M (to F ∈ indLQ(To)
corresponds the vector field Xg.o = Tog ·F (g), and vice versa). Similarly, indLQ(⊗kTo⊗⊗lT ∗o ) is
identified with the space of tensor fields of type (k, l), and similarly for symmetric and alternating
powers. The second isotropy representation q 7→ T

(2)
o q (cf. Def. I.B.6) yields the second order

tangent bundle whose sections are the second order differential operators, and so on.

Trivialization of bundles over vector spaces. As above, we consider a fiber bundle
L ×Q U over M = L/Q and assume in addition that L contains a vector group tV with
tV ∩ Q = {e} and dim(tV ) = dimM . Then the orbit tV .o ⊂ M is open and isomorphic to V
via the imbedding

V →M, v 7→ tv.o. (B.4)

In this situation we associate to an element F ∈ indLQπ a function

f := a(F ) : V → U, v 7→ F (tv) (B.5)

which we call the affine picture of F . The map F 7→ f = a(F ) is called the trivialization map.
For instance, the affine picture of a vector field is just a function V → V , and so on. In the cases
we will be interested in V is dense in M , and then the trivialization map is injective.

Next we want to describe the action of L in the affine picture. In analogy to Eqn. VIII
(2.5) we define, for g ∈ L and x ∈ V such that g.x ∈ V , the element p(g, x) ∈ Q by the
condition

gtx = tg.x p(g, x). (B.6)
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Proposition VIII.B.2. Let F ∈ indLQπ . Then for all z ∈ V and g ∈ L where the following
expressions are defined, we have

(a(F ◦ g−1))(z) = π(p(g−1, z))−1 · f(g−1z).

Proof. By definition, g−1tz = tg−1zp(g−1, z). Using the transformation property of F from
Eqn. (A.1), we get

a(F ◦ g−1)(z) = F (g−1tz) = F (tg−1z p(g−1, z)) = π(p(g−1, z))−1f(g−1z).

Note that the right-hand side of the formula from the proposition does not define an action
of L on “all” functions V → U because g−1z is not defined for all z .

Example VIII.B.3. If π = To is the first isotropy representation, then we identify all tangent
spaces of M over V with V and therefore have a natural identification

To(p(g, x)) = To(t−g.x ◦ g ◦ tx) = Dg(x).

Now Proposition VIII.B.2 is just the usual formula for the action of diffeomorphisms on vector
spaces (I.A.5). More generally, if π factors through the linear isotropy representation, i.e.
π(p) = π′(Dp(0)) with π′ a representation of To(Q), then the action from the proposition
can be written

a(F ◦ g−1)(z) = π′(Dg−1(z))−1 · f(g−1z). (B.7)

Appendix C: Some identities for Jordan triple systems

Proposition VIII.2.8 implies some algebraic identities for Jordan triple systems. Let us
mention some of them here in order to demonstrate that our methods yield non-trivial algebraic
results; however, we are not going to use them in the sequel. For this reason we content ourselves
to prove them only in the case of a faithful JTS; the method can be adapted to the case of a
general JTS or Jordan pair. Using the notation xy = Θ(ty)−1(x) (cf. Eqn. (2.4)), Equation
(2.8) reads

(gx)Θ(g)y = Θ(p(Θ(g), y))xy. (C.1)

We will specialize this equation to elements of the form g = tu,Θ(tu), B(u, v) using that

p(tu, x) = Θ(tΘ(tx+u)−1(0))−1,

p(Θ(tu), x) = B(x,−u)−1Θ(tΘ(tx)(u))−1,

p(B(u, v), x) = B(u, v).

(C.2)

Now we let in (2.8) g = B(u, v) and obtain

Θ(tB(v,u)−1y)−1B(u, v)x = B(u, v)Θ(ty)−1(x).

Replacing y by B(v, u)y we get the shifting formula

B(u, v)(xB(v,u)y) = (B(u, v)x)y
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from [Lo75] and [Lo77]. Next we let in (C.1) g = Θ(tu), resp. g = tu and obtain in a similar
way

xy+z = (xy)z, (x+ z)y = xy +B(x, y)−1(z(yx)).

These are the addition formulae from loc.cit. Letting in (2.9) g = Θ(tu), resp. g = tu we obtain
the identities

B(x, y)B(xy, z) = B(x, y + z), B(z, xy)B(y, x) = B(y + z, x)

(identities JP33 and JP34 from loc. cit.). Letting in (2.9) g = B(u, v) we obtain

B(B(u, v)x,B(v, u)−1y) = B(u, v)B(x, y)B(u, v)−1. (C.3)

Putting it in a polynomial form and comparing homogeneous terms yields other identities. One
of it is the identity

T (B(x, y)u, v,B(x, y)w) = B(x, y)T (u,B(y, x)v, w) (C.4)

(cf. the identity JP26 in loc. cit.) which just reflects the fact that B(x, y) belongs to the
structure monoid. This is again a polynomial identity. Inserting the explicit formula for B(x, y)
and separating homogeneous terms of fixed degree in x and y , we get more identities. In
particular, the term of degree 4 in x, y yields

T (P (x)P (y)u, v, P (x)P (y)w) = P (x)P (y)T (u, P (y)P (x)v, w), (C.5)

which for u = w is
P (P (x)P (y)u) = P (x)P (y)P (u)P (y)P (x). (C.6)

Proposition VIII.C.1. In any JTS the “fundamental formula”

P (P (x)u) = P (x)P (u)P (x)

holds.

Proof. If there is an element y with P (y) = idV , then the claim follows from (C.6). Otherwise
we cannot deduce it by straightforward specialization of the identities considered so far, and one
has to use algebraic manipulations (cf. [Mey70, Satz 2.2]) in order to deduce the fundamental
formula from (JT2).

Comparing with Chapter II, we remark that the fundamental formula has an obvious
geometric significance only in the context of Jordan algebras, but not in the context of general
Jordan triple systems. In fact, we will never use the fundamental formula in the general theory
but only in Chapter XI where the link with Jordan algebra theory is discussed.
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Notes for Chapter VIII.

VIII.1. and VIII.2. Our definition of the conformal group is a transposition of Koecher’s
approach ([Koe69a,b]) from an algebraic to a more analytic set-up. The use of only locally defined
diffeomorphisms makes our approach less technical than Koecher’s and is closer to problems in
analysis related to pseudogroups of diffeomorphisms.

Theorem VIII.1.3 is also due to Koecher ([Koe69a, Satz II.2.2]), and in loc.cit. Satz
I.2.1, Koecher gives a further description of the subgroup Co∗(T ) ⊂ Aut(co(T )) as a Zariski-
open subgroup which he calls the group of essential automorphisms; these are by definition the
automorphisms τ of co(T ) for which the denominator dτ defined by (τv)(x) = dτ (x)v takes for
some x ∈ V values in Gl(V ). Prop. VIII.1.4 is a weak version of this result.

The presentation of Theorems VIII.1.6, VIII.1.9 and VIII.2.3 given here is new; it is
motivated by similar results in [Be96a]. In [Koe69a] the results corresponding to Th. VIII.2.3
are obtained in a more algebraic and more computational way, and Th. VIII.1.6 is then deduced
as a corollary (cf. [Koe69a, p.370]).

VIII.3. An algebraic approach to the conformal group and conformal completion is due to
O. Loos ([Lo78], [Lo79]; there the conformal group is called the projective group); see also [Lo77]
where most of the results presented in this chapter can be found. The proofs given there rely on
the algebraic theory of Jordan pairs ([Lo75]); in particular, the algebraic identities mentioned in
Appendix C are needed.

VIII.4. The presentation given here is taken from on [Be96a]. See also [Lo78]. The
realization of unitary groups via the “real Cayley transform” R (Prop. VII.4.4) is known from
[Wey39] as “Cayley’s rational parametrization of the orthogonal group”.

Appendix C. A list of about 40 identities for Jordan pairs and Jordan triple systems can
be found in [Lo75] and [Lo77]. As shows the example of the fundamental formula (which for
triple systems is due to K. Meyberg [Mey70]), not all of these identities are obtained by a simple
specialization of the formulas from Section 2.
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Chapter IX: Liouville theorem and fundamental theorem

These two classical theorems characterize geometrically the conformal group, resp. the
projective group: the former is precisely the group preserving the Euclidean metric of Rn up
to a scalar function (if n > 2); the latter is precisely the group preserving straight lines in Rn
(if n > 1). In both cases it is enough to assume that transformations having these geometric
properties are only locally defined and have a rather weak regularity (we content ourselves with
a C4 -assumption) in order to conclude that they are actually given by birational maps of Rn
and thus can be globally continued to almost everywhere defined transformations and even to
everywhere defined maps if one passes to the compactification given by Sn , resp. by RPn . These
results are generalized in Th. IX.1.1 for non-degenerate JTS not containing ideals isomorphic to R
or C (these exceptions correspond to the restrictions n > 2, resp. n > 1 mentioned above). The
structure of the statement and of its proof shows how in general the conditions of conformality
and projectivity play together. In the classical Liouville-theorem, the condition of conformality
is “leading” and the condition of projectivity is “hidden”; in the classical fundamental theorem,
the latter is “leading” and the former is empty.

Specialization of our general theorem to various classical spaces takes interesting forms
(Section 2): besides the classical results already mentioned, we obtain the determination of some
causal groups and confirm a conjecture of I.E. Segal (Section 2.3), and we obtain new proofs of
some results of Chow and Dieudonné (Section 2.4).

1. Liouville theorem and fundamental theorem

Let us recall from Definitions VII.3.4, VIII.1.7 and VIII.1.10 the notions of conformality
and projectivity: given a JTS T on a vector space V , we introduce the following conditions on a
vector field X , resp. on a locally defined diffeomorphism g . For all p ∈ V , where the expression
is defined,

(C1) DX(p) ∈ str(T )

(P1) D2X(p) ∈W
(C2) Dg(p) ∈ Str(T )

(P2) (Dg(p))−1 ◦D2g(p) ∈W.

(1.1)

Then conditions (C1) and (C2) define Str(T )-conformality and (P1) and (P2) define T -projectivity.

Theorem IX.1.1. Let T be a non-degenerate JTS containing no ideal isomorphic to R or
C .
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(i) (The Fundamental Theorem) Any local T -projective diffeomorphism (of class C4 ) is bira-
tional, and its birational continuation belongs to Co(T ) . The group Co(T ) is exactly the
group of T -projective transformations.

(ii) (The Liouville-Theorem) If T is associated to a semisimple Jordan algebra via T (x, y, z) =
2(x(yz)− y(xz) + (xy)z) , then every local Str(T )-conformal diffeomorphism is birational,
and its birational continuation belongs to the group Co(T ) , i.e. it is a composition of the
translations tv , v ∈ V , of elements of Str(V ) and of the Jordan inverse j(x) = x−1 . The
group Co(T ) is exactly the group of Str(T )-conformal diffeomorphisms.

Proof. We have already seen that elements of Co(T ) satisfy the conditions (C2) and (P2)
(Th. VIII.1.8 and Th. VIII.1.11). The proof of the converse occupies the remainder of this
section. It is done in both cases by proving first an algebraic version on the level of vector fields,
which we state next; the corresponding statement on the group-level is then deduced.

Theorem IX.1.2. Let the assumptions be as in the preceding theorem.
(i) (Infinitesimal version of the Fundamental Theorem) Any locally defined T -projective vector

field (of class C3 ) is polynomial and belongs to co(T ) . The Lie algebra co(T ) is precisely
the space of T -conformal vector fields.

(ii) (Infinitesimal version of the Liouville Theorem) If T is associated to a semisimple Jordan
algebra, then co(T ) is exactly the space of str(T )-conformal vector fields. The Lie algebra
co(T ) is precisely the space of str(T )-conformal vector fields.

Proof. We have already seen that elements of co(T ) satisfy the conditions (C1) and (P1) of
Eqn. (1.1) (Prop. VII.3.5). Conversely, let X be a vector field defined on some domain U and
satisfying (C1) and (P1). We abbreviate L := Str(T ) ⊂ Gl(V ) and l := str(T ) ⊂ gl(V ). Then
by (C1), DX is a map

DX : U → l ⊂ Hom(V, V ), p 7→ DX(p);

therefore the second differential D2X = D(DX) takes values in Hom(V, l). On the other hand,
D2X(p) is a symmetric bilinear map V × V → V . Thus D2X can be considered as a map

D2X : U → Homs(V, l) := Hom(V, l) ∩Hom(S2V, V )
= {T : V → l| ∀u, v ∈ V : T (u)v = T (v)u}.

Deriving further, we see that DkX takes values in

Homs(Sk−1V, l) := Hom(SkV, V ) ∩Hom(Sk−1V, l).

Note that this is an L- and an l -submodule of Hom(SkV, V ) (sometimes denoted by l(k−1) , cf.
[St83], [Ko72]). Similarly, condition (P1) implies that D3X takes values in

Homs(V,W ) := Hom(V,W ) ∩Hom(S3V, V ) = {α : S3V → V | ∀x ∈ V : α(x, ·, ·) ∈W}.

Note that
W ⊂ Homs(V, l)

since T (u, x) ∈ str(T ) = l and T (u, x)v = T (v, x)u for all u, v, x ∈ V . Thus condition (P1) is a
refinement of condition (C1).

Lemma IX.1.3.
(i) If Homs(V,W ) = 0 , then the Lie algebra co(T ) is precisely the space of T -projective vector

fields.
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(ii) If Homs(V, g) = W and Homs(S2V, g) = 0 , then the Lie algebra co(T ) is precisely the
space of l-conformal vector fields.

Proof. (i) If Homs(V,W ) = 0 and X is T -conformal, then D3X = 0 and we can integrate.
We then find that X is in fact quadratic, given by

X(x) = X(0) + DX(0) · x+
1
2

D2X(0) · (x, x).

Since DX(0) ∈ str(T ) and D2X(0) ∈W by conformality, X is of the form given in Th. VII.3.1,
i.e. X ∈ co(T ).

(ii) If Homs(S2V, l) = 0 and X is l -conformal, then D3X = 0, and we can conclude as
above, using that D2X(0) ∈ Homs(V, l) = W .

Proposition IX.1.4. If T is a non-degenerate JTS containing no ideal isomorphic to R or
C , then Homs(V,W ) = 0 .

Proof. According to Prop. VII.2.10 the map A : V →W , v 7→ T (·, v, ·) is bijective. Therefore

Homs(V,W )→ End(V ), α 7→ β := A−1 ◦ α

is injective, i.e., we define β by the relation A(β) = α , that is α(u) · v ⊗ w = T (v, βu,w). By
the assumption on α , this expression is totally symmetric in u, v, w . In particular, the relation

T (v, βu) = T (u, βv) (1.2)

holds for all u, v ∈ V . When applying ] to both sides, the relation T (a, b)] = −T (b, a) (cf.
Th. VII.3.1) yields T (βu, v) = T (βv, u). Using the notaton R(a, b) = T (a, b) − T (b, a), we get
R(v, βu) = R(u, βv), i.e.

R(v, βu) = −R(βv, u) (1.3)

holds for all u, v ∈ V . We claim that this implies the relation

R(v, u) ◦ β = −β ◦R(v, u) (1.4)

for all u, v ∈ V . In order to prove this, we note that for all x, y ∈ V , (y|βx) = trT (y, βx) =
trT (βy, x) = (βy|x), i.e. β is self-adjoint. Using this and the relation

(R(x, y)u|v) = (R(u, v)x|y),

which holds for all x, y, u, v ∈ V (cf. Lemma V.1.3), we get from (1.3)

(R(u, v)βx|y) = (R(βx, y)u|v)
= −(R(x, βy)u|v)
= −(R(u, v)x|βy)
= −(βR(u, v)x|y).

Since the trace-form is non-degenerate, (1.4) follows by comparing the first and the last expres-
sion. From (1.4) we deduce that for all a, b, u, v ∈ V ,

[R(a, b), R(u, v)] ◦ β = β ◦ [R(a, b), R(u, v)]. (1.5)

Thus equations (1.4) and (1.5) together imply that for all H ∈ [h, h] ⊂ h ,

H ◦ β = β ◦H = 0. (1.6)
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It follows that β(V ) ⊂ V is a submodule on which [h, h] acts trivially.
Let us assume now that T is simple and not isomorphic to the one-dimensional real or

complex JTS. Then R 6= 0 and [h, h] 6= 0. Now, according to Th. V.4.4 and Cor. V.1.11, the
following three cases can arise:

(a) V is an irreducible [h, h] -module of dimension bigger than one;
(b) V is the direct sum of two irreducible [h, h] -modules of dimension bigger than one;
(c) V is the direct sum of a trivial one-dimensional and an irreducible non-trivial [h, h] -module.

This case arises precisely if T comes from a simple Jordan algebra (over K = R or C)
with product (x, y) 7→ xy via the formula T (u, v, w) = 2(u(vw)− v(uw) + (uv)w), and the
trivial submodule is the space Ke of multiples of the unit element e .
In the first two cases the only submodule on which [h, h] acts trivially is zero, whence

β = 0. In the third case β has to be a multiple of the projection onto the trivial one-dimensional
module. Thus β is given by β(x) = λ(x|e)e with λ ∈ K , and

T (u, βv) = λ(v|e)T (u, e) = 2λ(v|e)L(u),

where L(u)x = ux . If λ 6= 0, then condition (1.2) with v = e implies that L(u) = (u|e)L(e) =
(u|e) idV for all u ∈ V . Since h = [L(V ), L(V )] , this implies that h = 0; this case corresponds
to the simple Jordan algebra V = K and is excluded. Therefore λ = 0 and β = 0. (One could
also reduce case (c) to (a) or (b) by replacing T by a suitable modification T (α) (cf. Lemma
III.4.5). The space W does not depend on the modification.)

Thus the proposition is proved in the case that T is simple. If T is a non-degenerate JTS
on V , we decompose V = ⊕iVi into simple ideals w.r.t. T ; then W = ⊕iWi where the Wi

correspond to the Vi . From the definition of Homs(V,W ) one easily gets that

Homs(V,W ) = ⊕i Homs(Vi,Wi),

and in this way the general statement is reduced to the case of a simple JTS.

The preceding proposition together with Lemma IX.1.3 (i) proves part (i) of Theorem
IX.1.2.

Proposition IX.1.5. If V is a semisimple Jordan algebra and l = str(V ) its structure
algebra, then Homs(V, l) = W .

Proof. We proceed in three steps:
1. Recall the decomposition l = h ⊕ q , where q = L(V ) acts by self-adjoint operators

and h = Der(V ) acts by skew-symmetric operators w.r.t. the trace form (x|y) = trL(xy).
If S ∈ Homs(V, l), we let S(v) = S1(v) + S2(v) with S1(v) ∈ h and S2(v) ∈ q . Then, for
u, v, w ∈ V ,

(S(u)v|w) = (S(v)u|w)
= (u|(S2 − S1)(v)w)
= (u|S(v)w)− 2(u|S1(v)w).

Since the trace form is symmetric, we get

(S(u)v | w)− (S(v)w | u) = 2(S1(v)u | w).

We take the sum of the three equations obtained by cyclic permutation of u, v, w and obtain

(w|S1(u)v) + (v|S1(w)u) + (u|S1(v)w) = 0.
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In particular, for u = e , we have
(w|S1(e)v) + (v|S1(w)e)− (S1(v)e|w) = 0,

whence (w|S1(e)v) = 0 since h · e = 0. Since the trace form is non-degenerate, it follows that
S1(e) = 0. Thus S(e) = S2(e) ∈ q for all S ∈ Homs(V, l).

2. Let Ṽ be the vector space V equipped with the L -action by g · v = (g∗)−1(v) and the
l -action by X · v = −X∗(v). We claim that the linear map

p : Homs(V, l)→ Ṽ , S 7→ S(e, e) := S(e)e
is l -equivariant. In fact, it is clearly equivariant w.r.t. h ∈ Aut(V ) because h(e) = e , and
therefore it is also equivariant w.r.t h = Der(V ). Now let X ∈ q ; then X∗ = X , and by
definition of the l -action in Hom(V,Hom(V, V )), we have for all S ∈ Homs(V, l),

X · p(S)− p(X · S) = −X(S(e, e))− (X(S(e, e))− S(Xe, e)− S(e,Xe))
= −2(X ◦ S(e))(e) + 2(S(e) ◦X)(e)
= 2[S(e), X](e) = 0

since, as seen above, S(e) ∈ q and thus [X,S(e)](e) ∈ [q, q](e) = h(e) = 0. Thus p commutes
with the action of l = h⊕ q .

3. Since p(A(v)) = T (e, v, e) = v for all v ∈ V , p : Homs(V, l)→ Ṽ is surjective. We claim
that p is also injective. Let S ∈ ker p . Then, since p is equivariant, g · S ∈ ker p for all g ∈ Lo .
Thus

0 = (g · S)(e⊗ e) = g(S(g−1e⊗ g−1e)),
so that S(v⊗v) = 0 for all v belonging to the open orbit Ω = L(e) ⊂ V . But since Ω is open in
V , the set d(Ω) = {v⊗ v| v ∈ Ω} generates S2V as a vector space, and hence S = 0. Thus p is
injective, and since p ◦A = idV , it follows that p is a bijection which is inverse to A . Therefore
Homs(V, l) = A(V ) = W .

Note that, for S ∈ Homs(S2V, l) and v ∈ V fixed, S(v, ·) belongs to Homs(V, l). Therefore
the preceding two propositions together imply that, if V is a semisimple Jordan algebra having
no ideal isomorphic to R or C , then Homs(S2V, l) ⊂ Homs(V,W ) = 0. Now part (ii) of Theorem
IX.1.2 follows from Lemma IX.1.3 (ii), and Theorem IX.1.2 is completely proved. In order to
deduce Theorem IX.1.1 from Theorem IX.1.2, we need the following proposition.

Proposition IX.1.6. Let g be a locally defined diffeomorphism of V and X a vector field on
V .

(i) If g satisfies (C2) and X satisfies (C1), then g∗X satisfies (C1).
(ii) If X satisfies (C1) and (P1) and g satisfies (C2) and (P2), then g∗X satisfies (P1).

Proof. (i) We denote by Γ(W) the space of smooth sections over V of the structure bundle
W ; these are just the smooth functions V → W . Thus Γ(W) is a subspace of the space of
smooth functions V → Hom(S2V, V ), and condition (C2) means that g preserves this subspace.
Similarly, (C1) is equivalent to the condition

X · Γ(W) ⊂ Γ(W).
Thus, if g satisfies (C2) and X satisfies (C1), then

(g∗X) · Γ(W) = g · (X · (g−1 · Γ(W))) ⊂ Γ(W).

(ii) Let ∇ be the canonical flat connection of V . Recall that (P2) is equivalent to
g · ∇ −∇ ∈ Γ(W). Similarly, (P1) is equivalent to

X · ∇ ∈ Γ(W).
Using this and part (i), we get

(g∗X) · ∇ = g · (X · (g−1 · ∇)) ∈ g · (X · (∇+ Γ(W))) ⊂ g · Γ(W) ⊂ Γ(W);
thus g∗X satisfies (P1), and (ii) is proved.
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Now we prove part (i) of Theorem IX.1.1. By Theorem IX.1.2 (i), co(T ) is precisely the
space of vector fields (of class C3 ) satisfying (C1) and (P1). If g is of class C4 and satisfies (C2)
and (P2), then part (ii) of the preceding proposition implies that g∗ preserves co(T ). Thus by
Th. VIII.1.1, g is actually birational and belongs to the conformal group Co(T ) (Def. VIII.1.2).
In a similar way, Th. IX.1.2 (ii) and part (i) of the preceding proposition imply Th. IX.1.1 (ii).

Remark IX.1.7. The proof of Th. IX.1.1 shows that a “fundamental theorem” holds whenever
Homs(V,W ) = 0.

2. Application to the classical spaces

2.1. The fundamental theorem of projective geometry (real case).

Lemma IX.2.1. A locally defined diffeomorphism ϕ of V = Rn (n > 1) preserves segments
of straight lines if and only if there exists a locally defined one-form λ such that for all x where
ϕ is defined and all v ∈ V ,

(Dϕ(x))−1 ◦D2ϕ(x) · (v ⊗ v) = 〈λ(x), v〉v.

Proof. By assumption, if α(t) = x+ tv , then β(t) := ϕ(α(t)) with t such that the expression
is defined, is a segment of a straight line. This is equivalent to saying that β′(t) = Dϕ(α(t)) · v
and β′′(t) = D2ϕ(α(t)) · (v ⊗ v) are linearly dependent for all t in the domain of definition, i.e.
for y = α(t) there exists a scalar λ = λ(y; v) such that D2ϕ(y) · (v⊗ v) = λ(y; v)Dϕ(y) · v . This
is equivalent to the condition stated in the lemma, because the left-hand side is quadratic in v
and therefore λ(y; v) must be linear in v .

For u, l, w ∈ Rn we let
T (u, l, w) := ultw + wltu; (2.1)

this is the JTS denoted in Section VIII.4 by M(1, n; R). Then the condition of the preceding
lemma can be rephrased as

(Dϕ(x))−1 ◦D2ϕ(x) ∈W = {T (·, v, ·)| v ∈ V }

for all x where ϕ is defined. This is nothing but the condition (P2) for the JTS T . Since
the structure group of T is equal to Gl(n,R), condition (C2) is empty in this case. Thus the
preceding lemma says that a locally defined diffeomorphism of Rn preserves straight lines if and
only if it is T -projective. Of course, this is a special case of a general theorem due to H.Weyl
saying that two torsionfree affine connections have the same geodesics (as unparametrized lines)
if and only if their difference is a section of the bundle with typical fiber W (cf. [Ei37]).

Theorem IX.2.2. A locally defined diffeomorphism ϕ of RPn (n > 1) preserves segments of
straight lines if and only if it coincides on its domain of definition with an element of the general
projective group P Gl(n+ 1,R) .

Proof. We have seen that, in the canonical affinization Rn of RPn , the condition on ϕ of the
theorem is equivalent to T -projectivity. According to Theorem IX.3.1 (i) this is equivalent to
ϕ ∈ Co(T ). In Section VIII.4.3 we have determined Co(T ): it is precisely the general projective
group.
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As an easy exercise, the reader may prove the crucial condition Homs(V,W ) = 0 (Prop.
IX.1.5) in the special case of the JTS (2.1) by elementary linear algebra. In the complex and
quaternionic case, the proof of Lemma IX.2.1 has to be modified a little: one has to prove that
λ(y; v) is in fact F -linear in v , F = C resp. H . Moreover, one should note that in the complex
case Co(T ) is strictly bigger than P Gl(n+ 1,C) (it contains also the complex conjugation).

2.2. Theorems of Liouville and Lie. If V = Rn is equipped with the quadratic form
b(x, x) = xtIp,qx , then a locally defined diffeomorphism ϕ is called b-conformal if ϕ preserves b
up to a scalar function, i.e. for all x where ϕ is defined,

Dϕ(x) ∈ L := {tg| g ∈ O(p, q), t ∈ R∗}, (2.2)

i.e. ϕ is L -conformal. The following theorem is due to Sophus Lie, who generalized the result
of Liouville corresponding to the case p = 3, q = 0.

Theorem IX.2.3. If ϕ is a locally defined b-conformal (C4 -regular) diffeomorphism of Rn
(n > 2), then ϕ can be written as a composition of translations, of elements of the group L and
the inversion J(x) = x

b(x,x) .

Proof. The group L is the structure group of the semisimple Jordan algebra V = Rn defined
by the quadratic form b (Section II.3). According to Th. IX.1.1 (ii) (note that the cases n = 1
and n = 2 are excluded), ϕ is L-conformal if and only if it belongs to the group Co(T ) generated
by the elements mentioned in the claim (it is harmless to replace the Jordan inverse j by J since
J = jg with an element g ∈ L).

Note that according to Section VIII.4.4, Co(T ) ∼= SO(p+1, q+1). The groups SO(n+1, 1)
are known from work of E. Cartan as the “conformal groups of the n -sphere”; in fact, Sn is the
conformal compactification of the Jordan algebra Rn with a positive definite quadratic form (cf.
Section VIII.4.4).

2.3. Causal groups and Segal’s conjecture. If Ω ⊂ Rn is a regular (i.e. open, convex
and not containing straight lines) cone in Rn , then a local diffeomeorphism ϕ of Rn is called
Ω-causal or just causal, if for all x where ϕ is defined,

Dϕ(x) · Ω = Ω. (2.3)

In other words, ϕ is G(Ω)-conformal, where

G(Ω) := {g ∈ Gl(n,R)| g(Ω) = Ω}

is the group of linear automorphisms of Ω. The locally defined causal diffeomorphisms form
the Ω-causal pseudogroup. Historically, the most important example is the Lorentz-cone in R4

leading to the causal (pseudo-)group of special relativity. Note that the Lorentz-cone is the
symmetric cone associated to the Euclidean Jordan algebra V = Herm(2,C) which is isomorphic
to the algebra corresponding to p = 3, q = 1 from the preceding theorem.

Theorem IX.2.4. If V is a Euclidean Jordan algebra and Ω the associated symmetric
cone, then every locally defined (C4 -regular) Ω-causal diffeomorphism of V can be written as
a composition of translations, elements of G(Ω) and of −j , where j is the Jordan inverse in V .
The birational maps thus obtained form an open subgroup Cau(T ) of Co(T ) .

Proof. Note first that the transformations named in the claim are indeed causal. This
being trivial for translations and elements of G(Ω), it remains only to be shown for −j . But
D(−j)(x) = Q(x)−1 , and Q(x) ∈ G(Ω) since Q(x) preserves the space V ′ from Prop. II.2.9 and
Q(x)e = x2 ∈ Ω.
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In order to prove that conversely all causal transformations are of this form, we need the
fact that G(Ω) ⊂ Str(V ) which we will not prove here (cf. [FK94, Prop. VIII.2.8]). Since clearly
exp(str(V )) ⊂ G(Ω), it follows that G(Ω) is open in Str(V ) (if V is simple, it is a normal
subgroup of index 2, cf. loc.cit.). Now Ω-causal transformations ϕ are also Str(T )-conformal,
and we can apply Th. IX.1.1 (ii) in order to conclude that ϕ ∈ Co(T ). The decomposition of
Co(T ) given in Th. VII.2.3 shows that necessarily ϕ is of the form given in the claim. Note
that −j is causal at every point where it is regular; therefore the elements of the form given in
the claim form indeed a subgroup of Co(T ) which is open in Co(T ) because G(Ω) is open in
Str(T ).

The theorem implies that the causal group acts transitively on V c . For x = g.0 ∈ V c with
g in the causal group we define a cone Ωx := T0g · Ω in the tangent space Tx(V c); this is well-
defined since the stabilizer of the causal group at the base point 0 preserves Ω = Ω0 . Thus we
obtain a field of cones (Ωx)x∈V c on V c . A diffeomorphism g is called causal if Ωg.x = Txg ·Ωx for
all x where g is defined. Theorem IX.2.4 implies that every locally defined causal diffeomorphism
of V c has an extension to a global causal diffeomorphism of V c , given by an element of the causal
group. In this sense V c may be called the causal completion of V . Here is a complete list of
simple Euclidean Jordan algebras, their causal completions and causal groups (cf. Table XII.3.1):

V V c Co(T )o
Herm(n,C) U(n) PU(n, n)o
Sym(n,R) Lag(F,R) ∼= U(n)/O(n) P Sp(n,R)
Herm(n,H) U(2n)/ Sp(n) P SO∗(4n)
Rn,1 Sn × S1 SO(n+ 1, 2)
Herm(3,O) Herm(3,O)c E7(−25)

The determination of the causal group of U(n) (first line of the table) confirms a conjecture
by I.E. Segal ([Se76, p.35]).

2.4. Theorems of Chow and Dieudonné. A linear relation of order k (k ∈
{0, 1, . . . , q − 1}) in the Grassmannian Grp,p+q(F) is a set of the form

[F ] := {W ∈ Grp,p+q(F)|W ⊂ F}, (2.4)

where F ⊂ Fp+q is a p+ k -dimensional subspace. This is the analog of subspaces of projective
space. We say that a locally defined diffeomorphism preserves linear relations if the image of a
(piece of) a linear relation is again a (piece of) a linear relation. It is clear that linear relations
are preserved under the canonical action of the group P Gl(p+ q,F).

Lemma IX.2.5. In the chart given by the graph-imbedding V := M(p, q; F) → Grp,p+q(F) ,
X 7→ ΓX , linear relations are represented by affine subspaces of V .

Proof. Let [F ] be a linear relation having non-empty intersection with V . By applying
translations (which are given by elements of P Gl(p+ q,F), cf. Eqn. (VIII.4.3)), we may assume
that Fp ⊕ 0 = Γ0 ∈ [F ] . In other words, Fp ⊕ 0 ⊂ F , and therefore F = Fp ⊕ F2 with a
k -dimensional subspace F2 ⊂ 0⊕ Fq . Now the condition ΓX ⊂ F is equivalent to the condition
that the image of the linear operator X belongs to F2 . Clearly the space of such operators is a
vector subspace of M(p, q; F).

In contrast to the situation in the usual projective space, one cannot join two arbitrary
points by a linear relation, and if this is possible, the linear relation is not unique. In fact, there
is a linear relation of order k containing both ΓX and ΓY if and only if dim(ΓX ∩ ΓY ) ≥ k , i.e.
rk(X − Y ) ≤ k . The following result has been proved in another way by W.L. Chow ([Ch49]).
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Theorem IX.2.6. A locally defined diffeomorphism of V = M(n,F) (n > 1) preserving
linear relations of order k , k = 1, . . . , n , is an element of the group generated by P Gl(2n,F) ,
by maps of the form W 7→W⊥ (w.r.t. some non-degenerate form), and (in the case F = C) by
Z 7→ Z . The group thus obtained is the conformal group Co(T ) of the Jordan algebra V .

Proof. Note first that the transformations named in the claim indeed preserve linear relations.
In order to prove that conversely every map ϕ preserving linear relations is of this form, we may
assume that the domain of definition of ϕ is contained in the chart V . Then, since ϕ preserves
linear relations and linear relations are represented in the chart V by affine subspaces (cf. the
preceding lemma), if follows that (for all x where ϕ is defined) Dϕ(x) preserves linear relations
through the origin. In particular, Dϕ(x) preserves the set {X ∈ V |det(X) = 0} which is the
union of linear relations of order n−1. Since the polynomial det is irreducible, we may conclude
that det ◦Dϕ(x) is a multiple of the polynomial det, which in turn implies that Dϕ(x) ∈ Str(V )
([FK94, p.161]). Thus ϕ is Str(V )-conformal and belongs, according to Thm. IX.1.1 (ii) to the
group Co(V ). It only remains to be shown that Co(V ) is generated by the elements given in
the claim. We know already that Co(V )o = P Gl(2n,F)o (Prop. VIII.4.1). The other connected
components are given by the connected components of Str(V ) which are known (cf. Table
XII.1.3).

Similarly, we can characterize the groups preserving linear relations on the varieties of
Lagrangians corresponding to the algebras Sym(A,R) and Herm(A,F) as the conformal groups
of these algebras. This proves certain results of Dieudonné ([D63]).
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Notes for Chapter IX.

IX.1. It has been known for a long time in the theory of G-structures that statements
such as the Liouville-theorem correspond to the vanishing of the modules Homs(SkV, l) (usually
denoted by l(k) ) for a certain k , cf. [St83], [Ko72]. However, to our knowledge the first complete
and “global” proof of this fact is the one given in [Be96a, Th.2.1.4 and Th.2.2.1]. It seems that
at present all known examples of Liouville-theorems in this sense are related to Jordan theory
(where l(2) = 0).

The proof of similar results by Kaneyuki ([Kan89, Th.6.2]) and Gindikin and Kaneyuki
([GiKa96, Th.3.3]) uses the heavy machinery of Cartan-connections developed by N. Tanaka.
For several reasons we wished to avoid this theory. From a conceptual viewpoint, just as usual
affine spaces are the model spaces for the introduction of affine connections, spaces with a
non-degenerate JTS are the model spaces for the introduction of Cartan-connections. But it
is clear that affine linear algebra logically precedes affine differential geometry, and therefore
“elementary” Jordan theory should also precede the differential geometry of Cartan-connections.

The modules Homs(SkV, l) and Homs(V,W ) are related to certain Spencer cohomology
groups, cf. [Gui65]: the assumption that V contains no ideal isomorphic to R or C means that
the Spencer cohomology group H2,1 vanishes; then Homs(V, l)/W is the Spencer cohomology
group H1,1 , and Prop. IX.1.5 says that this cohomology group vanishes. In the literature it
is claimed that already E. Cartan proved that (in the language used here) Homs(S2V, l) = 0
whenever l is the structure algebra of a simple JTS not isomorphic to M(1, n; F) (cf. [Gui65,
Section 5], [Tan85, Lemma 1.12]; cf. also [Go87, Prop.4.2]); however, we have not been able to
recognize this result in [Cartan]. From this claim it follows (by the general result from [Be96a])
that a Liouville-theorem holds for all simple JTS not isomorphic to M(1, n; F) (this is essentially
the theorem by Kaneyuki and Gindikin quoted above). Since we do not have a proof of the
property Homs(V, l) = W in the spirit of Jordan theory if T does not belong to a Jordan
algebra, we have formulated our Liouville-theorem only for Jordan algebras.

IX.2. For proofs of the fundamental theorem of projective geometry by linear algebra cf.
[Ar66] or [B87]. A simple proof in the real case going back to Möbius is described in [Wey23].
Liouville stated his theorem without proof in [Li1850]. In [Sch54, p. 312] the proof of Lie’s
theorem is qualified as “tiresome and uninteristing”. A short and interesting proof can be found
in [Wey23]. H.Weyl very clearly remarked the formal and geometric similarities between the
fundamental theorem and the Liouville theorem.

The notion of causality has its origins in the theory of relativity (cf. [Se76]). It has become
an important aspect of geometry and analysis on Lie groups and symmetric spaces (cf. Section
XI.3). At present it is not yet clear which role causal structures defined by symmetric cones (as
in our examples) play in this general context.

The original proofs of the theorems of Chow ([Ch48]) and Dieudonné ([D63]) are similar
to the algebraic proofs of the fundamental theorem mentioned above. Chow characterizes the
“projective group” also as the algebraic automorphism group of Grassmannians resp. varieties
of Lagrangians. This has been generalized by O. Loos for all conformal compactifications of
non-degenerate JTS ([Lo78], [Lo79]).
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Chapter X: Algebraic structures of symmetric spaces with twist

In this chapter we pass from the local theory of symmetric spaces with twist to their global
theory. Here we encounter a deep difference between Jordan- and Lie-theory: a Lie algebra or
a Lie triple system determines the associated Lie group, resp. the associated symmetric space
only locally, and only by additional topological requirements (such as simple connectedness)
one can determine a global object. In contrast, without any additional requirements a Jordan
triple system determines a canonically associated globally symmetric space with twist. The key
property of this space is not a topological one, but an algebraic one: it is an algebraic symmetric
space in the sense of Def. I.4.4, and its global algebraic structure is entirely determined by its
Jordan triple system.

In order to understand this difference, recall that the classical Campbell-Hausdorff formula
(cf. e.g. [HN91, Satz I.4.8]) expresses the local group multiplication of a Lie group in the
exponential chart. It is an analytic formula, given by a power series in terms of the Lie bracket.
One can derive from the classical Campbell-Hausdorff formula a Campbell-Hausdorff formula for
symmetric spaces expressing the multiplication map µ of a symmetric space (cf. Section I.4) on a
neighborhood of the origin in the exponential chart; it is a power series in terms of the associated
Lie triple system. In Jordan theory there is a canonical chart which we have called Jordan
coordinates (Chapter VII). It turns out that the multiplication map µ of the corresponding
symmetric space with twist is rational in this chart, and it can be explicitly calculated. Thus we
get a rational analog of the Campbell-Hausdorff formula (Th. X.3.2) – it is still a complicated
formula, but it is simpler than the original Campbell-Hausdorff formula. Moreover, it allows to
extend the germ of a symmetric space we started with in a unique way to a global space M . An
open dense part M∩V of M is covered by the Jordan coordinates; we call it the affine part of M
and describe it as a Zariski-open domain in V , complementary to the set of zeros of a polynomial
related to the Bergman operator defined in Chapter VIII (Th. X.2.1). Our “Campbell-Hausdorff
formula” is global in the sense that it describes the multiplication map on this open dense set;
since in general neither M nor M ∩ V are topologically connected, this is something which is
completely out of reach in Lie theory.

There are many other features which reflect in one way or another the fact that the space
M is globally determined by its JTS: first, the exponential map itself is described in Jordan
coordinates by a formula generalizing the well-known formula expressing the exponential map of
the Poincaré disc by the hyperbolic tangent of the Euclidean distance (Th. X.4.1). Again, our
result is global in the sense that it holds on an open dense set which is in general non-connected;
therefore once more we replace the more traditional analytic arguments by more algebraic ones.
We prove that the global spaces share with simply connected spaces the property that germs
of homomorphisms always extend to global ones (Th. X.3.5) and look at homomorphisms of
one-dimensional spaces into M : in analogy to Lie-theory we call them one-parameter subspaces
(Section 5). They are geodesics, but not every geodesic is a one-parameter subspace: only the
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geodesics starting in the direction of (generalized) tripotents are one-parameter subspaces. The
twisted para-complexification of a one-parameter subspace leads to a natural homomorphism of
Sl(2,R) into the conformal group of M and to the associated Peirce-decomposition.

Finally, in Section 6 we describe explicitly the pseudo-Riemannian metric, the invariant
measure and the Cartan-involution associated to non-degenerate spaces.

We assume throughout in this chapter that T is a faithful JTS (although parts of the
theory could be developed for arbitrary JTS).

1. Open symmetric orbits in the conformal completion

1.1. The open symmetric orbit associated to a JTS. Let T be a faithful JTS with
conformal group Co(T ), conformal completion V c = Co(T )/P and Θ the canonical involution
of Co(T ). We are interested in the orbit M0 of the base point 0 = 0V under the identity
component G = Co(T )Θ

o of the fixed point group of Θ,

M0 := G.0 ⊂ V c.

Proposition X.1.1. The orbit M0 is open in V c , and it is a symmetric space with twist
given by T . In Jordan coordinates the symmetry s0 is described by − idV . As a homogeneous
symmetric space, M0 is isomorphic to the zero-component of the space Co(T )Θ/Str(T )Θ .

Proof. The Lie algebra of G is g = co(T )Θ . It is stable under the involutive automorphism
(− idV )∗ , and the corresponding decomposition is

g = Der(T )⊕ q,

where q is as in Th. VII.2.4 (3). Therefore the evaluation map T0M0
∼= q → T0(V c) = V ,

X 7→ X(0) is surjective, and M0 is open in V c . Since Θ and − idV commute, the group G is
stable under conjugation by − idV . The stabilizer H of the origin 0 in Co(T )Θ is a subgroup
of P which is stable under conjugation by − idV . It follows that H is a linear group; since
it is Θ-stable, it is a subgroup of Str(T )Θ . On the other hand, Str(T )Θ stabilizes the origin;
therefore M0 is the zero-component of Co(T )Θ/Str(T )Θ . The symmetry s0 is now calculated
as s0(g.0) = ((− id)∗g)(0) = −g(0).

Since Str(T )Θ = Aut(T ), it follows that T = T0 is Str(T )Θ -invariant and thus extends to
a G-invariant tensor field on M0 . Moreover, T0 is by construction a Jordan-extension of R0 ,
and thus T is a Jordan-extension of R .

Definition X.1.2. The orbit M0 is called the open symmetric orbit associated to T .

Remark. If T is not faithful, we may define G ⊂ Co(T ) to be the analytic subgroup with Lie
algebra g = Der(T ) ⊕ q ⊂ co(T ), and M0 := G.0 = G/H still is an open symmetric orbit.
However, since H is in general not connected, we cannot assure that H ⊂ Aut(T ).

1.2. Modifications of the open symmetric orbit. Let α be an element of the structure
group of T with Θ(α) = α−1 , and denote by α∗ the conjugation by α in Co(T ). Then Θα∗ is
an involution of Co(T ): in fact,

(Θα∗)2 = Θα∗Θα∗ = ΘΘ(Θ(α))∗α∗ = ΘΘα−1
∗ α∗ = idCo(T ) .

We denote by G(α) := (Co(T )Θα∗)o the identity component of the corresponding fixed point
group.
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Proposition X.1.3. The orbit M (α)
0 := G(α).0 is open in V c ; it is the open symmetric orbit

associated to the JTS
T (α)(u, v, w) = T (u, αv, w).

The spaces M (α)
0 and M

(−α)
0 are c-dual symmetric spaces.

Proof. The Lie algebra of G(α) is g(α) = co(T )Θα∗ . It is stable under (− id)∗ ; the corre-
sponding decomposition is

g(α) = h(α) ⊕ q(α)

with h(α) = str(T )Θα∗ . From the formula (cf. Prop. VII.2.7)

Θα∗(v + pw) = Θ(αv + pα]w) = −α−1w − pαv.

it follows that
q(α) = {v − pαv| v ∈ V }.

Thus the evaluation map q(α) → To(V c) = V , X 7→ X(0) is surjective, and as in the proof of
Prop. X.1.1 it follows that M

(α)
0 is an open orbit in V c having the structure of a symmetric

space with geodesic symmetry − idV at the origin.
It remains to be shown that T (α) is a Jordan-extension of the Lie triple product R(α) of

the LTS q(α) . In order to prove this, we denote by R the curvature corresponding to q(α) and
calculate

R(u, v)w = −[[u− pαu,v − pαv],w − pαw]0
= −[(T (v, αu)− T (u, αv)),w − pαw]0
= −T (u, αv, w) + T (v, αu,w) = Tα(v, u, w)− Tα(u, v, w),

thus T (α) is a Jordan-extension of the LTS q(α) .
Finally, since T (−α) = −T (α) and R−T = −RT , the Lie triple product of q(α) is isomorphic

to the negative of the one in q(−α) , and this means precisely that the two are c-dual.

In particular, the proposition shows that both M0 = M
(idV )
0 and its c-dual space M (− idV )

0

have a global realization on V c . This is the global version of the local Borel-imbedding (Prop.
VII.2.6; there q(− idV ) was denoted by q̂). The more general statement given here means that
all para-real forms of the para-Hermitian complexification MphC have a global realization on V c

(cf. Section IV.2). We illustrate this situation by two important examples (more examples will
be given in Section XI.5):

Example X.1.4. (The general linear group) We consider the JTS on V = M(n,R) given by
T (X,Y, Z) = XY Z+ZY X . The identity component of the conformal group is P Gl(2n,R)o , and
Θ is given by conjugating with the matrix F =

(
0
1n

1n
0

)
which corresponds to the Jordan inverse

j(X) = X−1 (cf. Section VIII.4.1). The automorphism (− id)∗ is given by conjugating with the
matrix In,n . Introducing a base change by the real Cayley transform R (Eqn. (I.6.6)), these
two matrices are exchanged, and we see that the identity component G of Co(T )Θ is isomorphic
to P(Gl(n,R) × Gl(n,R))o and its subgroup G(− id)∗ is isomorphic to P(Gl(n,R))o , diagonally
imbedded. It follows that

Mo
∼= P(Gl(n,R)o ×Gl(n,R)o)/P Gl(n,R)o ∼= Gl(n,R)o

is the (identity component of) the general linear group.
The c-dual space is obtained by replacing Θ by (In,n)∗Θ = (In,nF )∗ = J∗ , i.e. by

conjugating with the matrix J . The group fixed under this automorphism is Gl(n,C), and
we get the c-dual space M

(− id)
0

∼= Gl(n,C)/Gl(n,R) of M0 = Gl(n,R)o . There are several
other modifications M

(α)
0 of the space M = Gl(n,R) (cf. Thm. XI.5.2). For instance, the

automorphism α(X) = −Xt of M(n,R) leads to the Grassmannian Grn,2n(R) (which is equal
to V c ) to be discussed in the next example.
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Example X.1.5. (Grassmannians.) We consider the JTS given on V = M(p, q; R) by
T (X,Y, Z) = −(XY tZ+ZY tX). The identity component of the conformal group is P Gl(n,R)o
(n = p+q ), and Θ is given by Θ(g) = (gt)−1 since the differential of Θ sends

(
0
0
X
0

)
to
(

0
−Xt

0
0

)
as required. Thus G = O(n)o . The automorphism (− id)∗ is given by conjugating with the
matrix Ip,q . It follows that

M0
∼= O(p+ q)/(O(p)×O(q))

is isomorphic to the real Grassmannian Grp,p+q(R). The c-dual space M (− id) is obtained by
replacing Θ by g 7→ Ip,q(gt)−1Ip,q , and one obtains the space O(p, q)/(O(p)×O(q)).

2. Harish-Chandra realization

Theorem X.2.1. Let T be a faithful JTS, Θ the associated involution of the conformal group
and G = Co(T )Θ

o .
(i) The set

M = {h.0|h ∈ Co(T ),det(dΘ(h)−1h(0)) 6= 0} ⊂ V c

is the union of open G-orbits in V c . More precisely: the connected component M0 is
the open symmetric orbit defined in the preceding section, and for arbitrary x = h.0 ∈ M
(det(dΘ(h)−1h.0(0)) 6= 0), the connected component Mx of x is a homogeneous symmetric
space, isomorphic to the modification M

(α)
0 of M0 with

α = Θ(tΘ(h)−1h.0)h−1Θ(h)tΘ(h)−1h.0.

The space M is a symmetric space with twist.
(ii) In Jordan coordinates, M is given by

M ∩ V = {x ∈ V | detB(x, x) 6= 0},

and if x ∈ V , then the connected component Mx is isomorphic to M
(B(x,x)−1)
0 .

Proof. (i) The condition det(dΘ(h)−1h(0)) 6= 0 means that Θ(h)−1h(0) ∈ V (Prop. VIII.3.4).
This condition is satisfied for h ∈ Co(T ) if and only if it is satisfied for hp with p ∈ P , and thus
M is well-defined.

The set M is Co(T )Θ -invariant: replacing h by gh with Θ(g) = g does not affect the
condition defining M . It follows that every open G-orbit is contained in M because M , being
defined by algebraic equations, is open dense in V c .

Let us prove that conversely every point of M belongs to an open G-orbit: assume x = h.0
with det(dΘ(h)−1h(0)) 6= 0. Then the element

g := Θ(h)tΘ(h)−1h.0 ∈ Co(T )

is well-defined. It satisfies the conditions g.0 = h.0 = x , Θ(g).0 = h.0 = x . We apply g−1 to
the orbit G.x :

g−1(G.x) = Co(T )g
−1
∗ ◦Θ◦g∗
o .0 = Co(T )Θ◦(Θ(g)−1)∗◦g∗

o .0.

Consider the element

Θ(g)−1g = Θ(tΘ(h)−1h.0)h−1Θ(h)tΘ(h)−1h.0 = α.
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It satisfies the conditions α(0) = Θ(g)−1.x = 0, i.e. α ∈ P , and Θ(α) = g−1Θ(g) = α−1 ,
whence α ∈ Θ(P ). Together this implies α ∈ Str(T ). Now the property Θ(α) = α−1 means
that α satisfies the assumption of Prop. X.1.2. It follows that

g−1(G.x) = Co(T )Θ◦α∗
o .0

is the modified space M
(α)
0 which is open in V c by Prop. X.1.2. Moreover, all connected

components of M are symmetric spaces with twist and thus M also is one.
(ii) According to part (i), the point x = tx.0 (x ∈ V ) belongs to M if and only if

det(dΘ(tx)−1tx(0)) 6= 0. By Prop. VIII.2.5, this is equivalent to detB(x, x) 6= 0, proving the
description of M in Jordan coordinates. Finally, if h = tx and g = txΘ(tΘ(tx)−1x), then

according to Prop. VIII.2.7 we have α = Θ(g)−1g = B(x, x)−1 ; thus G.x ∼= M
(B(x,x)−1)
0 .

Definition X.2.2. The symmetric space with twist M defined in the preceding theorem is
called the global space associated to the faithful JTS T , and the set M ∩ V is called the affine
part of M .

The reader may have remarked that in Section VIII.3 we have proved a very similar result:
recall from Th. VIII.3.7 the global polarized space

X = {(g.0, h.0) ∈ V c ×W c| g, h ∈ Co(T ),det(dh−1g(0)) 6= 0}
∼= Co(T )/Str(T )

and its interpretation as the set of finite points. We will see that M is a para-real form of X :
since T is faithful, the groups P and P ′ are related via P ′ = Θ(P ), and the map

V c →W c, g.0V 7→ Θ(g).0W

is an equivariant bijection.

Lemma X.2.3. The map τ : V c ×W c → V c ×W c , (g.0, h.0) 7→ (Θ(h).0,Θ(g).0) defines by
restriction a para-conjugation of X .
Proof. From the definition of the action of Co(T ) on V c × V c it follows that τ(g.(x, y)) =
Θ(g).τ((x, y)), i.e. τ is equivariant and thus an automorphism. It is clearly involutive and
exchanges the eigenspaces of the twisted polarization. Therefore it is a para-conjugation.

From now on we will identify W c with the space V c , equipped with the action of g ∈ Co(T )
by g.w = (Θ(g))(w). Then τ((v, w)) = (w, v) is just the automorphism exchanging the two
factors, and its fixed point space is the diagonal. We have proved:

Proposition X.2.4. The space Xτ and the global space M are isomorphic:

Xτ = {(x, x) ∈ V c ×W c|x ∈M}

The space X ∼= Co(T )/Str(T ) is a global para-complexification of the global space M .

This realization of M explains the definition of the element h ∈ Co(T ) in the proof of Th.
X.2.1: it is defined by the condition (x, x) = h.(0, 0), and in this way we have used that X is
homogeneous under Co(T ). In contrast, the space M is in general neither homogeneous under
G nor under Co(T )Θ . Therefore one can often prove algebraic relations for M by proving them
for X , using transitivity of the conformal group there, and then restrict to M (see Section 3).

Description in terms of line bundles. Recall from Section VIII.3 that we have described
the “hyperplanes at infinity” in terms of sections of line bundles. The same can be done for the
complement of M , which in a sense is the analog of a projective quadric. (In the case where
V c = RPn is the ordinary real projective space, this interpretation coincides indeed with the
classical one – see Ex. X.2.8 below.)
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Lemma X.2.5. The formula S(g) := dΘ(g)−1g(0) defines a Co(T )Θ -invariant element of the
representation indCo(T )

P π induced from

π : P → End(V ), p 7→ (X 7→ Dp(0) ◦X ◦Θ(Dp(0))−1).

The affine picture of the corresponding section of the vector bundle Co(T )×P Hom(W,V ) (where
Hom(W,V ) is the representation space of π ) is given by

S(tx) = B(x, x).

Proof. Recall that dϕ(x) = (Dϕ(x))−1 at points x where ϕ is regular. Let p = hn with
h ∈ Str(T ), n ∈ exp(m+) and assume that S(g) is invertible. Then

S(gp) = (D(Θ(p)−1Θ(g)−1gp)(0))−1

= (Θ(h)−1 D(Θ(g)−1g)(0)h)−1

= h−1 ◦ (D(Θ(g)−1g)(0))−1 ◦Θ(h)

= π(p)−1S(g).

Since the set of points where S is invertible is open dense in Co(T ), the equation just proved
holds by continuity for arbitrary g . This proves that S is an element of indCo(T )

P π . Next, for all
h ∈ G = Co(T )Θ ,

S(hg) = dΘ(hg)−1hg(0) = dΘ(g)−1g(0) = S(g),

proving the invariance of S . The formula for S(tx) follows from Prop. VIII.2.5 (i).

As explained in Appendix VIII.B, the vector bundle Co(T ) ×P Hom(W,V ) can be inter-
preted as the bundle Hom(W, T (V c)) (where W is structure bundle, induced from the repre-
sentation p 7→ Θ(Dp(0)). The section S of the bundle Hom(W, TM0) over M0 will be called
the inverse structure tensor because for all p ∈M0 , the isomorphism Sp : Wp → TpM0 is inverse
to the isomorphism TpM0 →Wp given by the structure tensor.

Corollary X.2.6. The global space M is the complement of the zero-set of the section
s := det ◦S of the line bundle ΛnW∗ ⊗ ΛnT (V c) .

In the semisimple case, W ∼= T ∗(V c), and then s is a section of the bundle ΛnT (V c) ⊗
ΛnT (V c) (square of the dual of the canonical bundle; cf. Section 6). – Similarly to Prop.
VIII.3.4, one can also describe the translates of M :

h−1.M = {x ∈ V c|x = g.0,det(dΘ(hg)−1hg(0)) 6= 0},

and the affine picture of this set is given by the equation det(dΘ(tx)−1Θ(h)−1htx(0)) 6= 0. The
most important special case of this formula arises when there exists a Cayley transform h leading
to tube realizations of M ; see Section XI.2. In general, however, there is no canonical element
h ∈ Co(T ) sending the origin 0 to the boundary of M .

Example X.2.7. (The general linear group.) We consider the JTS on V = M(n,R) given by
T (X,Y, Z) = XY Z + ZY X . Then P (X)Y = XYX , and

B(X,Y )Z = Z − (XY Z + ZY X) +XY Z Y X = (1−XY )Z(1− Y X).

Note that detB(X,Y ) = det((1−XY )(1− Y X))n and detB(X,X) = det((1−X)(1 +X))2n .
The global space M associated to T is given in Jordan coordinates by the condition

M ∩ V = {X ∈M(n,R)| Det((1−X)(1 +X)) 6= 0},
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i.e. by the operators X having neither 1 nor −1 as eigenvalue. Thus the graph W = ΓX is
characterized by the condition that its intersection with the diagonal and with the antidiagonal
in Rn ⊕ Rn is zero. Applying the real Cayley transform R (i.e. a rotation by 45 degree), the
transformed graphs R(W ) are characterized by the fact that the intersections with the axes of
the product Rn⊕Rn are zero. This in turn means precisely that R(W ) belongs to an invertible
linear operator. Thus R(M) ⊂ V c is the general linear group, and M ∼= Gl(n,R).

The twisted para-complexification Co(T )/ Str(T ) ∼= Gl(2n,R)/(Gl(n,R) × Gl(n,R)) of
Gl(n,R) is given by

MphC ∩ (V × V ) = {(X,Y ) ∈ V × V | det((1−XY )(1− Y X)) 6= 0}.

In the case n = 1 the space MphC = Gl(2,R)/(Gl(1,R) × Gl(1,R)) is isomorphic to the
one-sheeted hyperboloid Sl(2,R)/{dia(t, t−1)|t 6= 0} , which in Jordan coordinates V ×V = R×R
is described by the condition B(x, y) = (1− xy)2 6= 0, i.e. y 6= 1

x : The condition detB(x, x) =
(1− x2)2 = 0 defines two points on R and thus M0 is an interval M0 =]− 1, 1[. It corresponds
to the segment of the diagonal cut off by the hyperbola B(x, y) = 0.

Example X.2.8. (Grassmannians.) We consider the JTS on V = M(p, q; R) given by
T (X,Y, Z) = −(XY tZ + ZY tX). Then

B(X,Y )Z = (1 +XY t)Z(1 + Y tX).

Note that detB(X,X) = det(1 + XXt)2n . Since XXt has only real non-negative eigenvalues,
we have detB(X,X) 6= 0 for all X . Therefore M ∩ V = V for the global space M associated
to T . In fact, this could have been deduced already from Example X.1.5, where we have seen
that M0 = Grp,p+q(R) = V c .

The twisted para-complexification Gl(p+ q,R)/(Gl(p,R)×Gl(q,R)) of M is described in
Jordan coordinates by

MphC ∩ (V × V ) = {(X,Y ) ∈ V × V | det((1 +XY t)(1 + Y tX)) 6= 0}.

In the case p = q = 1 the space MphC = Gl(2,R)/(Gl(1,R) × Gl(1,R)) is isomorphic to the
one-sheeted hyperboloid Sl(2,R)/{dia(t, t−1)|t 6= 0} , which in Jordan coordinates V ×V = R×R
is described by the condition B(x, y) = (1+xy)2 6= 0, i.e. y 6= − 1

x . The situation is c-dual to the
one of Gl(1,R) described in the preceding example. The equation detB(x, x) = (1 + x2)2 = 0
has no real solution, and thus M ∩ R is the whole real axis, corresponding to the fact that the
diagonal has empty intersection with the hyperbola B(x, y) = 0.

For (p, q) = (1, n+ 1), M is the real projective space RPn . The condition detB(x, x) = 0
is then equivalent to

xtx = −1

which has no real solution. Similarly one can realize the quadric given by xtIp,qx = −1 as the
boundary of a suitably modified space M (α) . Thus all non-degenerate projective quadrics appear
as boundaries of global spaces M (α) ⊂ RPn .

Note that, according to Lemma IV.1.4, the spaces M = Gl(1,R) and M = RP1 are (up to
isomorphism) the only one-dimensional symmetric spaces with twist given by a faithful JTS; in
this sense the preceding examples already describe the one-dimensional situation completely.
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3. Jordan theoretic analog of the Campbell-Hausdorff formula

Our aim in this section is to show that the global space M with its atlas given by Jordan
coordinates is a real algebraic symmetric space in the sense of Def. I.4.4 – that is, Jordan
coordinates are algebraic, and the multiplication map µ : M × M → M , (x, y) 7→ sx(y) is
rational.

Proposition X.3.1. Jordan coordinates provide an algebraic atlas of the global space M .
The transition transformation from Jordan coordinates around 0 to Jordan coordinates around
x ∈M for x = g.0 with g ∈ Co(T ) is, up to an element of Str(T ) , given by

Θ(g)tΘ(g)−1g(0).

Proof. If x ∈ M0 , x = g.0 with g ∈ G , then it is clear that the transition from Jordan
coordinates around 0 to Jordan coordinates around x is simply given by g = Θ(g). In the
general case, recall from the proof of Th. X.2.1 that for h = Θ(g)tΘ(g)−1g(0) ,

h−1(Mx) = M
(α)
0

with α as in Th. X.2.1. It is easily seen that the transition transformation from Jordan
coordinates of M0 to those of M (α)

0 is simply α . Therefore hα is the transition transformation
from Jordan coordinates of M0 to those of Mx = G.x .

Theorem X.3.2. The global space M associated to a faithful JTS T with its atlas given by
Jordan coordinates around each point is an algebraic symmetric space in the sense of Def. I.4.4.
In Jordan coordinates, its quadratic map Q is given for x ∈M ∩ V by

Q(x) = tx Θ(t2Θ(tx)−1x) tx
= Θ(tx) t2Θ(tx)−1x Θ(tx)

= t2Θ(tx)x B
(
2Θ(tx)x,−x

)−1 Θ(t2Θ(tx)x);

its multiplication map is given by

µ(x, y) = (Q(x))(−y)

= x+B
(
x− y,−2Θ(tx)−1x

)−1 · (x− y + 2P (x− y)Θ(tx)−1x),

and the squaring by

x2 = Q(x)0 = 2Θ(tx)x = 2(id +
1
2
P (x))−1x.

Proof. We prove the formulas for Q and µ first for the polarized space X and then restrict
to M . Let (x, y) = (g.0, h.0) ∈ V c ×W c . If (x, y) ∈ X , then Θ(g)−1h.0 ∈ V , and

(x, y) = g.(0,Θ(g)−1h.0) = g.(0, tΘ(g)−1h.0.0) = gΘ(tΘ(g)−1h.0).(0, 0).

Since Co(T ) acts by automorphisms on the symmetric space X , the geodesic symmetry w.r.t.
the point (x, y) is given by

s(x,y) = gΘ(tΘ(g)−1h.0) ◦ s(0,0) ◦ (gΘ(tΘ(g)−1h.0))−1 (3.1)
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with s(0,0) = − idV×W . Written out explicitly as an action on V c × V c , this formula reads

s(x,y)(v, w) = ((gΘ(tΘ(g)−1h.0) ◦ (− id) ◦ (gΘ(tΘ(g)−1h.0))−1)(v),

(Θ(g)tΘ(g)−1h.0 ◦ (− id) ◦ (Θ(g)tΘ(g)−1h.0)−1)(w)).
(3.2)

If (x, y) ∈ X ∩ (V ×W ), then we let g = tx , h = ty and obtain

s(x,y)(v, w) = txΘ(tΘ(t−x(y)) ◦ (− id) ◦ (txΘ(tΘ(t−x(y)))−1 . (v, w). (3.3)

This proves that µ((x, y), (v, w)) is given by a rational formula. The multiplication map of M
is simply obtained by restricting the one of X to the diagonal (Prop. X.2.4). Hence for x = g.0
it is given by

µ(x, y) = gΘ(tΘ(g)−1g.0) ◦ (− id) ◦ (gΘ(tΘ(g)−1g.0))−1.y, (3.4)

and therefore
Q(x) = sxs0 = gΘ(tΘ(g)−1g.0) ◦ (− id)∗(gΘ(tΘ(g)−1g.0))−1, (3.5)

where (− id)∗ is conjugation by − id. If x ∈ V , then we may choose g = tx and obtain from
(3.5), taking into account of relations (− id) ◦ tz ◦ (− id) = t−z , (− id) ◦Θ(tz) ◦ (− id) = Θ(t−z),

Q(x) = tx Θ(tΘ(tx)−1x)2 tx

proving the first formula for Q(x). In order to deduce the second formula, note that Q(x) ∈ G ⊂
Co(T )Θ for all x in some neighborhood of the origin. For such x , Q(x) = Θ(Q(x)), and thus
the second formula holds. Now both expressions, being rational, must coincide for all x ∈M ∩V
(and it follows that Θ(Q(x)) = Q(x) for all x ∈ M ∩ V ). The third formula is deduced from
the second one using Prop. VIII.2.7: the first term in the “Harish-Chandra decomposition”
Q(x) = tQ(x).0(DQ(x))(0)Θ(tQ(x).0) (Eqn. VIII.(2.2), observing that Θ(Q(x)) = Q(x)) is given
by

Q(x).0 = Θ(tx)2Θ(tx)−1x = 2Θ(t2x)Θ(tx)−1x = 2Θ(tx)x. (3.6)

Now apply Prop. VIII.2.7 to the second expression for Q(x), and the third one follows. The
formula for µ is obtained by writing out the first formula for Q(x)(−y) = sxs0(−y) = sx(y)
explicitly, using the formula Θ(ta)−1b = B(b, a)−1(b− P (b)a) for the quasi-inverse.

Finally, we prove the formulas for the squaring. The formula x2 = 2Θ(tx)x has been proved
above (Eqn. (3.6)). Explicitly, it reads

x2 = 2Θ(tx)x = 2(id +T (x, x) + P (x)2)−1(id +P (x))x. (3.7)

In Appendix A to this chapter, Cor. X.A.3, it is shown that the operators

(id +P (x))2 : 〈x〉 → 〈x〉 and id +T (x, x) + P (x)2 : 〈x〉 → 〈x〉

are well-defined and coincide, where 〈x〉 is the linear span of all P (x)jx = 1
2j T (x, x)jx , j ∈ N

(they do in general not coincide on all of V ). Therefore, if they are invertible, also their inverses
coincide. Applying this observation to (3.7) yields the formula x2 = 2(id +P (x))−1x . (In the
same way one sees that

Θ(tx)−1x = (id−P (x))−1x,

making some of the formulas more explicit.)

Since the formulas from the preceding theorem are rational, we have not specified in each
case the domain of definition. In particular, one notes that x2 is finite (i.e. belongs to V ) iff
Θ(tx)x ∈ V , i.e. iff detB(x,−x) 6= 0. Since B(x,−y) is the Bergman operator belonging to
T (− id) , this means that x belongs to the (“Borel-imbedded”) c-dual space of M .
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Corollary X.3.3. With Q and µ as in the preceding theorem, the rational identities

Q(Q(x)y) = Q(x)Q(y)Q(x), Q(xn) = Q(x)n, µ(xn, xm) = x2n−m

hold on V .

Proof. These identities hold by Lemma I.5.7 for all x, y ∈ M for which the expressions are
defined, and by rationality of both sides, they hold as rational identities on all of V .

The identities from the preceding corollary turn out to be very complicated if one wishes to
write them explicitly in terms of the JTS T and its Bergman-operator. In order to get a slight
impression we give here some rough Taylor expansions of the rational mappings defined in the
theorem. Using that (1−A)−1 =

∑∞
k=0A

k for all linear operators A in a neighborhood of zero,
we get the expansions

B(x, y)−1 =
∑
k

(T (x, y)− P (x)P (y))k

∼ id +T (x, y) + T (x, y)2 − P (x)P (y)

B(x, x)−1 ∼ id +T (x, x) + T (x, x)2

B(x,−x)−1 ∼ id−T (x, x) + T (x, x)2

Θ(ty)−1x ∼ (id +T (x, y))(x− P (x)y)

∼ x+ P (x)y − P (x)y = x+
1
2
P (x)y

µ(x, y) ∼ x+ (id +T (x− y,−2Θ(tx)−1x))(x− y + 2P (x− y)x)
∼ x+ (id−2T (x− y, x))(x− y + 2P (x− y)x)
∼ 2x− y − 2P (x− y)x

Q(x)y ∼ 2x+ y − 2P (x+ y)x

x2 = 2Θ(tx)x ∼ 2x− 2P (x)x.

3.2. Integrated version of Jordan structures: global formulas. Not only the
symmetric space structure of M , but also the integrated Jordan structure of M from Ch. VI
is given by a global and rational formula. Recall that the flow of the Euler vector field E(x,y)

associated to a point (x, y) ∈ X defines maps

rx,y : V c ×W c → V c ×W c, (v, w) 7→ (r+
x,yv, r

−
y,xw)

for r ∈ R∗ (cf. Section VI.2). Since E(0,0) is the usual Euler operator, we have r0,0 =
r idV ×r idW . For a general point (x, y) = (g.0, h.0) ∈ X , we deduce analogously to the proof of
Eqn. (3.1):

rx,y = gΘ(tΘ(g)−1h.0) ◦ r0,0 ◦ (gΘ(tΘ(g)−1h.0))−1.

If (x, y) ∈ X ∩ (V ×W ), then we get similarly to (3.3)

rx,y = txΘ(tΘ(tx)−1y) ◦ r0,0 ◦ (txΘ(tΘ(tx)−1y))−1.

Note that this formula is rational. If one wishes, one can put it in another form by using the
relations r idV ◦tz ◦ r−1 idV = trz , r idV ◦Θ(tz) ◦ r−1 idV = Θ(tr−1z).

3.3. Functorial properties. The next theorem states that the category of (faithful)
Jordan triple systems is equivalent to the category of the associated global spaces. We know
already (Th. III.4.7) that a similar equivalence of categories holds on the level of germs. Thus
the main step is to prove that local homomorphisms always extend globally.
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Theorem X.3.4. Let (T, V ), (T ′, V ′) be faithful Jordan triple systems and M,M ′ the asso-
ciated global spaces with multiplication maps µ, µ′ .

(i) A germ ϕ0 of a homomorphism of the pointed symmetric spaces with twist (M, 0) , (M ′, 0′)
has a unique extension to a global homomorphism ϕ̃ : M →M ′ . It is represented in Jordan
coordinates by a linear map.

(ii) If ϕ̃ is as in (i), then it has a unique extension to a continuous (in fact, algebraic) map
V c → (V ′)c .

(iii) If ϕ̃ is as in (i), then it has a unique extension to a global homomorphism ϕ̃phC : MphC →
M ′phC of the global twisted paracomplexifications.

Proof. (i) Let the germ ϕ0 be given by the JTS-homomorphism ϕ : V → V ′ (cf. Th. III.4.7).
We expand µ(x, y) in a Taylor series containing only multilinear terms defined by the JTS

T . In fact, all we need for this is the expansion (already used after Cor. X.3.3 for the Taylor
expansions)

B(u, v)−1 =
∞∑
k=0

(T (u, v)− P (u)P (v))k

which holds for (u, v) in some neighborhood of the origin in V ×W . By usual manipulations of
absolutely convergent power series we then get the desired expansion for the rational map µ(x, y)
from Th. X.3.2.

Since ϕ is linear and compatible with T, T ′ , it follows that the equality

µ′(ϕx, ϕy) = ϕµ(x, y)

holds for all x, y in some neighborhood of the origin. Since both sides depend rationally on
x, y , they coincide whenever x, y, µ(x, y) ∈ M ∩ V . Thus, letting N := M ∩ V , the map
ϕ|N : N → V ′ extends the germ ϕ0 . We are going to show that ϕ|N extends to a global
continuous homomorphism M → M ′ . (Since N is open dense in M , there is at most one such
extension.)

To this end let z ∈M \N ; choose Jordan coordinates around z . Since N is dense in M ,
the intersection of their range with N contains a point x . Again we choose Jordan coordinates
around x . Then ϕ is defined at x and extends again by a linear map in these new coordinates.
In particular, it has a continuous extension to an open neighborhood of z , and this extension is
independent of the choice of x because there is at most one continuous extension. By continuity
it now follows that the global map ϕ thus defined is a homomorphism of symmetric spaces.

(ii) By density of M in V c , the atlas given by Jordan coordinates around points in M
extends to a rational atlas of V c . In each of these charts ϕ̃ is linear and therefore extends to a
global map V c → (V ′)c .

(iii) This follows by applying part (i) to the twisted complexification MphC of M .

Now we take a closer look at the case that ϕ is an inclusion of Jordan triple systems.

Proposition X.3.5. Let (V, T ) be a sub-JTS of the faithful JTS (V ′, T ′) .
(i) The subspace MT ⊂M ′ generated (as a symmetric space) by all x ∈ (M ′ ∩ V ) is closed in

M ′ .
(ii) The inclusion V ⊂ V ′ induces an isomorphism ι : M →MT .

Proof. (i) Because T is a sub-JTS of T ′ , the rational formula for µ′ from Th. X.3.2 (resp.
its Taylor-expansion used in the preceding proof) show that there is a neighborhood U of the
origin in M ′ such that MT ∩ U = M ′ ∩ V ∩ U . Since we can choose Jordan coordinates around
any point of MT , this holds for all points of MT and therefore MT is closed.
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(ii) By the preceding theorem, the inclusion induces a homomorphism ι : M → M ′ . Its
image has to be contained in MT . It follows that ι : M → MT is a covering (in fact, using
Prop. I.3.5. it is proved as for Lie groups that a LTS-isomorphism, if it extends to a global
homomorphism of associated connected spaces, induces a covering). We have to show that in
our situation the covering is trivial with fibers containing one point each. Now, let x ∈M ′ ∩ V ,
U a neighborhood of x in M ′ ∩ V such that ι−1(U) is a disjoint union of open sets Ui each
homeomorphic to U . Then each Ui intersects V , and it follows immediately that Ui = U . Since
every connected component of M ′ intersects V ′ , it follows now that the covering ι is injective.

The spaces MT belonging to the sub-JTS T take the role of the “analytic subgroups”
belonging to a Lie-subalgebra in Lie theory. In contrast to the situation in Lie theory, they
are always closed, as shows the proposition. The important case that ϕ is the inclusion of a
one-dimensional JTS leads to the definition of one-parameter subspaces and will be discussed in
more detail in Section 5.

Complexifications. Next we discuss the case in which ϕ is the inclusion of a real form in
a complex JTS. Let T be a real JTS on a real vector space V , let TC be its C -trilinear extension
to a complex JTS on VC (Prop. III.4.6). Recall that RTC is a straight complexification of RT
and R(TC)τ a twisted complexification of RT , where τ is complex conjugation of VC w.r.t. V .

Proposition X.3.6.
(i) The inclusion V = (VC)τ ⊂ VC induces natural inclusions

Co(T ) ⊂ Co(TC), V c ⊂ (VC)c.

The image of the first inclusion is open in Co(TC)τ∗ , and the image of the second inclusion
is open in ((VC)c)τ .

(ii) The global space MC associated to TC is a global straight complexification of M , and the
global space MhC associated to ThC is a global twisted complexification of M .

Proof. (i) Note that τ , being an automorphism of TC (considered as a real JTS), belongs to
Co(TC). The map

co(TC)τ∗ → co(T ), X 7→ X|V

is an isomorphism; the inverse is given by assigning to X ∈ co(T ) its C-polynomial continuation
XC to VC . It follows that, if we denote for g ∈ Co(T ) by gC its C -rational extension onto VC ,
we obtain an injective map

Co(T )→ Co(TC), g 7→ gC.

From the corresponding situation on the Lie algebra level it follows that the image is open in
Co(TC)τ∗ . (In fact, it is a normal subgroup of index 2 in this group, the corresponding quotient
being {id, τ} .)

We identify Co(T ) with the corresponding subgroup of Co(TC). Then, since the rational
actions on V and on VC are given by the same formulas, the stabilizer of 0V ∈ V c and the
stabilizer of 0VC ∈ (VC)c of the corresponding actions of Co(T ) are the same, and it follows that

V c → (VC)c, gP 7→ gPC

is an injection. The affine picture of this inclusion is just V ⊂ VC . By reasons of dimension, V c

is open in ((VC)c)τ .
(ii) We have to prove that M is a union of connected components of (MC)τ . This follows

from the description of the global space in terms of sections of line bundles (Cor. X.2.6): the
section s̃ describing MC , restricted to V c , is just the square of the section s describing M
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(due to the relation detR(A) = det(A|V )2 , if A is a real endomorphism of the complex vector
space VC ). The same argument works for MC replaced by the space MhC associated to the
modification TphC of TC .

Note finally that MhC is indeed a globally circled space: In Jordan coordinates, multipli-
cation Jo by i in the tangent space To(MhC) = VC as well as its affine extension jo to MhC are
both given by ordinary multiplication by i .

Proposition X.3.7. If T is a real JTS and α an element of the structure variety of T , then
the complexification diagram of the homogeneous symmetric space M

(α)
0 with twist T (α) is given

by
↗ Co(TC)Θα∗/ Str(TC)Θα∗ ↘

Co(T )Θα∗/ Str(TC)Θα∗ → Co(TC)Θα∗τ∗/Str(T )Θα∗τ∗ → Co(TC)/ Str(TC)
↘ Co(T )/ Str(T ) ↗

where Θ is the involution of Co(T ) defined by T .

Proof. Propositions X.1.1 and X.1.3 show that M (α)
0
∼= (Co(T )Θα∗/ Str(T )Θα∗)0 . From Prop.

X.2.4 we know that the twisted para-complexification is given by the bottom line. The top line is
of the form GC/HC if M = G/H and therefore describes the straight complexification. Finally,
comparison with Prop. X.1.3 shows that the middle term is the symmetric space belonging to
the JTS

qhC = {v − pτ(αv)| v ∈ VC}

which corresponds to the JTS T
(α)
hC , and therefore it describes the twisted complexification of

M (α) . Finally, the last term is obtained by a straight complexification of the bottom term.

4. The exponential map

For any symmetric space M , the exponential map Exp : ToM →M w.r.t. the base point
o is defined by Exp(v) = exp(lov).o (cf. Prop. I.5.8). If M is the global space associated to a
faithful JTS T , then M ∩ V is an open neighborhood of the base point 0 ∈ M . As usual, we
identify V with T0M . We let

Vf := {v ∈ V | Exp(v) ∈M ∩ V } = {v ∈ V | det D(exp(l0v)(0)) 6= 0} (4.1)

be the set of points whose image under the exponential map is “finite”. The restriction of the
exponential map to this set,

Exp : T0M = V ⊃ Vf → (M ∩ V ) ⊂ V, (4.2)

is a smooth map V ⊃ Vf → V such that Exp(0) = 0 and, moreover, Exp(−v) = −Exp(v)
since − idV is the geodesic symmetry w.r.t. 0. Furthermore, it will commute with the stabilizer
group Aut(T ) because elements of this group are linear, i.e. are identified with their differential
at the base point, and the general relation Exp ◦Dh(0) = h ◦Exp holds for all elements h of the
isotropy group H . In this section we give an explicit formula for Exp.

Trigonometric and hyperbolic functions on a JTS. Recall the notation P (v) =
1
2T (v, ·, v) and define the following power series

sinh(v) := sinhT (v) :=
∞∑
k=0

1
(2k + 1)!

(P (v))kv, (4.3)
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cosh(v) := coshT (v) :=
∞∑
k=0

1
(2k)!

(P (v))k, (4.4)

(In the following we drop the index T if there is no risk of confusion.) The power series defining
sinh and cosh converge absolutely on the whole vector space V , and since the analytic function
v 7→ Det(cosh v) does not vanish at the origin, it is non-zero almost everywhere, and thus the
function

tanh(v) := tanhT (v) := cosh(v)−1 sinh(v) (4.5)

is defined almost everywhere. The usual manipulations of power series yield the expansion of
tanh(v) in the power series of the usual hyperbolic tangent,

tanh(v) =
∞∑
k=0

4k(4k − 1)
B2k

(2k)!
(P (v))kv = v − 1

3
P (v)v +

2
15

(P (v))2v + . . . (4.6)

(where B2k are the Bernoulli-numbers), holding for v in some neighborhood of the origin, and
of its local inverse

artanh(v) =
∞∑
k=0

1
2k + 1

(P (v))kv. (4.7)

Moreover, the relations

sinh(2v) = 2 cosh(v) · sinh(v), cosh(2v) = 2 cosh(v)2 − 1 (4.8)

hold for all v ∈ V ; they are identities of power series which are proved using the corresponding
identities from the real or complex case. Note that for the JTS R with T (x, y, z) = 2xyz we have
P (x)v = x2v , and thus sinhT etc. are just the usual hyperbolic functions. However, for the c-
dual JTS R with T (x, y, z) = −2xyz , sinhT (v) = sin(v) is the usual sine, and tanhT (v) = tan(v)
is the usual tangent. In particular, it becomes singular for v = π

2 .

Theorem X.4.1. The exponential map of the global space M associated to a JTS T is given
by Exp(v) = tanhT (v) for all v ∈ Vf .

Proof. We use the notation lv := l0(v) = v − pv ∈ q and l̂w := l̂o(w) = w + pw ∈ q̂ . Then
(lv)(0) = v and, for all v ∈ Vf ,

Exp(v) = exp(lv).0 = dexp(lv)(0)−1 · nexp(lv)(0),

where
nexp(lv)(p) = ((exp(lv))∗E)(p) = (ead(lv)E)(p)

and
(dexp(lv)(p)) · w = (exp(lv)∗w)(p) = (ead(lv)w)(p).

The theorem will be deduced from the following proposition:

Proposition X.4.2. For all v ∈ V and w belonging to the linear span 〈v〉 of the P (v)jv ,
j ∈ N ,

nexp(lv)(0) =
1
2

sinh(2v) = cosh(v) · sinh(v),

(dexp(lv)(0)) · w = cosh(v)2 · w.
Proof. In order to determine the series

nexp(lv)(0) = (ead(lv)E)(0) =
∑
k

1
k!

(ad(−lv)kE)(0)
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we note first that [lv, E] = l̂v . Next we prove that for all u ∈ V and w ∈ 〈u〉 ,

ad(lu)2 l̂w = l̂(P (2u)w). (4.9)

In fact, from the relation [q, [q, q̂]] ⊂ q̂ (Prop. VII.1.4) we see that the left hand side is contained
in q̂ . Since elements of q̂ are uniquely determined by their value at the base point, we only need
to verify that

[lu, [lu, l̂w]](0) = 2T (u,w, u).

This is proved using the relation [x,py] = T (x, y) (Eqn (VII.2.1)):

[lu, [lu, l̂w]](0) = [u− pu, [lu, l̂w]](0) = [u, [lu, l̂w]](0)

= [lu, l̂w](u)
= [u− pu,pw + w](u)
= T (u,w, u) + T (w, u, u) = P (2u)w.

(For the last equality we need that w ∈ 〈u〉 , cf. Prop. X.A.1.) From (4.9) we get ad(lu)2k l̂w =
l̂(P (2u)kw) and therefore ad(lu)2k+1 l̂w ∈ [q, q̂] ⊂ str(T ), whence (ad(lu)2k+1 l̂w)(0) = 0. Thus
the power series in question equals∑

k

1
k!

(ad(−lv)kE)(0) =
∑
k

1
(2k + 1)!

P (2v)kv

=
1
2

∑
k

1
(2k + 1)!

(P (2v))k2v =
1
2

sinhT (2v).

Together with (4.8) this proves the first part of the proposition. Next we determine

(dexp(lv)(0)) · w = (ead(lv)w)(0) = (
∑
k

1
k!

ad(lv)kw)(0).

We notice first that [lv,w] ∈ str(T ); evaluation at the origin yields zero. Next we claim that

ad(lv)2w =
1
2

ad(lv)2 l̂w. (4.10)

In fact, writing w = 1
2 (lw+ l̂w), we have ad(lv)2w = 1

2 (ad(lv)2lw+ ad(lv)2 l̂w). The first of the
two terms vanishes since ad(lv)2lw ∈ q and

[lv, [lv, lw]](0) = R(v, w, v) = T (v, w, v)− T (w, v, v) = 0

according to Prop. X.A.1 (using our assumption on w ). This proves (4.10). From (4.10) together
with (4.9) it follows that ad(lv)2kw = 1

2 ad(lv)2k l̂w = 1
2 l̂(P (2v)kw). As above one deduces that

(ad(lv)2k+1w)(0) ∈ str(T ).0 = 0. Thus the power series in question is equal to

(
∞∑
k=0

1
k!

ad(lv)kw)(0) = w +
1
2

∞∑
k=1

1
(2k)!

P (2v)kw

=
1
2

(w +
∞∑
k=0

1
(2k)!

P (2v)kw)

=
1
2

(cosh(2v)w + w) = cosh(v)2w,

proving the proposition. It follows that

Exp(v) = dexp(lv)(0)−1 · nexp(lv)(0) = cosh(v)−2 cosh(v) sinh(v) = tanh(v),

proving the theorem.
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Remark X.4.2. Using power associativity and the fact that the ordinary hyperbolic tangent
satisfies the differential equation tanh′ = 1 − tanh2 , one can directly deduce that the curve
α(t) := tanh(tv) is a solution of the differential equation α′(t) = v − P (α(t))v with initial value
α(0) = 0 (cf. [Lo77, Lemma 4.3], or [FK94, p.216] for the special case of tube domains). This
gives another proof of Th. X.4.1 which is of a more “local” nature. Since it does not use the
everywhere converging series sinh and cosh, one then has to discuss convergence questions more
carefully. Moreover, since M∩V and Vf need not be connected, this strategy requires additional
arguments in order to deduce the global result.

Example X.4.3. In the case of the one-dimensional JTS R with T (x, y, z) = 2xyz the function
tanhT is the ordinary hyperbolic tangent. It is a bijection R→]−1, 1[. From the addition formula

tanh(s+ t) =
tanh t+ tanh s

1 + tanh s tanh t

we see that M =]− 1, 1[ is a group isomorphic to R with group multplication

m(x, y) =
x+ y

1 + xy
=
(

1 x
x 1

)
.y.

The multiplication map of M is given by

µ(x, y) = m(m(x, x),−y) =
(

1 x
x 1

)2

.(−y) =
−x2y + 2x− 1
x2 − 2xy + 1

and the powers by

xn+1 =
(

1 x
x 1

)n
.x;

in particular x2 = 2x
1+x2 .

Remark X.4.4. Recall from the proof of Thm. II.2.15 that the exponential map of a quadratic
prehomogeneous symmetric space is given by Exp(v) = exp(L(v)).e =

∑
k
vk

k . Using the real
Cayley transform to be defined in Ch. XI (Def. XI.2.3), this formula is related to the one from
Thm. X.4.1 via the classical relation

(ex − 1)(ex + 1)−1 = tanh(
x

2
).

5. One-parameter subspaces and Peirce-decomposition

Definition X.5.1. A one-parameter subspace of the global space M is a non-trivial homomor-
phism of a real one-dimensional symmetric space M ′ with twist T ′ into M . The one-parameter
subspace is called hyperbolic if T ′(x, y, z) = 2xyz , it is called elliptic if T ′(x, y, z) = −2xyz and
it is called degenerate if T ′ = 0.

In particular, a one-parameter subspace is a homomorphism of symmetric spaces, i.e. a
geodesic. But not every geodesic is a one-parameter subspace.
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Proposition X.5.2. Hyperbolic one-parameter subspaces correspond to sub-JTS of T of the
form Re , where e ∈ V satisfies T (e, e, e) = 2e , elliptic one-parameter subspaces correspond
to sub-JTS Re with T (e, e, e) = −2e , and degenerate ones correspond to sub-JTS Re with
T (e, e, e) = 0 .

Proof. The element e is the image of 1 ∈ R under the injective homomorphism R→ V .

Definition X.5.3. An element e ∈ V with T (e, e, e) = 2e is called a hyperbolic tripotent, an
element with T (e, e, e) = −2e is called an elliptic tripotent and an element with T (e, e, e) = 0 is
called completely degenerate.

Remark X.5.4. An element e which is a hyperbolic tripotent w.r.t. the JTS T is an elliptic
tripotent w.r.t. the JTS T (−)(x, y, z) = −T (x, y, z) and vice versa. Usually in the literature
the notion of “tripotent” corresponds to our “hyperbolic tripotent”. In contrast to the situation
in Lie theory, it is a priori not clear whether one-parameter subspaces exist. If they exist, they
can in general only start in very particular directions, namely those belonging to (hyperbolic or
elliptic) tripotents or to completetely degenerate elements. On the other hand, this situation
excludes pathological situations as the “dense wind” in Lie theory – one-parameter subspaces
are always closed; cf. the remark after Prop. X.3.5.

The twisted para-complexification (which exists by Th. X.3.4 (iii)) of a hyperbolic one-
parameter subspace is a homomorphism

R(+)
phC = H2(R) = Sl(2,R)/{

( t
0

0
t−1

)
| t ∈ R∗} →MphC,

and the twisted para-complexification of an elliptic one-parameter subspace is a homomorphism

R(−)
phC = H2(R) = Sl(2,R)/{

( t
0

0
t−1

)
| t ∈ R∗} →MphC.

Since the group Sl(2,R) is semisimple, it follows from Th. V.1.9 that these homomorphisms are
actually equivariant (on the Lie algebra level). In other words, they correspond to homomor-
phisms

sl(2,R)→ co(T )

which we are going to make explicit. However, as explained in Appendix I.A, we will rather
obtain homomorphisms sl(2,R)op → co(T ), where for a Lie algebra g we denote by gop the
same underlying vector space with the negative of the Lie bracket from g . Let

H :=
(

1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
−1 0

)
(5.1)

be the usual basis of sl(2,R) with commutator relations [H,X] = 2X , [H,Y ] = −2Y , [X,Y ] =
−H in sl(2,R).

Lemma X.5.5.
(i) Let e be a hyperbolic tripotent. Then the map ḟ : sl(2,R)op → co(T ) defined by

H 7→ T (e, e), X 7→ e, Y 7→ pe

is an injective Lie algebra homomorphism. If we define an involution θ = θ(+) on sl(2,R)
by θ(Z) =

(
0
1

1
0

)
Z
(

0
1

1
0

)
, then the relation Θ ◦ ḟ = ḟ ◦ θ holds.



166 Chapter X: Algebraic structures of symmetric spaces with twist

(ii) Let e be an elliptic tripotent. Then the map ḟ : sl(2,R)op → co(T ) defined by

H 7→ T (e, e), X 7→ pe, Y 7→ −e

is an injective Lie algebra homomorphism. If we define an involution θ = θ(−) on sl(2,R)
by θ(Z) =

(
0
−1

1
0

)
Z
(

0
1
−1
0

)
, then the relation Θ ◦ ḟ = ḟ ◦ θ holds.

Proof. (i) The first statement follows from the commutator relations

[e,pe] = T (e, e), [T (e, e), e] = −T(e, e, e) = −2e, [T (e, e),pe] = pT (e,e)e = 2pe,

and the second by verifying that θ(+)(X) = Y , θ(+)(H) = −H and Θ(e) = pe and Θ(T (e, e)) =
−T (e, e). Part (ii) follows by similar calculations, now with T (e, e, e) = −2e .

Having fixed a tripotent e , for simplicity of notation we consider the homomorphism ḟ as
an inclusion sl(2,R)op ⊂ co(T ). Via the adjoint representation, co(T ) can now be considered as
an sl(2,R)op -module.

Proposition X.5.6.
(i) If e is a hyperbolic tripotent, then T (e, e) : V → V is diagonalizable and has at most three

eigenvalues, namely 0, 1 and 2 .
(ii) If e is an elliptic tripotent, then T (e, e) : V → V is diagonalizable and has at most three

eigenvalues, namely 0,−1 and −2 .

Proof. (i) Weyl’s theorem tells us that every finite-dimensional sl(2,R)-module is completely
reducible, and standard sl(2)-theory (cf. e.g. [Hu72, p.31 ff]) that the restrictions adU (H),
adU (X), adU (Y ) to an irreducible submodule U ⊂ co(T ) are represented by the following
matrices 

m 0
m− 2

. . .
0 −m

 ,


0 m 0

0 m− 1

0
. . .

0 0

 ,


0 0
1 0

. . . 0
0 m 0

 .

(Note that in the standard textbooks one assumes that U is a complex representation. After
complexifying and noticing that all eigenvalues turn out to be real, one sees that these results hold
also for real sl(2,R)-modules.) Since adU (Y )3 = (ad(e)|U )3 = 0 and adU (X)3 = (ad(pe)|U )3 =
0, the matrices can at most have size 3 × 3, i.e. only the values m = 0, 1 or 2 can appear.
Summing up, we have a decomposition

co(T ) = co(T )−2 ⊕ co(T )−1 ⊕ co(T )0 ⊕ co(T )1 ⊕ co(T )2

into eigenspaces w.r.t. ad(H) = ad(T (e, e)). Since [E, T (e, e)] = 0, it follows that all eigenspaces
are ad(E)-stable; therefore we have a similar decomposition of the homogeneous parts m+, str(T )
and m− of co(T ). In particular, V can be decomposed into eigenspaces Vj of ad(H) with j ∈
{−2,−1, 0, 1, 2} . We have to show that actually only non-negative j appear in the decomposition
of V = m− . But it is clear that e annihilates all elements in V = m− ; therefore V must contain
the highest weight vector v of an irreducible sl(2,R)-module U intersecting V . But then the
lowest weight vector ad(pe)2v is contained in m+ . In other words, only weight spaces co(T )j
with j ≥ 0 can have non-zero intersection with V .

(ii) We apply the same arguments, where now the role of highest and lowest weights is
reversed.
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Definition X.5.7. The eigenspace decomposition V = V0⊕V1⊕V2 , resp. V = V0⊕V−1⊕V−2 ,
of T (e, e) is called the Peirce-decomposition of V w.r.t. e .

Lemma X.5.8. For the Peirce-decomposition w.r.t. a tripotent the relation

T (Vj , Vk, Vl) ⊂ Vj−k+l

holds. In particular, the Vj are sub-JTS of V .

Proof. This follows from the equivariance T : V ⊗W ⊗ V → V , where T (e, e) acts on W by
Θ(T (e, e)) = −T (e, e).

Note that V2 6= 0 if e is hyperbolic since then e ∈ V2 , and similarly V−2 6= 0 if e is elliptic.
We will see in the next section that V2 is actually a Jordan algebra with unit element e .

Proposition X.5.9. If e is a hyperbolic tripotent, we have

exp(tT (e, e)) = B(e, (1− exp(t))e),

and if e is an elliptic tripotent, then

exp(−tT (e, e)) = B(e, (1− exp(t))e).

Proof. We specialize the identity (JT2) (cf. Prop. III.2.4) to the case v = x = y = z = e and
get

T (u, e, T (e, e, e)) = T (T (u, e, e), e, e)− T (e, T (u, e, e), e) + T (e, e, T (u, e, e)),

and since the left hand side equals ±2T (e, e, u) (positive sign if e hyperbolic, negative sign if e
elliptic), we have

±2T (e, e) = 4P (e)2 − 2T (e, e)2.

It follows that P (e)2 has eigenvalue 0 on V0 and on V±1 and eigenvalue 1 on V±2 . Therefore

B(e, (1− z)e) = id−(1− z)T (e, e) + (1− z)2P (e)2

has eigenvalue 1 on V0 , eigenvalue z on V±1 and eigenvalue 1−2(1−z)+(1−z)2 = z2 on V±2 .
If z = exp(t), then exp(±tT (e, e)) has the same eigenvalues and eigenspaces, and therefore both
linear transformations are equal.

When integrating the homomorphism ḟ from Lemma X.5.5, mind that co(T )op is the Lie
algebra of Co(T ).

Corollary X.5.10.
(i) If e is a hyperbolic tripotent, then there is a unique homomorphism f : Sl(2,R) → Co(T )

determined by

f

(
1 t
0 1

)
= tte, f

(
1 0
t 1

)
= Θ(tte), f

(
t 0
0 t−1

)
= B(e, (1− t)e).

If we define an involution θ = θ(+) on Sl(2,R) by θ(Z) =
(

0
1

1
0

)
Z
(

0
1

1
0

)
, then the relation

Θ ◦ f = f ◦ θ holds.
(ii) If e is elliptic, then there is a unique homomorphism f : Sl(2,R)→ Co(T )

f

(
1 −t
0 1

)
= Θ(tte), f

(
1 0
t 1

)
= tte, f

(
t−1 0
0 t

)
= B(e, (1− t)e).
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If we define an involution on Sl(2,R) by θ(g) =
(

0
−1

1
0

)
g
(

0
1
−1
0

)
, then the relation Θ ◦ f =

f ◦ θ holds.

Proof. We complexify the homomorphism ḟ to an injective homomorphism from sl(2,C)op

into co(T )C . This induces a homomorphism of the simply connected group Sl(2,C) into Co(T )C .
This homomorphism commutes with the respective complex conjugations and therefore defines
by restriction a homomorphism f : Sl(2,R)→ Co(T ). For any Z ∈ sl(2,R) we have the formula
f(exp(Z)) = exp(ḟZ); thus in part (i)

f

(
1 0
t 1

)
= f(exp(−tY )) = exp(−tḟ(Y )) = exp(−tpe) = Θ(tte),

and similarly for the other matrices. The statement about the compatibility of θ and Θ follows
from Lemma X.5.5.

Remark X.5.11. The homomorphism f is injective if V1 6= 0 (resp. V−1 6= 0) and has kernel
±1 otherwise. (In fact, f(−1) = B(e, 2e) has eigenvalues 1 on V0 , −1 on V±1 , (−1)2 = 1 on
V±2 ; thus f(−1) = id iff V1 = 0, resp. V−1 = 0.) If ker f = {±1} , then f passes to the quotient
as a homomorphism P Sl(2,R)→ Co(T ). Since P Sl(2,R) = Co(R)o , f is now a homomorphism
f : Co(R)o → Co(T ). In the other case, it is indeed necessary to pass to the double covering
Sl(2,R) of Co(R)o in order to lift the Lie algebra homomorphism co(R) = sl(2,R)→ co(T ).

6. Non-degenerate spaces

A symmetric space with twist is called non-degenerate iff its JTS T is non-degenerate. In
this case we have for all g ∈ Str(T ) the equation Θ(g) = (g∗)−1 , where the adjoint is taken w.r.t.
the trace form (cf. Remark after Prop. VIII.1.6). This in turn means that the Str(T )-module
W (cf. Section 2.1) is isomorphic to the dual V ∗ of V via W → V ∗ , w 7→ (v 7→ trT (v, w)).
Therefore we have isomorphisms Hom(W,V ) ∼= V ⊗V and ΛnW ∗⊗ΛnV ∼= (ΛnV )⊗ (ΛnV ), and
the sections S and s introduced in Section 2.1 can be interpreted as the duals of an invariant
pseudo-metric (Thm. 6.2), resp. of the “square” of an invariant volume form (Prop. 6.3).

6.1. The invariant pseudo-metric. If T is non-degenerate, then

(x|y) = trT (x, y)

defines a non-degenerate bilinear form on V which is invariant and symmetric (Lemma V.2.4).

Definition X.6.1. A dual pseudo-metric on a manifold M is a symmetric (0,2)-tensor field g
(i.e. a section of S2(TM)) such that for all p ∈M , gp defines a non-degenerate bilinear form on
(TpM)∗ . An n-vector on a manifold M is a nowhere vanishing section of the bundle Λn(TM)
(n = dimM ).

If M = L/Q is a homogeneous space and ρ : Q → Gl(ToM) the first isotropy representa-
tion, then we identify (0,2)-tensor fields with functions on L , given by elements of the induced
representation indLQ(ρ⊗ρ), and (2,0)-tensor fields with elements of indLQ(ρ∗⊗ρ∗) (cf. Appendix
VIII.B).

Theorem X.6.2. Assume that T is a non-degenerate JTS and let M be the associated global
space. For ϕ ∈ V ∗ let vϕ ∈ V be the unique vector with ϕ(w) = (vϕ|w) for all w ∈ V and
define a non-degenerate symmetric bilinear form on V ∗ by (ϕ|ψ) := (vϕ|vψ) .
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(i) There is a G-invariant (0, 2)-tensor field g on V c given by the formula

(g(x))(ϕ⊗ ψ) := (ϕ ◦ dΘ(x)−1x(0)|ψ)

(x ∈ Co(T ) , ϕ,ψ ∈ V ∗ ). The bilinear form g(x) is non-degenerate iff x.0 belongs to M .
In particular, the restriction of g to M is an invariant dual pseudo-metric on M . The
affine picture of g is given by

(g(tx))(ϕ⊗ ψ) = (ϕ ◦B(x, x)|ψ).

(ii) An invariant pseudo-metric on M is obtained by “lowering indices of g”, i.e. by

(ǧ(x))(u⊗ v) := (dΘ(x)−1x(0)−1u|v)

if x.0 ∈M . The affine picture of this invariant pseudo-metric is given by

(ǧ(tx))(u⊗ v) = (B(x, x)−1u|v).

Proof. (i) Under the isomorphisms W → V ∗ , w 7→ (v 7→ trT (v, w)), Hom(W,V ) corresponds
to V ⊗ V , the section S defined in Prop. X.2.5 is identified with g . Therefore it follows from
Prop. X.2.5 that g has the correct transformation property, and from Th. X.2. that g(x) is non-
degenerate iff x.0 belongs to M . The formula for the affine picture of g follows immediately from
Prop. VIII.2.5 (i). It only remains to be shown that g(x) is symmetric. By a density argument,
it suffices to consider points where g(x) is non-degenerate. But then, by Eqn. VIII.(2.3),

(dΘ(x)−1x(0))∗ = ((D(Θ(x)−1x)(0))−1)∗ = Θ(D(Θ(x)−1x)(0)) = dΘ(x)−1x(0),

i.e. dΘ(x)−1x(0) is self-adjoint and therefore g(x) is symmetric.
(ii) This is an obvious consequence of part (i).

6.2. Invariant density and invariant integral. It is clear that the section s(x) =
det(dΘ(x)−1x(0)) defined in Section X.2 defines an invariant section of the line bundle induced
from ΛnW ∗ ⊗ΛnV ∼= (ΛnV )⊗ (ΛnV ). According to Cor. X.2.6, M is the set of points where s
does not vanish. The section s behaves like the “square of an n -vector” on M . However, it is not
always possible to define a “square root” of s on M since M need not be orientable (example:
M = RP2 ). Recall (cf. e.g. [St83, p. 112]) that a density on a real manifold is a section of the line
bundle whose transition functions are given by the absolute value of the Jacobian determinant
of the maps induced by a change of coordinates. Thus, if M = L/Q is homogeneous and ρ
is the first isotropy representation of Q , densities are identified with elements of the induced
representation

indLQ|det ◦ρ|.

The group L acts on the density bundle in the natural way.

Proposition X.6.3.
(i) The formula d(x) := |s(x)|−1/2 (x ∈ Co(T ) , x.0 ∈ M ) defines a G-invariant density on

M with affine picture d(tx) = |detB(x, x)|−1/2 .
(ii) If the representation H 7→ R∗ , h 7→ det(Dh(0)) is trivial, then there exists a G-invariant

volume-form on M0 = G/H .
(iii) If there is a representation π : Str(T ) → R∗ with π ⊗ π ∼= det , then there exists a G-

invariant volume-form on M whose affine picture is given by the function

z 7→ detB(z, z)−1/2 := π(B(z, z))−1.
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Proof. (i) From Lemma X.2.5 it follows that |det s(x)| defines a G-invariant section of the
bundle over V c corresponding to |ΛnW ∗ ⊗ ΛnV | ∼= |(ΛnV ) ⊗ (ΛnV )| . Thus |s(x)|1/2 defines a
“dual density” on V c which, according to Cor. X.2.6, does not vanish iff x.0 ∈M . Thus we can
take its inverse on M and obtain a G-invariant density there. The formula for the affine picture
follows from s(tx) = detB(x, x).

(ii) The assumption assures that we can define an n -form in a consistent way by transport-
ing a volume form from T0M to Tg.0M by g ∈ G .

(iii) We define the element d̃ of indCo(T )
P (π ◦ρ)−1 by d̃(x) := π(S(x)) and apply arguments

similar to those proving part (i).

Next recall (cf. e.g. [St83, p. 114/115]) that densities can be integrated in a natural way.
The G-invariant integral on M belonging to the invariant density from Prop. X.6.3 (i) is given
by the formula

I(f) :=
∫
M∩V

f(x)|detB(x, x)|−1/2 dx, (6.1)

where dx is Lebesgue measure on V , restricted to M ∩V (the complement of M ∩V in M is an
algebraic set of lower dimension than M and is therefore of measure zero). If M is orientable,
then the choice of a positive atlas yields an identification of the density bundle with the bundle
of n -forms. Note that, since M0 = G/H is reductive, H1 := {h ∈ H| det(Dh(0)) = 1} is a
subgroup of index at most 2 in H , and thus G/H1 is an oriented covering of order at most 2 of
M0 . In the non-reductive case there are symmetric spaces with twist having no invariant density.
An example is given by the space of upper triangular matrices: as is well-known, the group
S = AN of upper triangular matrices (which is the symmetric space with twist associated to the
Jordan algebra of upper triangular matrices) is not unimodular; this means that as a symmetric
space it has no invariant density.

6.3. The Cartan-involution.

Definition X.6.4. Let M = G/H be a reductive symmetric space with associated involution
σ . A Cartan-involution ϑ commuting with σ and stabilizing H is called a Cartan-involution of
M .

If ϑ is as in the definition, it passes to the quotient as an (equivariant) automorphism
ϑ : M → M . If the center of G is finite, then Mϑ is a maximal compact subspace of M (cf.
[Lo69a, p.155]).

Theorem X.6.5. If M = G/H is a semisimple para-Hermitian symmetric space, then M
admits a compact para-real form, i.e. a Cartan-involution which is a para-real form.

Proof. Let σ be the involution associated to the symmetric pair (G,H) and J ∈ h the
element corresponding to the para-complex structure. Then J is a hyperbolic element in the
semisimple Lie algebra g , i.e. ad(J) has only real eigenvalues (namely 0, 1,−1). Therefore
there exists a Cartan-involution ϑ of g commuting with σ and such that ϑ(J) = −J (this is a
refinement of a standard result – see e.g. [HN91, Satz III.6.17] – on semisimple Lie algebras, cf.
[Ne79, p.285]). Thus ϑ|q is a para-conjugation of the twisted polarized LTS q belonging to M
and thus is in particular a JTS-automorphism. It extends to a global para-conjugation (given in
Jordan coordinates by a linear map) of the global space M . Now the group G , being isomorphic
to the group Co(T ), where T is the JTS of qϑ , has a trivial center (cf. Thm. VIII.1.3), and as
remarked above, it follows that Mϑ is compact.

Note that the preceding proof does not carry over to twisted complex symmetric spaces
because in this case J is elliptic and not hyperbolic. In fact, Prop. V.5.2 implies that the only
pseudo-Hermitian symmetric spaces admitting a compact real form are themselves compact.
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Corollary X.6.6. If M is a non-degenerate symmetric space with twist, then there exists a
Cartan involution ϑ of the symmetric space M which is also an automorphism of the symmetric
space with twist M . In other words, it is a JTS-automorphism.

Proof. Let ϑ̃ be a Cartan-involution of MphC as constructed in the preceding theorem. It
can be chosen such that it commutes with the conjugation τ w.r.t. M (cf. [Ne79, p.278]). Its
restriction to M is a Cartan-involution of M and a JTS-automorphism since so is ϑ̃ .

Following E. Neher ([Ne79]), we call the automorphism ϑ of the non-degenerate JTS T
a Cartan-involution of T . The restriction of T to the ϑ -fixed space V ϑ is negative and the
restriction to V −ϑ is positive in the sense of Def. V.5.1.

Corollary X.6.7. Let T be a non-degenerate JTS and ϑ a Cartan-involution of T . Then
the space M

(−ϑ)
0 is compact. It is equal to V c and hence V c is compact.

Proof. The space M
(−ϑ)
0 is isomorphic to the compact para-real form of MphC from Th.

X.6.5 (the isomorphism is given by x 7→ (x, ϑ(x)), cf. Section IV.2). Therefore it is compact.
On the other hand, it is open in the conntected space V c , and therefore it must be equal to V c .
Thus V c itself is compact.

The preceding corollary allows to call V c the conformal compactification of M . The fact
that V c is compact may also be proved by using root theory of Co(T ) and showing that P is
a (maximal) parabolic subgroup of Co(T ). If we write M (−ϑ) = U/K as compact connected
symmetric space, we have the equality

U/K = Co(T )/P

which says that U/K is a symmetric R -space in the sense of [Tak65]. Every symmetric R -space
is obtained in this way (cf. [Lo85]). The classification of symmetric R -spaces is given in Table
XII.3.3.

Remark X.6.8. Let V = V + ⊕ V − be the eigenspace-decomposition w.r.t. the Cartan-
involution ϑ . Then the preceding corollary implies that the ϑ -fixed subspace of M is isomorphic
to (V +)c , and topologically M is a vector bundle over (V +)c with fibers isomorphic to V − (the
Berger-fibration, cf. [Lo69a, Th. IV.3.5]).

Example X.6.9. Let V be a Euclidean Jordan algebra and α an involutive automorphism of
V . (We will see in Section XI.3 that these spaces are certain causal symmetric spaces). Then α
is a Cartan-involution of M (α) (because T (α) is negative on V − and positive on V + ).

Appendix A: Power associativity

In this appendix we prove some identities for Jordan triple systems. Recall from Prop.
III.2.4 the defining identity (JT2) of a JTS. For x = z = u we obtain

T (x, v, T (x, y, x)) = 2T (T (x, v)x, y, x)− T (x, T (v, x)y, x)

which, with the notation P (a) = 1
2T (a, ·, a), is

P (x)T (v, x, y) = 2T (P (x)v, y, x)− T (P (x)y, v, x).
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Since the left hand side is symmetric in v and y , we get T (P (x)v, y, x) = T (P (x)y, v, x) (this
is, by the way, equivalent to [py,pv] = 0, which we already know) and thus

P (x)T (v, x, y) = T (P (x)v, y, x) = T (P (x)y, v, x).

(This the identity JP4 from [Lo75] and [Lo77].) With v = x the identity

P (x)T (x, x)y = T (P (x)x, y, x) = T (x, x)P (x)y, (A.1)

and thus in particular [P (x), T (x, x)] = 0, follows.

Proposition X.A.1. For all k ∈ N and x ∈ V the identity

2kP (x)kx = T (x, x)kx

holds.

Proof. For k = 0 the identity is trivial, and for k = 1 it follows immediately from the
definition of P and T : 2P (x)x = T (x, x, x) = T (x, x)x . Next we get from (JT2) with
x = y = z = u = v (equivalently, from (A.1) with x = y ),

P (x)T (x, x)x = T (x, x)P (x)x.

Together with T (x, x)x = P (x)x this implies P (x)2x = T (x, x)2x . Now we prove the claim for
general k by induction. We assume that for all j ≤ k the identity P (x)jx = T (x, x)jx holds.
Then we get from (A.1)

2k+1P (x)k+1x = 2P (x)T (x, x)kx = 2T (x, x)P (x)T (x, x)k−1x

= 2kT (x, x)P (x)kx = T (x, x)k+1x,

and the claim follows.

Definition X.A.2. For each x ∈ V we denote by 〈x〉 ⊂ V the subspace spanned by all
P (x)kx , k = 0, 1, . . . . The integer

rk(T ) := max
x∈V

dim〈x〉

is called the rank of T .

Corollary X.A.3. The operators

T (x, x) : 〈x〉 → 〈x〉 and 2P (x) = T (x, ·, x) : 〈x〉 → 〈x〉

coincide.

Proof. This follows immediately from Prop. X.A.1.

The next result is included for the sake of completeness; it is not used in this chapter.
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Proposition X.A.4. A JTS is power-associative in the sense that for all j, k, l ∈ N ,

T (P (x)jx, P (x)kx, P (x)lx) = 2P (x)j+k+l+1x.

Proof. We will use the fundamental formula

T (P (x)u, v, P (x)v) = P (x)T (u, P (x)v, w)

(Prop. VIII.C.1). The claim is proved by induction on j+ k+ l . If j+ k+ l = 0, then the claim
is true by definition of P . Now we assume the claim to be true for j+ k+ l ≤ n and distinguish
two cases: (a) j > 0, l > 0, (b) j = 0 or l = 0. In case (a) the fundamental formula gives us

T (P (x)jx, P (x)kx, P (x)lx) = P (x)T (P (x)j−1x, P (x)k+1x, P (x)l−1x),

and we can apply the induction hypothesis to the last term. In case (b) we assume w.l.o.g. that
j = 0 and get from the identity JP4

T (x, P (x)kx, P (x)lx) = P (x)T (P (x)kx, x, P (x)l−1x),

and again we can apply the induction hypothesis.

Corollary X.A.5. The space 〈x〉 is a flat subspace of the LTS given by R = RT on V , i.e.
for all u, v, w ∈ 〈x〉 , R(u, v)w = 0 .

Proof. It is enough to prove the condition R(u, v)w = 0 on the generators P (x)kx of 〈x〉 .
But

R(P (x)jx, P (x)kx, P (x)lx) = T (P (x)jx, P (x)kx, P (x)lx)− T (P (x)kx, P (x)jx, P (x)lx)
= 0

by the preceding proposition.
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Notes for Chapter X.

X.1. Propositions X.1.1 and X.1.3 are generalizations of Prop. 2.2.1 in [Be96b] which
summarizes the approach by A.A. Rivillis and B.O. Makarevič ([Ri70], [Ma73]) to open symmetric
orbits in the conformal compactification of semisimple Jordan algebras.

X.2. Th. X.2.1 is a generalization of [Be98a, Th.2.1.1]. In [Ma79] a different, more root-
theoretic description of the spaces M (α) is given.

X.4. The formula Exp = tanhT is well-known for the case of bounded symmetric domains
(cf. [Lo77, Lemma 4.3] and [FK94, p.216]). As explained in Remark X.4.2, our global result is
new.

X.5. The Peirce-decomposition with respect to a hyperbolic tripotent is standard, cf. [Lo77,
Ch.3] or [Sa80, p.242 ff]. For our treatment via sl(2)-theory cf. [Sa80, p.90]. The homomorphism
Sl(2,R) → Co(T ) is well-known in the case of Hermitian symmetric spaces, cf. [Lo77, Lemma
9.7]. However, it seems that not much attention has been paid to the fact that much of the
theory holds equally well for elliptic as for hyperbolic tripotents (which are usually the only ones
considered).

X.6. It is well-known that the Bergman metric of a bounded symmetric domain is given by
the polynomial B(z, z)−1 , cf. e.g. [Lo77, Th.2.10], [Sa80, Prop. II.6.2]. Our analog of this fact
is a generalization of [Be98a, Th. 2.4.1]. A general theory of Cartan involutions of triple systems
has been developed by E. Neher ([Ne79]).

Appendix A. The power associativity of a JTS has first been established by K. Meyberg
[Mey70, Satz 4.3]. His proof uses power associativity of the Jordan algebras Ax = T (·, x, ·); we
have avoided this argument since we have in general no geometric interpretation of the Jordan
algebra Ax (cf. the next chapter).
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Chapter XI: Spaces of the first and of the second kind

An important class of symmetric spaces with twist can be described by Jordan algebras; we
call them of the first kind. They can be characterized by the fact that the involution Θ of the
conformal group is an inner involution (Th. XI.1.4) which naturally leads to the Jordan inverse
of a Jordan algebra (Prop. XI.1.5). Specializing the Peirce-theory from Section X.5 to this case,
we define a real Cayley transform which in many cases yields generalized tube domain realizations
(Th. XI.2.8) which are useful in the study of certain causal symmetric spaces (Section 3).

A natural further development of this approach would be a theory of generalized Siegel
domain realizations of symmetric spaces with twist; we leave this general topic for later work.
Instead, we focus here on relations between spaces of the first kind and the “extrinsic realization”:
on the one hand, every symmetric space with twist has a realization as “immersed symmetric
orbit” (Prop. XI.4.1); on the other hand, using the Cayley transform, we realize all Helwig spaces
(cf. Section II.4) as symmetric spaces with twist, appearing as subspaces in a space related to
a Jordan algebra (Prop. XI.4.4). From work of K.H. Helwig it is known that many symmetric
spaces have such a realization. It is an open problem how to characterize Helwig spaces among
the immersed symmetric orbits. Algebraically, this problem translates to an “extension problem”:
why is there no analog in Jordan theory of the standard imbedding of a Lie triple system (Problem
XI.4.5)?

1. Spaces of the first kind and Jordan algebras

Definition XI.1.1. A JTS T and an associated symmetric space with twist M is called of
the first kind if the group Co(T )00 = exp(m+) has an open orbit in V c . Otherwise it is called of
the second kind.

If a JTS is of the first kind, we have dim m+ ≥ dim m− = dimM . Thus T must be faithful
and exp(m+) = Θ(tV ).

Definition XI.1.2. An element x ∈ V is called invertible if detP (x) 6= 0.

It is clear that the set V ′ = {x ∈ V | detP (x) 6= 0} of invertible elements is either empty
or open dense in V .

Lemma XI.1.3. A JTS T is of the first kind if and only if it contains invertible elements.

Proof. T is of the first kind if and only if there exists x ∈ V such that the evaluation map

m+ → V, pv 7→ pv(x) =
1
2
T (x, v, x) = P (x)v
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is surjective. This is equivalent to requiring that P (x) is surjective or (by reasons of dimension)
that it is bijective, i.e. x is invertible.

Theorem XI.1.4. Assume that T is faithful. Then T is of the first kind if and only if Θ is
an inner automorphism of Co(T ) . If this is the case, then Θ is the conjugation with the element
g ∈ Co(T ) given by the formula

g(x) = P (x)−1x.

Proof. Assume first that Θ is given by conjugation with an element g ∈ Co(T ). Then
g(V ) ⊂ V c is an open Θ(tV )-orbit in V c and hence T is of the first kind. Moreover, for all
x, v ∈ V ,

dg(x)v = (g∗v)(x) = (Θ(v))(x) = −pv(x) = −P (x)v,

whence dg(x) = −P (x). Similarly,

ng(x) = (g∗E)(x) = (Θ(E))(x) = −E(x) = −x,

whence
g(x) = dg(x)−1ng(x) = P (x)−1x.

For the proof of the converse we proceed in several steps. We assume T to be of the first
kind and fix a point e ∈ V with detP (e) 6= 0.

1. According to the fundamental formula (Prop. VIII.C.1), for all x ∈ V , P (P (e)x) =
P (e)P (x)P (e), i.e. α := P (e) satisfies Eqn. (III.4.2), and Lemma III.4.5 assures that

T̃ (x, y, z) := TP (e)−1
(x, y, z) = T (x, P (e)−1y, z)

is again a JTS on V . If P̃ is the corresponding quadratic representation, we have

P̃ (e)x =
1
2
T (e, P (e)−1x, e) = P (e)P (e)−1x = x,

i.e. P̃ (e) = idV . Since T̃ has the same conformal group as T with associated involution
Θ̃ = Θ ◦ P (e)−1 , we may w.l.o.g. assume that T = T̃ and P (e) = idV . From Appendix X.A,
Eqn. X.(A.1) we now deduce that

T (e, e)x = P (e)T (e, e)x = T (P (e)e, x, e) = T (e, x, e) = 2P (e)x = 2x,

i.e. T (e, e) = 2 idV .
2. We have seen that e a is hyperbolic tripotent (having the particular property that

V = V2 ). Let F :=
(

0
−1

1
0

)
∈ Sl(2,R) and consider its image ϕ := f(F ) ∈ Co(T ) under the

homomorphism f : Sl(2,R) → Co(T ) defined in Cor. X.5.10. Recall from X.5.5 that ḟ(H) =
T (e, e) = 2E , where H is given by Eqn. X.(5.1). Since FHF−1 = −H , i.e. Ad(F )H = −H , it
follows that

ϕ∗E = f(F )∗ḟ(
1
2
H) =

1
2
ḟ(Ad(F )H) = −1

2
ḟ(H) = −E.

3. Now, since ϕ∗(E) = −E and Θ(E) = −E , the automorphism Υ := Θ ◦ ϕ∗ satisfies
Υ(E) = E . According to Prop. VIII.1.5(ii), it follows that Υ is inner, and thus Θ is inner.
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Proposition XI.1.5. Let T be a JTS, e ∈ V an element with P (e) = idV and j(x) :=
P (x)−1x . Then e is an isolated fixed point of j , and Ω := Str(T ).e is a quadratic prehomoge-
neous symmetric space with associated Jordan algebra

xy =
1
2
T (x, e, y)

and Jordan inverse j .
Proof. Since j(e) = P (e)−1e = e , e is a fixed point of j . It is isolated since dj(e) = −P (e) =
− idV . Any point x ∈ V with detP (x) 6= 0 belongs to an open Str(T )-orbit in V : in fact,

str(T )x ⊃ T (V, V, x) ⊃ T (x, V, x) = P (x)V = V,

and thus Str(T )→ V , g 7→ g.x is a submersion. In particular, the orbit Ω is open.
We are going to prove that Ω is symmetric. The decomposition of str(T ) associated to the

involution Θ = j∗ is str(T ) = h⊕ q with h = Der(T ) and q the space of X ∈ End(V ) satisfying
XT (u, v, w) = T (Xu, v, w)− T (u,Xv,w)− T (u, v,Xw). If X ∈ Der(T ), then

2Xe = XT (e, e, e) = T (Xe, e, e) + T (e,Xe, e) + T (e, e,Xe) = 6Xe,

whence Xc = 0. Conversely, if X ∈ q satisfies Xe = 0, then we have for all v ∈ V ,

2Xv = XT (e, v, e) = 2T (Xe, v, e)− T (e,Xv, e) = −2Xv,

whence X = 0. It follows that Der(T ) is the Lie algebra of the stabilizer of e , and therefore Ω
is symmetric with associated involution Θ.

In order to calculate the Lie triple algebra associated to the prehomogeneous symmetric
space Ω (cf. Section II.1), recall that the elements T (x, y) with T (x, y) = T (y, x) belong to q .
We claim that T (e, v) = T (v, e) for all v ∈ V . Indeed, the identity JP4 (Appendix X.A) yields
for all v, y ∈ V ,

T (v, e)y = P (e)T (v, e, y) = T (P (e)y, v, e) = T (y, v, e) = T (e, v)y.

Moreover, the condition 1
2T (e, v)e = P (e)v = v shows that

L(v) :=
1
2
T (e, v) =

1
2
T (v, e)

is the unique element in q such that L(v)e = v . Thus the Lie triple algebra associated to
(Ω, e) is given by xy = L(x)y = 1

2T (x, e, y). In order to prove that Ω is the open orbit of
a quadratic prehomogeneous symmetric space, we verify condition (ii) of Th. II.2.6: the map
Ω → Hom(V ⊗ V, V ), g.e 7→ Θ(g).Ae has the same equivariance property as the linear map
x 7→ 1

2T (·, x, ·); both agree on the base point e and therefore on all points of the open orbit Ω.
Thus condition (ii) of Th. II.2.6 is verified, and moreover we have proved that T is the JTS
associated to the Jordan algebra Ae , i.e. we have T (x, y, z) = 2(x(yz)− y(xz) + (xy)z).

Corollary XI.1.6. All JTS of the first kind are of the form T = T̃ (α) , where T̃ is the JTS
associated to a unital Jordan algebra and α belongs to the structure variety of T̃ .
Proof. If T is of the first kind, we fix e and define T̃ = T (α−1) with α = P (e) as in step 1
of the proof of Thm. XI.1.4; then T = T̃ (α) and P̃ (e) = idV . The preceding proposition shows
that T̃ is associated to a unital Jordan algebra, and the calculation

αT̃ (x, αy, z) = αT (x, y, z) = T (αx, α−1y, αz) = T̃ (αx, y, αz)

shows that α belongs to the structure variety of T̃ .

Note that α = P (e), but in general α is not of the form α = P̃ (d) for some d ∈ V . In
fact, the condition α = P̃ (d) = P (d)α−1 is equivalent to P (e)2 = α2 = P (d), and this equation
may have no solution d .
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Remark XI.1.7. According to Prop. X.1.3, the “integrated version” of the preceding corollary
is: All symmetric spaces with twist of the first kind are of the form M (α) , where T is the JTS
associated to a unital Jordan algebra and α is a symmetric element of its structure group. The
corresponding zero-components

M
(α)
0 = Co(V )(jα)∗

o .0 ⊂ V c (1.1)

are the most important class of “open symmetric orbits in symmetric R -spaces” considered by
A.A. Rivillis and B.O. Makarevič ([Ri70],[Ma73]); in [Be96b] we have called them Makarevič
spaces.

Corollary XI.1.8. If T is a JTS of the first kind, then for all v ∈ V , T (·, v, ·) is a Jordan
algebra (in general without unit element).
Proof. Replacing T by a modification does not affect the claim. Thus according to Cor.
XI.1.6 we may assume that T is associated to a unital Jordan algebra. Now the claim is true for
all v ∈ Ω since T (·, v, ·) is the Jordan algebra associated to the point j(v) ∈ Ω. It follows that
the claim holds for all v ∈ V : in fact, it can be expressed by algebraic equations and it holds for
all v in an open set of V .

2. Cayley transform and tube realizations

Proposition XI.2.1. Let T be the JTS associated to a Jordan algebra with unit element e .
Then the homomorphism f : Sl(2,R) → Co(T ) associated to e (Cor. X.5.10) is given by the
formula

(f
(
a b
c d

)
)(z) = (az + be)(cz + de)−1,

where the right-hand side is calculated in the Jordan algebra. It extends to a homomorphism
P Gl(2,R)→ Co(T ) , given by the same formula.
Proof. Since a Jordan algebra is power associative (Thm. II.2.15), we verify that the given
formula indeed defines a homomorphism (from P Gl(2,R) into Co(T )) as in the classical case of
the operation of P Gl(2,R) on RP1 . Then we check that this homomorphism coincides with f
on the generators of Sl(2,R). This is clear for the matrices

(
1
0
t
1

)
. For the matrices

(
t
0

0
t−1

)
it

follows from the fact that B(e, (1− t)e) = t2 idV since under our assumptions we have V = V2 .
Finally,

(f
(

1 0
t 1

)
)(x) = exp(Θ(te)).x = Θ(te).x

= jttej(x) = (te+ x−1)−1 = x(tx+ e)−1,

where we have again used power associativity of a Jordan algebra.

Corollary XI.2.2. Under the assumptions of the preceding proposition,

exp(
π

2
(e + pe)).x = −x−1,

exp(
π

4
(e + pe)).x = (x+ e)(e− x)−1.

Proof.

exp(
π

2
(e + pe)) = f(exp(

π

2

(
0 1
−1 0

)
)) = f

(
0 1
−1 0

)
= −j,

exp(
π

4
(e + pe)) = f(exp(

π

4

(
0 1
−1 0

)
)) = f(

1√
2

(
1 1
−1 1

)
),

and according to the preceding proposition, the last matrix operates as claimed.
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Note that j = f
(

0
1

1
0

)
does not belong to the identity component of P Gl(2,R) and thus

cannot be written as an exponential.

Definition XI.2.3. Let V be a unital Jordan algebra. The element γ ∈ Co(V ) defined by

γ = exp(
π

4
(e + pe)),

i.e.
γ(x) = (x− e)−1(x+ e),

is called the real Cayley transform.

Applying f to the relation(
1 1
−1 1

)(
0 1
1 0

)(
1 1
−1 1

)−1

=
(

1 0
0 −1

)
yields the relation

γjγ−1 = − idV (2.1)

between elements of Co(V ). Similarly we get γ(− idV )γ−1 = j . If V is a complex Jordan
algebra, then we define the usual Cayley transform by

C := iγi

(where i is multiplication by
√
−1) and get, since ij = −ji ,

C(−j)C−1 = iγiji−1γ−1i−1 = iγ(− idV )γ−1i−1 = − idV . (2.2)

Remark XI.2.4. For any hyperbolic tripotent e one can define by γe = exp(π4 (e + pe)) the
partial Cayley transform γe defined by e , and then γ2

e may be called the partial inverse defined
by e (cf. [Lo77, Ch.X]). Following the methods of [Lo77], it is possible to derive Jordan theoretic
formulas for these transformations and to develop a general theory of “Siegel domain realizations”
for symmetric spaces with twist. We will leave this topic for later work and content ourselves
here with the important special case of a class of spaces “of generalized tube type”. They are
associated to involutions of unital Jordan algebras.

Lemma XI.2.5. If α is an automorphism of the unital Jordan algebra V , then the relations
γα = αγ and

γ(jα)γ−1 = −α, γ(−α)γ−1 = jα

hold. If V is complex and α a C-conjugate linear automorphism, then we have

C(−jα)C−1 = −α, C(−α)C−1 = −jα.

Proof. Since α(e) = e ,

α((x− e)−1(x+ e)) = (α(x)− e)−1(α(x) + e)

and hence γα = αγ . It follows that γjαγ = γjγα = − idα , and similarly for C .

If α is an involutive automorphism of a unital Jordan algebra V , we denote by V =
V + ⊕ V − the associated eigenspace decomposition. It is clear that V + and V − are sub-JTS of
T , and moreover V + is a Jordan algebra with unit element e and Jordan inverse induced by the
one of V . As usual, Ω = Str(V )oe is the open symmetric orbit associated to V . We denote by
Ω+ = Str(V +)oe the open symmetric orbit associated to V + . According to Lemma II.3.2, we
have

Ω+ = (V + ∩ Ω)e.
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Definition XI.2.6. The open domain

V − + Ω+ := {x+ y|x ∈ V −, y ∈ Ω+} ⊂ V

is called the generalized tube associated to the involutive Jordan algebra (V, α).

For example, if α is complex conjugation of a semisimple complex Jordan algebra w.r.t. a
Euclidean real form W , then V −+Ω+ = W+iΩ is the classical tube domain over the symmetric
cone Ω. We prove now that the generalized tubes, completed by points at infinity, are symmetric
spaces with twist.

Theorem XI.2.7. Let V be a unital Jordan algebra, α an involutive automorphism of V and
M (α) the global space of the first kind associated to the JTS T (α) . Then its Cayley-transformed
realization is described by

γ(M (α)
0 ) = Co(V )(−α)∗

o .e ⊂ V c

and
γ(M (α)) ∩ V = {x ∈ V | detP (x+ αx) 6= 0}.

The connected component of this set containing e is the generalized tube V − + Ω+ .

Proof. In order to prove the first claim, note that γ(0) = e . From Eqn. (1.1) we get

γ(M (α)
o ) = γ Co(V )(jα)∗

o .0 = Co(V )(γjαγ)∗
o .γ(0) = Co(V )(−α)∗

o .e;

the last equation follows from Lemma XI.2.5. In order to prove the next claim, recall from Cor.
X.2.6 that M (α) is the set of points where the section s (seen as a function on Co(T )) defined
by s(g) = det(d(jα)∗g−1g(0)) does not vanish. The conformal group acts on sections by simple
left translations; thus

(γs)(g) = s(γ−1g)
= det(djαg−1γ−1jαγg(0))
= det(djαg−1(−α)g(0))

where we have used Lemma XI.2.5. The affine picture of this section is (neglecting a factor
detα ∈ {±1})

(γs)(tx) = det(djαt−x(−α)tx(0))

= det(djt−αx(− id)tx(0))

= det(djt−(αx+x)(0)) = det(dj(−(x+ αx))

= det(P (x+ αx)).

Since γ(M (α)) is the set of points where the section γs does not vanish, this calculation proves
the second claim. Finally,

{x ∈ V | detP (x+ αx) 6= 0}e = V − + Ω+

because the condition detP (x+α) 6= 0 means precisely that the projection of x onto V + belongs
to Ω.

Many generalized tubes are essentially of the form G/H where G is the conformal group
of the JTS V − . This is partially explained by the following proposition.
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Proposition XI.2.8. Let the assumptions be as in the preceding theorem. Then the restriction
to V − defines a homomorphism

r− : co(V )(−α)∗ → co(V −), X 7→ X|V −

where co(V −) is the conformal Lie algebra of the restriction of T to V − . There is a similar
restriction-homomorphism for inner conformal Lie algebras; it is surjective.

Proof. It is clear that, if v ∈ V − and X ∈ co(V )(−α)∗ , then X(v) ∈ V − , and therefore X can
be restricted to V − . We show that the restriction belongs to co(V −): since (−α)∗ commutes
with (− id)∗ , we have the decomposition

co(V )(−α)∗ = V − ⊕ str(V )α∗ ⊕ j∗(V −).

If X ∈ V − (constant vector field), then its restriction to V − is again constant and thus belongs
to co(V −). If X(p) = T (p, v, p) with p ∈ V − , then Thm. VII.2.4 shows that again the restriction
of X to V − belongs to co(V −). Moreover, all constant, resp. all homogeneous quadratic vector
fields of co(V −) are obtained in this way; this implies that the corresponding homomorphism on
the level of inner conformal Lie algebras is surjective.

Remark XI.2.9. (i) The preceding statements can be lifted to the level of connected groups
but not to the whole conformal group. Example: if V − is of the second kind, then −j belongs
to Co(V )(−α)∗ , but it does not preserve (V −)c .
(ii) The restriction homomorphism is in general not injective: for example, if α = idV , then V −

is a point and r− is the zero homomorphism. However, in the “generic case” it is indeed bijective
(cf. [BeHi98, Thm. 1.8.2]).

Realizations of the generalized cones Ω . For α = idV the generalized tube reduces
to the open symmetric orbit Ω of which M0 = M

(idV )
0 is the Cayley-transformed realization.

Thus Ω has two distinguished realizations. Next we wish to describe all possible realizations of
Ω under conformal transformations. For a JTS belonging to a Jordan algebra, the isomorphism
V c →W c , gP 7→ Θ(g)P ′ can also be written, since Θ(g) = jgj , P ′ = jPj ,

V c →W c, g.P 7→ jg.P.

Thus our base point in V c × W c is (0V , 0W ) = (0V , j.0V ), not (0V , 0V )! In the case of the
one-dimensional Jordan algebra R , j.0V is “the” point at infinity, and therefore we will also use
the notation

∞ := j(0) := j(0V ).

In order to avoid problems related to connected components, we will consider the algebraically
connected space

Ω̃ := {x ∈ V | detP (x) 6= 0}

of invertible elements in a Jordan algebra (denoted by V ′ in Prop. II.2.9) which is the Cayley-
transformed picture of the global space M = M (idV ) associated to a Jordan algebra. The line
bundle description of the “hyperplane at infinity” H∞ = V c \ V (Prop. VIII.3.5 and Eqn.
VIII.(3.1)) show that

Ω̃ = V ∩ j(V ). (2.3)
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Theorem XI.2.10.
(i) The translate of Ω̃ by the inverse of h ∈ Co(T ) is

h−1(Ω̃) = {g.0 ∈ V c| det(dhg(0)) det(djhg(0)) 6= 0}.

Associating the point h−1(0V , 0W ) to h−1(Ω) , the space Co(T ).Ω̃ of translates of Ω is
parametrized by the global polarized space X defined in Section XIII.3.3; if V is semisimple,
then this parametrization is a bijection.

(ii) For all (a, b) ∈ V × W with detB(a, b) 6= 0 , there exists h ∈ Co(T ) with h.a = 0V ,
h.b = 0W , and the affine picture of h−1(Ω̃) is given by

h−1(Ω̃) ∩ V = {x ∈ V | det(P (x− a)P (x− b)) 6= 0}.

Proof. (i) Recall from Prop. VIII.3.4 the section given by f(g) := det(dg(0)) whose zero set
is the complement of V . From Eqn. (2.3) it follows that

Ω̃ = {g.0| det(dg(0)) det(djg(0)) 6= 0}.

Applying h−1 to this set yields the first claim. If (a, b) ∈ X , then there is h ∈ Co(T ), uniquely
determined up to an element s of Str(T ), such that a = h.0V , b = h.0W (Th. VIII.3.8). Since
s.Ω̃ = Ω̃, the set h.Ω̃ is uniquely determined by a and b , and by construction, every translate
h.Ω̃ can be described in this manner. Thus we have a surjection

X → Co(T ).Ω̃, (a, b) = h.(0V , 0W ) 7→ h.Ω. (2.4)

For a general Jordan algebra it need not be injective: if g ∈ Co(T ) satisfies g.Ω̃ = Ω̃, then the
equations of Ω̃ imply that either g(H∞) = H∞ and g(jH∞) = jH∞ or g(H∞) = jH∞ . It
follows that the group

G(Ω̃) := {g ∈ Co(V )| g.Ω̃ = Ω̃}

is the union (G(V ) ∩ jG(V )j) ∪ j(G(V ) ∩ jG(V )j) where

G(V ) = {g ∈ Co(V )| g.V = V }.

If V is semisimple, then G(V ) = P ′ (cf. remark after Def. VIII.3.3) and therefore G(Ω̃) =
(P ∩ P ′) ∪ j(P ∩ P ′)) = Str(T ) ∪ j Str(T ), and (2.4) is injective.

(ii) This is the affine version of part (i): the affine picture of X is given by the condition
detB(a, b) 6= 0 (cf. Th. VIII.3.7), the affine picture of hj.V by the condition detP (x − b) 6= 0
(b = hj.0) (cf. Eqn. VIII.(3.2)) and the affine picture of h.V = hj.(jV ) by detP (x − a) 6= 0
(a = hj.0).

We may summarize the result of the theorem by saying that the “hyperplane at infinity”
H∞ can be seen as “half of the boundary of Ω”. Comparing with a general Makarevič space,
the reader certainly has remarked that we have two descriptions of the Cayley-transformed
realization of Ω: on the one hand by the equation detP (x − e) detP (x − e) = 0 (Th. XI.2.8
with a = γ(0) = −e , b = γ(∞) = e), on the other hand by the equation detB(x, x) = 0 (Th.
X.2.1). In fact, the two expressions coincide already on the level of operators:
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Lemma XI.2.11. If T is the JTS associated to a unital Jordan algebra, then

B(x, x) = P (x− e)P (x+ e).

Proof. We use the notation P (x, y) = 2(L(x)L(y)+L(y)L(x)−L(xy)) and P (x) = 1
2P (x, x) =

2L(x)2 − L(x2) and keep in mind that P (x, e) = 2L(x) and T (x, x) = 2L(x2):

P (x− e)P (x+ e) = (P (x)− P (x, e) + 1)(P (x) + P (x, e) + 1)

= P (x)2 + 2P (x) + 1− P (x, e)2

= 1 + 2(P (x)− 2L(x)2) + P (x)2

= 1− T (x, x) + P (x)2 = B(x, x).

3. Causal symmetric spaces

The case where T is the JTS associated to a Euclidean Jordan algebra is of special interest
because the Makarevič spaces associated to such algebras are causal symmetric spaces, i.e.
symmetric spaces together with an invariant causal structure (cf. [HO96] for the general theory):
recall from Section IX.2.3 that V and V c carry a causal structure given by the symmetric cone
Ω associated to V (cf. Section V.5.5). According to Thm. IX.2.4, the open subgroup Cau(T ) of
Co(T ) generated by the translations, G(Ω) and −j can be interpreted as the causal group of V
and of V c . All Makarevič spaces G/H = M (α) ⊂ V c inherit the causal structure from V c , and
this structure is invariant under the subgroup G of Cau(T ). These spaces form an important
class of causal symmetric spaces which we will call also causal Makarevič spaces.

To any causal structure one can associate its causal pseudogroup (cf. Section IX.2.3). In the
framework of causal symmetric spaces there are no general results describing this pseudogroup,
whereas for causal Makarevič spaces it is completely described by Th. IX.2.4: it can be imbedded
into a group (namely the group Cau(T )), and this group is much bigger than the automorphism
group G of the symmetric space. (One may conjecture that this property characterizes causal
Makarevič spaces among the causal symmetric spaces, but nothing precise is known.)

In this section we describe some basic features of causal Makarevič spaces; for further
information see the literature mentioned in the Notes. First we give the main lemma leading to
the classification of the irreducible spaces:

Lemma XI.3.1. Every causal Makarevič space is isomorphic to one where α or −α is an
involutive Jordan algebra automorphism of V .

Proof. As explained in Section IV.2.3, the parameter α belongs to the structure variety of
T ; in case of a faithful JTS this is just the set of α ∈ Str(T ) with α] = α−1 . For a Euclidean
Jordan algebra, α] = (α∗)−1 (adjoint w.r.t. the trace form). Thus

Svar(T ) = {α ∈ Str(T )|α∗ = α}

is the set of symmetric elements in the structure group. Since the structure group is defined by
algebraic equations, the set Svar(T ) has a polar decomposition: we can write α = k exp(X) with
X a symmetric element in str(T ) and k ∈ Svar(T ) an orthogonal linear map, i.e. an element of
Str(T ) ∩O(n) = ±Aut(T ). But since k is also symmetric, the conditions k∗ = k−1 and k = k∗

together imply k = k−1 , i.e. k2 = id, and k is therefore either an involutive automorphism or
the negative of one. It follows that α = k exp(X) and k lie in the same connected component
of Svar(T ), and therefore the spaces X(α) and X(k) are isomorphic (Section 2.3).
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The lemma reduces the classification of causal Makarevič spaces associated to simple
Euclidean Jordan algebras V to the classification of their involutions. This can be done by
using some well-known structure theory of Euclidean Jordan algebras; for the classical Jordan
algebras the result is contained in Tables XII.2.2 and XII.2.6 (cases i.1. with i=1, . . . , 5). The
corresponding causal Makarevič spaces are listed in Tables XII.4.2 and XII.4.5 (cases i.1 with i
as above). The interested reader should compare this classification with the one of simple causal
symmetric spaces given in [HO96]: there are only two series of causal symmetric spaces (group
case SO(n, 2) and the spaces SO(p + q, 2)/(SO(p, 1) × SO(q, 1)) with min(p, q) > 1) and four
exceptional spaces which have no direct relation to causal Makarevič spaces. Thus also in the
category of causal symmetric spaces there is a sort of “Jordan-Lie functor” which is not far from
being bijective. However, the problem of understanding this becomes even more involved by the
fact that the two series mentioned above can be associated to Jordan triple systems (cf. Table
XII.4.5), but not to Euclidean Jordan algebras. It would be very interesting to find a geometric
reason for this phenomenon.

Now let us describe some basic structure features of causal Makarevič spaces. In the
theory of causal symmetric spaces one distinguishes two types: the compactly causal and the
non-compactly causal spaces. Geometrically, the non-compact causal spaces are those which
do not admit non-trivial closed causal curves, i.e. curves γ(t) having derivative γ̇(t) in the
cone Cγ(t) ⊂ Tγ(t)M for all t . More technically, the compactly causal spaces are defined by
the conditions Co ∩ qk 6= Ø, Co ∩ qp = Ø and the non-compactly causal ones by the conditions
Co∩qp 6= Ø, Co∩qk = Ø, where q = qk⊕qp is a Cartan-decomposition of the LTS q ∼= ToM and
Co ⊂ q is the (open) Ad(H)-invariant cone defining the invariant causal structure on M = G/H
(cf. [HO96, Ch.3]).

Proposition XI.3.2. Let α be an involution of the Euclidean Jordan algebra V . Then the
space M (−α) is compactly causal and the space M (α) is non-compactly causal.

Proof. The LTS q = q(α) is given by

q = {v − pαv| v ∈ V }

(cf. proof of Prop. X.1.3), and our cone Co , equivalent to Ω, is obtained by choosing v ∈ Ω in
this description. A Cartan involution of q is given by α (Ex. X.6.9); thus qk is the subspace
corresponding to V − and qp the subspace corresponding to V + . Since e ∈ (V + ∩Ω), it follows
that Co∩qp 6= Ø, and from V −∩Ω = Ø (if this were not so, Ω would contain a point x together
with α(x) = −x since α is an automorphism; contradiction) we get Co ∩ qk = Ø. Thus M (α) is
non-compactly causal.

For the LTS q(−α) belonging to the c-dual space, the subspaces V + and V − exchange
their roles; thus the same arguments as above show that M (−α) is compactly causal.

In particular, the compact symmetric space V c = M (− idV ) (Cor. X.6.7) is compactly
causal, and its c-dual M (idV ) , the Cayley-transformed realization of the cone Ω, is non-compactly
causal. There are also spaces which are both compactly and non-compactly causal; they are
called of Cayley type (cf. [HO96]) and correspond precisely to twisted polarized LTS defined by
Euclidean Jordan algebras (Tables XII.2.2 and XII.4.2).

From the point of view of harmonic analysis, the compactly and the non-compactly spaces
show very different behaviors: the main feature of the compactly causal spaces is that one can
define analogs of the classical tube domains. In the case of a compactly causal Makarevič space
M these domains Ξ are in fact very closely related to the tube domain TΩ = V + iΩ associated
to the Euclidean Jordan algebra V : they are just the intersection

Ξ = TΩ ∩MC
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with the global complexification MC (Prop. X.3.6) of M (cf. [Be98a, Th. 3.3.4]). Under the
Cayley transform C , the tube TΩ is transformed to the bounded symmetric domain D and
C(MC) is described as in Th. XI.2.7, whence

Ξ′ := C(Ξ) = {z ∈ D| detP (z + αz) 6= 0} = D ∩ (V −C + Ω+
C ).

The bounded symmetric domain
D− := D ∩ V −C ⊂ D,

which lies on the boundary of Ξ′ , corresponds to the bounded symmetric domain G/K from
[HO96]. It is this situation we mentioned in Remark XI.2.9 as an application of Prop. XI.2.8:
in the “generic case” (essentially, this means that α is not a Peirce-involution), there is an
isomorphism G → G(D−) (cf. [BeHi99, Th. 1.8.2]). This gives the realization of G as a
“Hermitian Lie group” predicted by the general theory of causal structures.

Turning now to the non-compactly causal symmetric spaces, their main feature is that
they are causally ordered: let us write x < y if there is a non-trivial causal curve (in the sense
explained above) from x to y . If M is non-compactly causal, then this defines a partial order
on M ; the set of all y with x < y can be interpreted as the “future of x”. For instance, if C is
the constant cone field on a vector space V given by a fixed cone Co ⊂ V , then the future of x
is simply the set x+ Co . Given a causal ordering, one defines causal intervals by

]x, z[:= {y ∈M |x < y < z}

for x, z ∈ M with x < z . In the example of a vector space with constant structure, ]x, z[=
(x+Co) ∩ (z −Co). If M is compactly causal, then there exist non-trivial closed causal curves,
and these definitions no longer make sense. However, if M is the compactly causal Makarevič
space V c , then the flat interval structure on V has a unique extension to an “interval structure”
on M :

Theorem XI.3.3. Let g ∈ Cau(V ) and a = g(0) , b = g(j(0)) . Then the affine image of
g(Ω) is of one of the following types:

(1) elliptic type: a, b ∈ V and a < b (in V ); then g(Ω) ∩ V = g(Ω) = (a+ Ω) ∩ (b− Ω) ;
(2) hyperbolic type: a, b ∈ V and not a < b ; in this case g(Ω)∩ V is in general not connected;
(3) parabolic type: b ∈ H∞ , a ∈ V ; then g(Ω)∩V = g(Ω) = a+ Ω , and similarly for a ∈ H∞ ,

b ∈ V .

Proof. If a, b ∈ V , then the affine picture of the algebraically connected space g(Ω̃) is given by
the equation det(P (x−a)P (x−b)) 6= 0 (Th. XI.2.10). Similarly as in the proof of that theorem,
one shows that if b ∈ H∞ , then the affine picture is given by the condition detP (x−a) 6= 0, and
vice versa for a ∈ H∞ . The case that both a and b belong to H∞ cannot occur since (a, b) ∈ X
(cf. Th. XI.2.10).

The space g(Ω) is a connected component of g(Ω̃) . Assume a, b ∈ V and ]a, b[:= (a+ Ω)∩
(b−Ω) to be not empty; then because of the equations of g(Ω̃) the set ]a, b[ is open and closed
in g(Ω̃) ∩ V . It is connected because Ω is convex and therefore is a connected component of
g(Ω̃)∩V and thus also of g(Ω̃) (since no point of H∞ belongs to its closure). By causality of g ,
all tangent vectors from a+Ω are directed into the interior of g(Ω), and therefore the connected
component g(Ω) of g(Ω̃) must coincide with the connected component ]a, b[ . The third case is
established by similar arguments.

In the second case, although the algebraic equations of g(Ω) ∩ V are known, a concrete
description in terms of connected components turns out to be fairly involved. (One has to
distinguish the cases b ∈ a−Ω and b /∈ a−Ω, but already in the easier first case it can happen
that g(Ω) ∩ V has more than just the obvious components a+ Ω and b− Ω.)
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Already the simple example V = R , V c = S1 gives a good illustration of the theorem: Ω
is the open interval ]0,∞[ , and the translates of Ω are precisely the open intervals of the circle.
It is clear that we have three types of affine realizations of such intervals.

Restricting the “causal interval structure” of V c defines such a structure on any causal
Makarevič space M modelled on V . If M is non-compactly causal, then it follows easily from
the arguments used in the preceding proof that the interval structure thus obtained is nothing but
the interval structure coming from the global causal ordering of M . However, if M is compactly
causal, then the existence of an “interval structure” seems to be a rather surprising feature: for
a general causal manifold, one can always define an “interval structure” locally, but if it is not
ordered, one runs into topological problems when trying to globalize it. The key property making
causal Makarevič spaces exceptional in this regard is that they are causally flat, i.e. that the
causal structure can in a chart (Jordan coordinates) be reduced to a constant one on a vector
space.

The terminology used for the three types of realization is explained by the similarity with
the affine realizations of a projective conic: for the elliptic realization, the affine image of the
boundary of Ω is complete; for the parabolic realization the hyperplane at infinity is “tangent” to
the boundary of Ω, and for the hyperbolic realization it intersects the boundary non-tangentially.

4. Helwig spaces and the extension problem

Many of the most important symmetric spaces with twist are of the first kind, but some are
not, e.g. the orthogonal groups SO(m) for m odd and the Grassmannians Grp,p+q with p 6= q .
On the other hand, we have a natural imbedding SO(m) ⊂ Gl(m,R), which corresponds to the
imbedding

Asym(m,R) = {X ∈M(m,R)|X = −Xt} ⊂M(m,R),

into a JTS of the first kind, and similarly we can imbed M(p, q; R) into the JTS Sym(p+ q,R)
of the first kind. This motivates the following definitions which describe possible relations of
Jordan triple systems with Jordan algebras.

Definition XI.4.1.
(i) A JTS is said to be associated to a Jordan algebra V if it is of the form T (x, y, z) =

2(x(yz)− y(xz) + (xy)z) for some Jordan algebra V .
(ii) A JTS is said to be a −1-space in an involutive Jordan algebra (V, α) if it is given by

restricting the JTS associated to the Jordan algebra V to the −1-eigenspace of some
involutive automorphism α of V .

(iii) A JTS is said to be a −1-space in a modified involutive Jordan algebra if it is given by
restricting some JTS of the first kind to the −1-eigenspace of an involution.

We say that the corresponding symmetric spaces with twist have the properties just defined
if their JTS have them. For instance, SO(m) is the −1-space in the involutive Jordan algebra
(M(m,R), X 7→ Xt). The −1-spaces in involutive Jordan algebras are interesting because they
are nothing but Cayley-transformed Helwig spaces (cf. Section II.4):

Proposition XI.4.2. Assume that α is an involution of a unital Jordan algebra V , M the
global space associated to the JTS T of V and

M− := {x ∈M |α(x) = −x}

the corresponding −1-space. Then the Cayley transformed realization of M− ,

γ(M−) = {x ∈ V | detP (x) 6= 0, j(x) = α(x)},
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is a Helwig space, and every Helwig space is obtained in this way.

Proof. Recall first that γ(M) is the space V ′ = {x ∈ V | detP (x) 6= 0} associated to the
Jordan algebra V and thus has no points at infinity. Now the relation γjαγ−1 = −α shows that
γ(M−) = {x ∈ V ′| jα(x) = x} . This is precisely the definition of a Helwig space, and since the
involution α used here is arbitrary, any Helwig space is obtained in this way. (We allow here
Helwig spaces to be non-connected, thus slightly modifying the definition from Section II.4.)

In the example of SO(m), the Helwig space realization is the usual realization in Gl(m,R),
and in the case of Grassmannians, the Helwig space realization is the one described in Ex. II.4.2
and II.4.4. Classification shows that many symmetric spaces have a Helwig space realization. In
analogy with the situation in Lie-theory, one might guess that every JTS is a −1-space in an
involutive Jordan algebra (just as any LTS is a −1-space in an involutive Lie algebra, namely
in its standard imbedding), but this is false as shows a counterexample given by O. Loos and
K. McCrimmon ([LoM77]). On the other hand, it is an open problem whether all JTS are −1-
spaces in modified involutive Jordan algebras. The following extension problem summarizes these
questions concerning the relations between triple systems and algebras:

Problem XI.4.3.
(a) Is every real finite-dimensional JTS a −1-space in a modified involutive Jordan algebra?
(b) Which real finite-dimensional JTS are −1-spaces in involutive Jordan algebras?

The geometric version is:
(a’) Is every symmetric space a −1-space in a modified involutive Jordan algebra?
(b’) Is there an intrinsic criterion allowing to decide which symmetric spaces with twist are

Helwig spaces?

The second problem can be formulated in a more specific way. Let T be a faithful JTS
(not necessarily of the first kind). We decompose the conformal Lie algebra under the involution
Θ:

co(T ) = co(T )Θ ⊕ co(T )−Θ, (4.1)

with
co(T )Θ = q⊕ str(T )Θ = q⊕Der(T ) (4.2)

and
p := co(T )−Θ = q̂⊕ str(T )−Θ = q̂⊕Ader(T ), (4.3)

where Ader(T ) is the space of “skew-derivations” of T , i.e. the space of X ∈ End(V ) with
XT (u, v, w) = T (Xu, v, w)− T (u,Xv,w) + T (u, v,Xw). The decomposition (4.1) is a decompo-
sition of co(T ) into G -submodules, where G = Co(T )Θ

o acts by the adjoint representation ∗ . Of
course, the first term is nothing but the Lie algebra g of G with its adjoint representation. The
second term yields a new representation of G which is interesting because the representation
space p := co(T )−Θ has a natural base point, nameley the Euler operator E .

Proposition XI.4.4. Let M0 = G/H be the connected space associated to the faithful JTS
T . Then the orbit

G∗E ⊂ p = co(T )−Θ

is isomorphic to the symmetric space M = G/H , and it is an (extrinsic) symmetric submanifold
of p in the sense of Def. II.4.1.

Proof. As remarked in the proof of Prop. X.1.1, H is the open subgroup G ∩ Aut(T ) of
Aut(T ). On the other hand, for g ∈ G the condition g∗E = E is equivalent to g ∈ Str(T ) ∩G
(Prop. VIII.1.5). Clearly Str(T ) ∩G = Aut(T ) ∩G = H , and therefore G∗E ∼= G/H ∼= M0 as
a symmetric space.
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In order to prove that G∗E ⊂ p is a symmetric submanifold, we note first that G acts
via ∗ by linear maps on p . Next recall that the involution (− id)∗ commutes with Θ, and the
corresponding decompositions of the eigenspaces of Θ are the ones indicated in (4.2) and (4.3).
The Euler operator E belongs to Ader(T ) = p−(− id)∗ . We claim that Se = (− id)∗|p satisfies
the axioms (S1) – (S3) of Def. II.4.1. In fact, (S1) is clear, and (S2) follows immediately from
the fact that H is open in G(− id)∗ : for all g ∈ G ,

(− id)∗(g∗E) = ((− id)∗g)∗E.

Finally, from the decomposition g = Der(T )⊕ q we get

Te(G∗E) = [q, E] = q̂ = p−(− id)∗ ,

whence (S3).

Now Problem XI.4.3 (b’) can be formulated in the following way:

Problem XI.4.5.
(b1) Under which conditions is there a “natural” Jordan algebra structure with unit E on p

such that (− id)∗|p is turned into an involution?
(b2) Under which conditions is the orbit G∗E ⊂ p a Helwig space?

The most difficult point in Problem (b1) seems to be to turn Ader(T ) into a Jordan
algebra V + or, put in another way, to describe the obstruction for this in the general case. Here
it would be helpful to have an intrinsic characterization of Helwig spaces among the symmetric
submanifolds.

5. Examples

Finally we present the most important examples of global symmetric spaces with twist.
The theory developed so far shows that it is natural to realize them in families

M
(α)
0 = Co(T )Θα∗

o .0,

where T is a “fixed” JTS and α runs through the structure variety of T (i.e. α belongs to
the structure group and Θ(α) = α−1 ). Then all spaces M (α)

0 are conformally equivalent in the
sense that they have the same conformal group Co(T ) and the same underlying Jordan pair
TphC . The Bergman-operator and the quasi-inverse for M (α)

0 are just given by B(x, αy), resp.
by Θ(tαy)(x), and thus all members of the family have very similar Jordan-theoretic descriptions
(just replace y by αy ).

The most natural candidates for α are involutions, i.e. automorphisms of order 2. We
start with the case that T is associated to a (simple) Jordan algebra V . Then the spaces M (α)

0

are spaces of the first kind, also called Makarevič spaces (Remark XI.1.7).

5.1. The general linear group and its modifications. We have already seen that the
general linear group is the space M = M (id) associated to V = M(n,R) with the triple product
T (X,Y, Z) = XY Z + ZY X (Ex. IX.1.4, IX.2.9).

For α = − idV , we obtain the c-dual space M (− idV ) = Gl(n,C)/Gl(n,R) (cf. Ex. X.1.4).
For α(X) = −Xt , we are led to the JTS T (α)(X,Y, Z) = −(XY tZ + ZY tX) considered

in Ex. X.1.5. As seen there, the associated space is the Grassmannian O(2n)/(O(n) × O(n)).
This is the conformal compactification of V .

For α(X) = Xt , we get the c-dual space O(n, n)/(O(n)×O(n)) of the Grassmannian.
More generally, let α(X) = A−1XtA be the adjoint w.r.t. the form given by an orthogonal

matrix A .
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Lemma XI.5.1. For all g ∈ Co(T )o = P Gl(2n,R)o ,

(jα)∗ =
(
A 0
0 −A

)
(gt)−1

(
A 0
0 −A

)−1

,

(−jα)∗ =
(
A 0
0 A

)
(gt)−1

(
A 0
0 A

)−1

.

Proof. We use notation of the proof of Prop. VIII.4.2. Equation VIII.(4.8) shows that
the map α extends to the conformal compactification Grn,2n(R) by E 7→ E⊥,A1 assigning to
an n -dimensional subspace its orthocomplement w.r.t. the form on R2n given by the matrix
A1 :=

(
0
−A

A
0

)
. Similarly, writing Eqn. VIII.(4.6) for invertible X in the form

(v|w)− (Xv|(X∗)−1w) = 0,

we see that the map −jα extends to the conformal compactification by E 7→ E⊥,A2 assigning
to an n -dimensional subspace its orthocomplement w.r.t. the form on R2n given the matrix
A2 :=

(
A
0

0
A

)
. The same equation shows that jα extends to Grn,2n(R) by E 7→ E⊥,A3 w.r.t. the

matrix A3 :=
(
A
0

0
−A
)

. As usual, we identify the birational maps jα etc. with their extension to
the conformal compactification.

Now, if E⊥ denotes the orthocomplement of E ∈ Grn,2n(R) w.r.t. an arbitrary non-
degenerate form, the definition of the adjoint yields for all g ∈ Gl(2n,R)

g.(E⊥) = ((g∗)−1)⊥.

Thus the map ⊥: Grn,2n(R) → Grn,2n(R) induces the map g 7→ (g∗)−1 of the conformal group
P Gl(2n,R). Combining this observation with the expression of jα resp. of −jα in terms of
orthocomplements yields the claim.

The connected fixed point group of (jα)∗ is O(
(
A
0

0
−A
)
,R)o , and the connected fixed point

group of (−jα)∗ is O(
(
A
0

0
A

)
,R)o . The automorphism (− id)∗ is given by conjugating with the

matrix In,n . It follows that

M
(α)
0
∼= O(

(
A 0
0 −A

)
,R)/(O(A,R)×O(A,R)),

M
(−α)
0

∼= O(
(
A 0
0 A

)
,R)/(O(A,R)×O(A,R)).

Theorem XI.5.2. Up to isomorphism, the spaces which are conformally equivalent to Gl(n,R)
are classified as follows:

(i) Gl(n,R) and its c-dual space Gl(n,C)/Gl(n,R) ,
(ii) the “pseudo-Grassmannians” O(p+ u, q + v)/(O(u, v)×O(p, q)) with p+ q = u+ v = n ,
(iii) if n = 2m is even, the spaces Sp(2m,R)/(Sp(m,R)× Sp(m,R)) .

Proof. Type (i) has been discussed above. The space of type (iii) is obtained by choosing
A = J ; it is self c-dual. The space of type (ii) with p = u, q = v is obtained by choosing A = Ip,q ;
the c-dual is a space of the same type with p and q exchanged. The other spaces of type (ii)
are obtained from α(X) = Ip,qX

tIu,v by a reasoning similar to the one given above. Finally,
for the proof that the list is complete, we need the complete description of the structure group
Str(T ) (Table XII.1.3). From this one gets a description of Svar(T ) (the self-adoint elements of
Str(T ) w.r.t. the trace form). Then one checks that the elements α leading to the spaces (i) –
(iii) represent already all connected components of Svar(T ) (cf. [Ma73]).
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Similarly, we get the list of spaces conformally equivalent to the group Gl(n,H):

(i) Gl(n,H) and its c-dual space Gl(2n,C)/Gl(n,H),
(ii) Sp(p+ u, q + v)/(Sp(u, v)× Sp(p, q)), u+ v = p+ q = n ,
(iii) if n = 2m , O∗(4m)/(O∗(2m)×O∗(2m)).

Theorem XI.5.3. Up to isomorphism, the spaces which are conformally equivalent to Gl(n,C)
(considered as real symmetric space with twist) are classified as follows:

(i) spaces of complex structures: Gl(n,H)/Gl(n,C) and Gl(2n,R)/Gl(n,C) ,
(ii) the “complex pseudo-Grassmannians” U(p+u, q+v)/(U(u, v)×U(p, q)) , p+q = u+v = n ,
(iii) Gl(n,C) ,
(iv) SO(2n,C)/(SO(n,C)× SO(n,C)) ,
(v) if n = 2m , Sp(2m,C)/(Sp(m,C)× Sp(m,C)) .

Proof. The proof follows the same lines as the proof of Thm. XI.5.2. However, we have to
distinguish the cases (a) that α is C-conjugate linear and (b) that α is C-linear. Case (b) leads
as above the spaces of type (iii), (iv) and (v) which are straight complex and therefore self c-dual.
As for case (b), the automorphism α(X) = Ip,qX

t
Iu,v leads to the spaces of type (ii) (just as for

F = R or H).
We will show that the automorphism α(Z) = Z leads to the spaces of type (i). The induced

automorphism α∗ of P Gl(2n,C) is again just complex conjugation of matrices, and since (−j)∗
is conjugation by the matrix J , we have (−jα)∗g = JgJ−1 . The fixed point group is Gl(n,H)
(cf. Eqn. (I.6.16)). Similarly, the fixed point group of (jα)∗ is isomorphic to Gl(2n,R). Taking
in these groups the group fixed under conjugation by In,n we get Gl(n,C). We thus obtain
the symmetric space Gl(2n,R)/Gl(n,C) and Gl(n,H)/Gl(n,C) which have been interpreted in
Section I.6.3 as spaces of complex structures in Gl(2n,R), resp. in Gl(n,H).

For the proof of completeness of the classification the same remarks as in the proof of Thm.
XI.5.2 apply.

The Grassmannians Grp,p+q(F) with p 6= q are treated in a similar way. The spaces of
type (i) (resp. types (i) and (iii) if F = C) are missing; for the other types there are obvious
analogs of the series named above.

5.2. Orthogonal and unitary groups.

Lemma XI.5.4.
(i) The group O(A,R) is the symmetric space with twist associated to the JTS Asym(A,R)

with the triple product T (X,Y, Z) = XY Z + ZY X .
(ii) The group U(A, ε,F) is the symmetric space with twist associated to the JTS Aherm(A, ε,F)

with the triple product T (X,Y, Z) = XY Z + ZY X .

Proof. This can be proved both in the context of homogeneous spaces (Ex. X.1.4) and in the
algebraic context (Ex. X.2.7). In the context of the homogeneous space Gl(n,F) consider the
automorphism α(X) = −X∗ . The induced automorphism of the conformal group P Gl(2n,F) is
given by taking the adjoint w.r.t. the form

(
0
A
A
0

)
(cf. proof of Lemma XI.5.1). The subgroup

of Gl(2n,F) fixed under this involution is

{
(
g h
h g

)
| g, h ∈ U(A, ε,F)},

and the subgroup in this group fixed under (− id)∗ is isomorphic U(A, ε,F) (cf. Ex. X.1.4).
This shows that U(A, ε,F)×U(A, ε,F)/U(A, ε,F) is the sub-symmetric space of Gl(n,F) corre-
sponding to the sub-JTS Aherm(A, ε,F) of M(n,F).
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In the algebraic context, note that the real Cayley transform R directly transforms graphs
of operators from Aherm(A, ε,F) into graphs of A-unitary operators (cf. Prop. VIII.4.4).

Theorem XI.5.5. Up to isomorphism, the spaces which are conformally equivalent to O(n)
are classified as follows:

(i) O(p, q) and its c-dual space O(n,C)/O(p, q) (p+ q = n),
(ii) if n = 2m is even, Gl(2m,R)/ Sp(m,R) and its c-dual space U(m,m)/ Sp(m,R) .

Proof. The spaces O(p, q) are associated to the automorphism α(X) = Ip,qXIp,q of V =
Asym(n,R). If n = 2m is even, then X 7→ JX is an isomorphism of Asym(2m,R) onto the JTS
Sym(J,R) associated to the Jordan algebra Sym(J,R) (Lemma VIII.4.3). The spaces of type
(ii) are just the prehomogeneous symmetric space associated to this Jordan algebra (cf. Section
II.3.2) and its c-dual. For completeness of this classification, see remarks above.

In the same way one gets for the other orthogonal and unitary groups the classification of
conformally equivalent spaces:

The group Sp(n,R):
(i) Sp(n,R) and its c-dual Sp(n,C)/Sp(n,R),

(ii) Gl(2n,R)/O(2n− p, p) and its c-dual space U(2n− p, p)/O(2n− p, p) (for p = 0 this is a
space of Lagrangians).

The group Sp(n):
(i) Sp(p, q) and its c-dual Sp(n,C)/Sp(p, q) (p+ q = n),

(ii) Gl(n,H)/O∗(2n) and its c-dual space U(n, n)/O∗(2n).

The group O∗(2n):
(i) O∗(2n) and its c-dual space O(2n,C)/O∗(2n),
(ii) Gl(n,H)/ Sp(p, q) and its c-dual space U(2p, 2q)/ Sp(p, q) (p + q = n ; for q = 0 this is a

space of Lagrangians).

The group U(n) needs a special treatment:

Theorem XI.5.6. Up to isomorphism, the spaces which are conformally equivalent to U(n)
are classified as follows:

(i) U(p, q) and its c-dual space Gl(n,C)/U(p, q) (p+ q = n),
(ii) O∗(2n)/O(n,C) and its c-dual space O(n, n)/O(n,C) ,
(iii) if n = 2m is even, Sp(2m,R)/ Sp(m,C) and its c-dual space Sp(m,m)/ Sp(m,C) .

Proof. Lemma XI.5.4 says that U(n) is associated to the JTS Aherm(n,C). Multiplication by
i is an isomorphism onto V = Herm(n,C). The space of type (i) is associated to the involution
α(X) = Ip,qXIp,q of V . We claim that the space of type (i) is associated to α(Z) = Zt = Z
and the space of type (ii) to α(Z) = JZtJ−1 = JZJ−1 . Both are of the type α(Z) = A−1ZtA
with an orthogonal matrix A . Recall that PU(J,C) is the (identity component of the) conformal
group Co(Herm(n,C)). The map ±jα∗ is given by taking the adjoint in U(J) w.r.t. the form
given by

(
A
0

0
±A
)

. Thus

Co(T )(±jα)∗
o = (PU(J,C) ∩ PO(

(
A 0
0 ±A

)
,C))o.

The subgroup fixed under (− id)∗ is

{
(
g 0
0 gt

)
| g ∈ O(A,C)};



192 Chapter XI: Spaces of the first and of the second kind

is is isomorphic to O(A,C).
If A = 1n , then since U(J,C)∩O(2n,C) = O∗(2n) we get the space M (α) = O∗(2n)/O(n,C),

and since U(J,C) ∩O(n, n; C) ∼= O(n, n) (via the Cayley transform), we get the space M (−α) =
O(n, n)/O(n,C).

If A = J , then U(J2n,C) ∩ U(
(
J
0

0
J

)
,C) is isomorphic to Sp(n, n) (via the Cayley trans-

form), and we get M (α) = Sp(n, n)/ Sp(n,C). Using that U(J2n,C)∩U(
(
J
0

0
−J
)
,C) is isomorphic

to Sp(2n,R) (again via Cayley transform), we get M (−α) = Sp(2n,R)/ Sp(n,C).

For the complex orthogonal groups, the more subtle modifications are again given by
conjugate-linear involutions:

Theorem XI.5.7. Up to isomorphism, the spaces which are conformally equivalent to the real
symmetric space with twist O(n,C) are classified as follows:

(i) O(n,C) ,
(ii) if n = 2m is even, Gl(2m,C)/ Sp(m,C) ,
(iii) O∗(2n)/U(p, q) and its c-dual space O(2p, 2q)/U(p, q) (p+q = n ; for q = 0 this is a space

of Lagrangians).

Proof. (i) and (ii) are constructed as in the case of O(n). We claim that (iii) associated to
the involution α(X) = Ip,qXIp,q = −A−1X

t
A with A = Ip,q of the JTS V = Asym(n,C). In

fact, the same arguments as in the preceding proof show that

Co(T )±jαo = (PO(
(

0 1
1 0

)
,C) ∩ PU(

(
A 0
0 ∓A

)
,C),

and the subgroup fixed under (− id)∗ is isomorphic to U(A,C). Applying the Cayley-transform,
we see that the spaces M (±α) = Co(V )(±jα)∗/U(Ip,q,C) have the form given in the claim.

Similarly, we get for Sp(n,C) the classification of conformally equivalent spaces:

(i) Sp(n,C),
(ii) Gl(2n,C)/O(2n,C),
(iii) Sp(2n,R)/U(2n− p, p) and its c-dual space Sp(2n− p, p)/U(2n− p, p) (for p = 0 this is a

space of Lagrangians).
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5.3. Spheres and hyperbolic spaces.

Theorem XI.5.8. Up to isomorphism, the spaces which are conformally equivalent to the
sphere Sn are classified as follows:

(i) the sphere Sn and its c-dual space, the real hyperbolic space Hn(R) ,
(ii) the spaces Sr ×Hn−r(R) with 0 < r < n .

Proof. We realize the sphere Sn and its conformal group P SO(n+1, 1) as in Section VIII.4.4.
One verifies that then the spaces Sr × Hn−r(R) are associated to the involution of the JTS
V = Rn given by Ir,n−r and that these involutions represent all connected components of the
structure variety of V (cf. [Ri69], [Ma73]).

Note that the spaces given in part (ii) are reducible as symmetric spaces, but not as
symmetric spaces with twist (cf. Thm. V.3.4). Similarly, one gets the list of spaces which are
conformally equivalent to the Euclidean Jordan algebra Rn−1,1 :

(i) the compact space Sn−1 × S1 and its c-dual Hn−1(R)× R ,
(ii) the spaces Sn−r×SO(r−1, 2)/ SO(r−1, 1) and their c-duals Hn−r(R)×SO(r, 1)/ SO(r−

1, 1) (r > 1). (For r = n this space is irreducible as symmetric space, for r < n it is not.)
The spaces equivalent to the conformal compactification (Sp × Sq)/(Z/(2)) of the JTS Rp,q are
listed in Table XII.5.1. For p = q we have the exceptional feature that the complex sphere SpC
is conformally equivalent to Sp × Sp/(Z/2). The conformal structure thus obtained is different
from the usual one on SnC described in Section VIII.4.4. For the usual conformal structure on
SnC , we have the following classification of conformally equivalent spaces (cf. [Ma73]):

(i) SpC × S
n−p
C (0 ≤ p ≤ n),

(ii) the pseudo-Hermitian spaces SO(p+1, n−p+1)/(SO(p−1, n−p+1)×SO(2)) (0 < p < n+2)
(for p = n+ 1 this space is compact Hermitian symmetric).
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Notes for Chapter XI.

XI.1. Theorem XI.1.4 is due to Koecher ([Koe69a, Satz III.4.1]); our proof follows the one
given there, but avoids the use of Koecher’s theorem on “essential automorphisms” (loc.cit, Satz
I.2.1). The statement of Cor. XI.1.8 holds for any JTS (not only the ones of the first kind); this
is a result of K. Meyberg ([Mey70, Satz 4.2]). However, we have no geometric interpretation of
this fact in case of a JTS of the second kind.

XI.2. Our treatment of the Cayley transform follows [Lo77, Ch.X]; as already mentioned,
this approach can be generalized to any hyperbolic tripotent. The generalized tube domains
(Def. XI.2.6) were introduced in [Be98a], where also Thm. XI.2.7 was proved.

XI.3. Causal Makarevič spaces have been introduced and classified in [Be96b]; further
results on these spaces can be found in [Be98a] and [BeHi98]. From a purely Lie theoretic view
point, these spaces and the corresponding causal compactifications have been investigated by
F. Betten [Bet96]. The first time Makarevič spaces implicitly turned up in the study of causal
symmetric spaces was in relation with the Cayley-type spaces, cf. [Fa95], [Cha98] and with
compression semigroups, cf. [Kou95].

XI.4. In [Hw70], K.H. Helwig did not use conformal group techniques and therefore did
not obtain the Cayley transformed realization of the spaces he introduced. Proposition XI.4.4 is
essentially due to D. Ferus ([Fe80, Lemma 4]; see also the generalization by H. Naitoh [Nai83]). If
M is compact, then Proposition XI.4.4 describes the “standard imbedding of the symmetric R -
space M ”. To our knowledge, the relation between Helwig spaces and the immersed symmetric
spaces of Ferus (Problem XI.4.5) has not yet been studied from a Jordan theoretic point of view.

XI.5. The presentations follows [Ma73], cf. [Be96b] and [Be98].
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Chapter XII: Tables

The tables given in this chapter contain the classification and the most basic information
about simple Jordan algebras, -triple systems and -pairs and about their associated symmetric
spaces. We use the classification principle explained in Section IV.2. Most of the material given
here has already been presented in form of examples (Sections I.6, IV.1, VIII.4, IX.2, X.1, X.2,
XI.5); therefore we will not repeat calculations. The aim of this chapter is to provide reference
material in a concise form; the results themselves are essentially all known from work of K.-H.
Helwig, B.O. Makarevič, E. Neher and others (see the notes), but some of them are not easily
accessible for non-specialists. We have not included the exceptional spaces and refer to the work
of E. Neher ([Ne81], [Ne85]) for this.

Throughout this chapter we use notation introduced in Sections I.6, II.3 and VIII.4; recall
in particular the matrices J = Jn =

(
0
−1n

1n
0

)
, F = Fn =

(
0
1n

1n
0

)
and Ip,q =

(
1p
0

0
−1q

)
.

The classical notation O(p, q) := O(Ip,q,R), Sym(n,R) := Sym(1n,R), Sp(n,R) := O(Jn,R)
etc. will be used when there is no risk of ambiguity. Elements of M(p, q; H) are considered as
quaternionic p× q -matrices and not as certain elements of M(2p, 2q; C). Recall finally that Gr
denotes Grassmannians and Lag varieties of Lagrangians.

1. Simple Jordan algebras

Table XII.1.1. Complex simple Jordan algebras and associated open symmetric orbits Ω.

underlying vector space VC open symmetric orbit Ω
1. M(n,C) Gl(n,C)
2. Sym(n,C) Gl(n,C)/O(n,C)
3. Sym(J,C) Gl(2n,C)/ Sp(n,C)
4. Cn (SO(n,C)× C∗)/ SO(n− 1,C)
5. Herm(3,OC) (EC

6 × C∗)/FC
4

In cases 1,2,3 and 5 the Jordan product is given by XY = 1
2 (X ◦ Y + Y ◦ X). In case 4 it is

given by xy = b(x, e)y + b(y, e)x − b(x, y)e , where b(u, v) = utv and e is the last vector of the
canonical basis (cf. Lemma II.3.3).

Table XII.1.2. Real simple Jordan algebras. The first class of these is given by the algebras
from Table XII.1.1, considered as real ones. The second class is given by real forms V of complex
algebras VC , i.e. by subalgebras fixed under a complex conjugation τ :

underlying vector space V conjugation τ of VC open symmetric orbit Ω
1.1. Herm(Ip,q,C) τ(Z) = Ip,qZ

t
Ip,q Gl(n,C)/U(p, q)

1.2. M(n,R) τ(Z) = Z Gl(n,R)+
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1.3. M(m,H) τ(Z) = JZJ−1 Gl(m,H)
2.1. Sym(Ip,q,R) τ(Z) = Ip,qZIp,q Gl(n,R)/O(p, q)
2.2. Herm(m,ϕ,H) τ(Z) = JZJ−1 Gl(m,H)/ SO∗(2m)
3.1. Herm(Ip,q,H) τ(Z) = Ip,qZ

t
Ip,q Gl(n,H)/ Sp(p, q)

3.2. Sym(J,R) τ(Z) = Z Gl(2n,R)/ Sp(n,R)
4.1. Rp,q τ(z) = Ip,qz (SO(p, q)× R+)/ SO(p− 1, q)
5.1. Herm(3,O) τ(Z) = Z (E6(−26) × R+)/F4

5.2. Herm(3,Os) τ(Z) = Z
t

(E6(I) × R+)/F4(I)

(In 1.3 and 2.2, n = 2m .) The Jordan algebra structure on V (line i.j.) is the one inherited
from VC (Table XII.1.1, line i.). In particular, in case 4.1 it is given by the formula for case 4.,
with b replaced by b(x, y) = xtIp,qy . For notation concerning case 5 cf. [Lo77, Section 4.14] or
[FK94, Ch.V].

Table XII.1.3. Structure- and automorphism groups (non-exceptional cases). The identity com-
ponents of Str(V ) and Aut(V ) can be read of the preceding table since Ω = (Str(V )/Aut(V ))e .
In the following table we describe also the other connected components of Str(V ) and Aut(V ).
For simplicity of notation we denote by [Gl(n,C) × Gl(n,C)] the effective group of the natural
action of Gl(n,C) × Gl(n,C) on M(n,C), and similarly for other natural actions on matrix
spaces (cf. Section II.3). In the following table, we give a set of generators of the relevant groups.
A linear map α is denoted by (X 7→ α(X)). The identity component is usually given by the
term in brackets.
Case AutR(VC) StrR(VC)
1. [Gl(n,C)], (Z 7→ Zt), (Z 7→ Z) [Gl(n,C)×Gl(n,C)], (Z 7→ Zt), (Z 7→ Z)
2. [O(n,C)], (Z 7→ Z) ±[Gl(n,C)], (Z 7→ Z)
3. [Sp(n,C)], (Z 7→ Z) ±[Gl(2n,C)], (Z 7→ Z)
4. O(n− 1,C), (z 7→ z) O(n,C)× C∗, (z 7→ z)
Case Aut(V ) Str(V )
1.1. [U(p, q)], (Z 7→ Zt) ±[Gl(n,C)], (Z 7→ Zt)
1.2. [Gl(n,R)], (X 7→ Xt) [Gl(n,R)×Gl(n,R)], (X 7→ Xt)
1.3. [Gl(m,H)], (Z 7→ Zt) [Gl(m,H)×Gl(m,H)], (Z 7→ Zt)
2.1. [O(p, q)] ±[Gl(n,R)]
2.2. [O∗(2m)] ±[Gl(m,H)]
3.1. [Sp(p, q)] ±[Gl(m,H)]
3.2. [Sp(n,R)] ±[Gl(2n,R)]
4.1. O(p− 1, q) O(p, q)× R∗

Remark XII.1.4. The Jordan algebras 1.1, 2.1, 3.1 (whith p = n, q = 0) 4.1 (with p = 1, q =
n − 1) and 5.1 are Euclidean and the associated open orbits Ω are precisely the irreducible
symmetric cones.

Table XII.1.5. Low-dimensional isomorphisms.
Complex Jordan algebras:

C ∼= M(1,C) ∼= Sym(1,C) ∼= Sym(J1,C) (1.1)

C2 ∼= C× C (not simple!) (1.2)

C3 ∼= Sym(2,C) (1.3)

C4 ∼= M(2,C) (1.4)

C6 ∼= Sym(J2,C) (1.5)
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Real Jordan algebras:

R ∼= M(1,R) ∼= Sym(1,R) ∼= Herm(1,C) ∼= Herm(1,H) ∼= Sym(J1,R) (1.6)

R2 = R2,0 ∼= C (1.7)

R1,1 ∼= R× R (not simple!) (1.8)

R1,2 ∼= Sym(2,R); R1,2 ∼= Sym(I1,1,R), (1.9)

R3 ∼= Herm(1, ϕ,H) (1.10)

R1,3 ∼= Herm(2,C); R3,1 ∼= Herm(I1,1,C), (1.11)

R4 = R4,0 ∼= H (1.12)

R2,2 ∼= M(2,R) (1.13)

R1,5 ∼= Herm(2,H); R5,1 ∼= Herm(I1,1,H) (1.14)

R3,3 ∼= Sym(J2,R) (1.15)

The isomorphisms (1.1) and (1.6) are trivially verified since there is just one one-dimensional com-
plex, resp. real Jordan algebra. The isomorphisms (1.8), (1.9), (1.11) and (1.14) of Euclidean
Jordan algebras are well-known (cf. [FK94, p.98]) and are easily established using some ele-
mentary structure theory of Euclidean Jordan algebras (Peirce-decomposition). Complexifying,
they yield the isomorphisms (1.2) – (1.5). The other isomorphisms are realized by identifying
the corresponding other real forms. However, the real forms R2,4 and R4,2 of C6 appear as
“exceptional” when related to the matrix algebra Sym(J2,C).

2. Simple Jordan triple systems

Our classification simple real Jordan triple systems follows the classification principle
outlined in Section IV.2. The information on structure groups needed for this classification
can be found in Tables XII.1.3 and XII.2.3.

Table XII.2.1. Simple complex Jordan pairs. The simple complex Jordan pairs are all of the
form TphC where T is one of the following simple complex JTS:

underlying vector space VC Jordan triple product on VC

1. M(n,C) T (X,Y, Z) = XY Z + ZY X
2. Sym(n,C) T (X,Y, Z) = XY Z + ZY X
3. Sym(J,C) T (X,Y, Z) = XY Z + ZY X
4. Cn T (x, y, z) = x(yz)− y(xz) + (xy)z
5. Herm(3,OC) T (X,Y, Z) = XY Z + ZY X
6. M(p, q; C), p > q T (X,Y, Z) = XY tZ + ZY tX
7. Asym(2m+ 1,C) T (X,Y, Z) = XY Z + ZY X

8. M(1, 2; OC) T (X,Y, Z) = XỸ tZ + ZỸ tX

In the last line Y → Ỹ denotes the canonical (C -linear) involution of OC (cf. [Lo77, 4.14]). In
cases 1. – 5. the Jordan triple product is the one associated to the Jordan algebra structure
from Table XII.1.1. In cases 6. – 8. the Jordan triple product is induced from imbeddings as
−1-eigenspaces into Jordan algebras: Asym(2m + 1,C) ⊂ M(2m + 1,C) is the −1-eigenspace
of Z 7→ Zt ; M(p, q; C) ⊃ Sym(p + q,C) is the −1-eigenspace of Z 7→ Ip,qZIp,q , and similarly
for M(1, 2; OC) ⊂ Herm(3,OC) (cf. [Lo77, 4.14]).
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Table XII.2.2. Simple real Jordan pairs. The first class of these is given by complex Jordan
pairs considered as real ones (see above). The second class is given by real forms of complex
pairs. They are described by real forms V of the complex JTS given above.
real form V = V τC conjugation τ of VC

1.1. Herm(n,C) τ(Z) = Z
t

1.2. M(n,R) τ(Z) = Z
1.3. n = 2m : M(m,H) τ(Z) = JZJ−1

2.1. Sym(n,R) τ(Z) = Z
2.2. n = 2m : Herm(m,ϕ,H) τ(Z) = JZJ−1

3.1. Herm(m,H) τ(Z) = Z
t

= JZJ−1

3.2. Sym(J,R) (∼= Asym(2m,R)) τ(Z) = Z
4.1. Rp,q , p+ q = n, p ≥ 1 τ(z) = Ip,qz
5.1. Herm(3,O) τ(Z) = Z

5.2. Herm(3,Os) τ(Z) = Z̃
6.1. M(p, q; R), p > q τ(Z) = Z
6.2. p = 2r, q = 2s : M(r, s; H) τ(Z) = JrZJ

−1
s

7.1. Asym(2m+ 1,R) τ(Z) = Z
8.1. M(1, 2; O) τ(Z) = Z

8.2. M(1, 2; Os) τ(Z) = Z̃

In all cases, the JTS-structure is the one induced from the corresponding complex space in Table
XII.2.1.

Table XII.2.3. Structure groups of simple Jordan pairs. The structure groups of the pairs 1.
– 5. and 1.1. – 5.2. are precisely the ones of the corresponding Jordan algebras (Table XII.1.3).
For the other classical pairs, they are as follows:

Case Str(T )
6. [Gl(p,C)×Gl(q,C)], (Z 7→ Z)
7. ±[Gl(2n+ 1,C)], (Z 7→ Z)
6.1. [Gl(p,R)×Gl(q,R)]
6.2 [Gl(p,H)×Gl(q,H)]
7.1 ±[Gl(2m+ 1,R)]

Table XII.2.4. Simple Hermitian Jordan triple systems. The first class of these is given by
complex Jordan pairs. The second class is given by the JTS of the form T (α) where T is a
complex JTS from Table XII.2.1 (line i.) and α one of the following conjugate-linear elements
of the structure variety (line i.X.):

1. A. α(X) = X

1. B. α(X) = Ip,qX
t
Iu,v (p+ q = u+ v = n)

2. A. α(X) = Ip,qXIp,q

3. A. α(X) = JIp,qX
t
JIp,q (p+ q = 2m)

4. A. α(z) = Ip,qz

4. B. (n even) α(z) = Jz

6. A. α(X) = Ik,lXIi,j (k + l = p, i+ j = q )
7. A. α(X) = Ip,qXIp,q (p+ q = 2m+ 1)

Table XII.2.5. Simple complex Jordan triple systems. The first class is given by complex
Jordan pairs. The second class is given by JTS of the form T (α) where T is from Table XII.2.1
and α is one of the following C-linear elements of the structure variety:
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1. a. α = id
1. b. α(X) = Xt

1. c. n = 2m : α(X) = JXtJ−1

2. a. α = id
2. b. n = 2m : α(X) = JXJ−1 (i.e., T (α) ∼= Asym(Jm,C))
3. a. α = id
3. b. α(X) = JXJ−1 (i.e., T (α) ∼= Asym(2n,C))
4. a. α = Iq+1,p−1 , p > 0
6. a. α = id
6. b. (p = 2r , q = 2s): α(X) = JrXJ

−1
s

7. a. α = id

Table XII.2.6. Simple real Jordan triple systems. The first four classes are given by Tables
XII.2.1, XII.2.2, XII.2.4 and XII.2.5. The last class is given by JTS of the form T (α) where T is
a JTS from Table XII.2.2 (line i.j.) and α one of the following elements of the structure variety
(line i.j.x.). In cases 1.3, 2.2, 3.1 and 6.2, X is a quaternionic matrix and j denotes also the
matrix j1n with the usual element j ∈ H .

1.1. a. α(X) = Ip,qXIp,q
1.1. b. α(X) = Xt

1.1. c. n = 2m : α(X) = JXtJ−1

1.2. a. α = id
1.2. b. n = 2m : α(X) = JXtJ−1

1.2. c. α(X) = Ip,qX
tIu,v

1.3. a. α = id
1.3. b. α(X) = Xt

1.3. c. α(X) = Ip,qX
t
Iu,v

2.1. a. α(X) = Ip,qXIp,q
2.1. b. n = 2m : α = JXJ−1

2.2. a. α = id
2.2. b. α(X) = Ir,sjXj

−1Ir,s (r + s = m) (i.e., T (α) ∼= Aherm(Ir,s,H))
3.1. a. α(X) = Ip,qXIp,q
3.1. b. α(X) = jXj−1 (i.e. T (α) ∼= Aherm(m,ϕ,H))
3.2. a. α = id
3.2. b. α(X) = JIp,qXJIp,q (i.e. T (α) ∼= Asym(Ip,q,R))
4.1. a. α(x+ y) = Ir,p−rx+ Is,q−sy (x ∈ Rp, y ∈ Rq )
4.1. b. n even, p = q : α = F

6.1. a. α(X) = Ik,lXIi,j
6.1. b. p = 2r , q = 2s : α(X) = JrXJ

−1
s

6.2. a. α(X) = Ik,lXIi,j
6.2. b. α(X) = jXj−1

7.1. a. α(X) = Ip,qXIp,q

3. Conformal groups and conformal completions

Table XII.3.1. Conformal groups and conformal completions of simple real Jordan triple sys-
tems. The conformal group and the conformal completion depend only on the underlying Jordan
pair. They are determined as described in Section VIII.4. The normal forms corresponding to
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the Jordan pairs from Tables XII.2.1 (line i.), resp. XII.2.2. (line i.j) are given in the following
table. The full conformal group Co(T ) is generated by the group given in the table (which is in
most cases the identity component) and the elements of Str(T ) which are given in Tables XII.1.3
and XII.2.3. Note that if T belongs to a Euclidean Jordan algebra (cases 1.1, 2.1, 3.1, 4.1 and
5.1) the conformal group can also be interpreted as a causal group (cf. Sections VIII.2.3, X.5.3).
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complex Jordan pair VC (VC)c Co(T )
1. M(n,C) Grn,2n(C) P Gl(2n,C)
2. Sym(n,C) Lag(J,C) P Sp(n,C)
3. Sym(J,C) ∼= Asym(2n,C) ∼= Lag(I2n,2n,C) ∼= P SO(4n,C)
4. Cn (Sn)hC SO(n+ 2,C)
5. Herm(3,OC) E7

6. M(p, q; C) Grp,p+q(C) P Gl(p+ q,C)
7. Asym(2n+ 1,C) ∼= Lag(I2n+1,2n+1,C) ∼= P(SO(4n+ 2,C))
8. Herm(1, 2; OC) E6

real Jordan pair V V c Co(T )
1.1. Herm(n,C) = iAherm(n,C) ∼= Lag(In,n, τ,C) ∼= P(U(n, n))
1.2. M(n,R) Grn,2n(R) P Gl(2n,R)
1.3. M(m,H) Grm,2m(H) P Gl(2m,H)
2.1. Sym(n,R) Lag(J,R) P Sp(n,R)
2.2. Herm(m,ϕ,H) ∼= Aherm(m,H) ∼= Lag(Im,m, τ,H) ∼= P Sp(m,m)
3.1. Herm(m,H) ∼= Aherm(m,ϕ,H) ∼= Lag(Im,m, ϕ,H)0

∼= P SO∗(4m)
3.2. Sym(J,R) ∼= Asym(2n,R) ∼= Lag(I2n,2n,R) ∼= P SO(2n, 2n)
4.1. Rp,q Sp × Sq SO(p+ 1, q + 1)
5.1. Herm(3,O) E7(−25)

5.2. Herm(3,Os) E7(7)

6.1. M(p, q; R) Grp,p+q(R) P Gl(p+ q,R)
6.2. M(p, q; H) Grp,p+q(H) P Gl(p+ q,H)
7.1. Asym(2n+ 1,R) ∼= Lag(I2n+1,2n+1,R) ∼= P SO(2n+ 1, 2n+ 1)
8.1. M(1, 2; O) E6(6)

8.2. M(1, 2; Os) E6(−26)

Here τ is the standard-conjugation of H , resp. of C , and ϕ is τ composed with conjugation by
the quaternion j . In the exceptional cases a geometric description of the conformal compactifi-
cation is missing.

Table XII.3.2. Low dimensional isomorphisms of conformal groups. The isomorphisms of
Jordan algebras from Table XII.1.4 induce the following isomorphisms of conformal groups (the
isomorphism (3.x) comes from Eqn. (1.x)). (In fact, we only need that the corresponding Jordan
pairs are isomorphic. However, all relevant isomorphisms of Jordan pairs are in fact induced by
isomorphisms of Jordan algebras.)

SO(3,C) ∼= P Sl(2,C) ∼= P Sp(1,C) (3.1)

SO(4,C) ∼= SO(3,C)× SO(3,C) (3.2)

SO(5,C) ∼= P Sp(2,C) (3.3)

SO(6,C) ∼= P Sl(4,C) (3.4)

SO(2, 1) ∼= P Sl(2,R) ∼= P Sp(1,R) ∼= P SU(1, 1) (3.6)

SO(3, 1) ∼= P Sl(2,C) (3.7)

SO(2, 2) ∼= SO(2, 1)× SO(2, 1) (3.8)

SO(2, 3) ∼= P Sp(2,R) (3.9)

SO(4, 1) ∼= P Sp(1, 1) (3.10)

SO(2, 4) ∼= PU(2, 2) (3.11)
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SO(5, 1) ∼= P Sl(2,H) (3.12)

SO(3, 3) ∼= P Sl(4,R) (3.13)

SO(2, 6) ∼= P SO∗(8) (3.14)

One has to be careful when relating the isomorphisms (1.5) C ∼= Sym(J1,C) and (1.6) R ∼=
Sym(J1,R) ∼= Herm(1,H) to conformal groups because in this low-dimensional case the groups
PO(4,C), resp. PO(2, 2) and PO∗(4) do not act faithfully on the latter spaces. In fact, both
groups are direct products (cf. the isomorphism (3.8); and according to [Hel78, p.520] we have
o∗(4) ∼= su(2)×sl(2,R)), and only one of the factors acts faithfully. One can also obtain interesting
group isomorphisms by comparing structure groups of isomorphic Jordan algebras. For instance,
the isomorphism H ∼= R4 yields the well-known homomorphism SU(2) × SU(2) → SO(4). It is
remarkable that in fact all isomorphisms of low-dimensional classical Lie groups can in this way
be naturally explained by Jordan theory (cf. [Hel78, p. 519/20]).

Table XII.3.3. Symmetric R -spaces (non-exceptional).
The first class is given by compact Hermitian symmetric spaces:
complex Jordan pair VC (VC)c as symmetric R -space
1. M(n,C) U(2n)/(U(n)×U(n))
2. Sym(n,C) Sp(n)/U(n)
3. Sym(J,C) ∼= Asym(2n,C) SO(4n)/U(2n)
4. Cn SO(n+ 2)/(SO(n)× SO(2))
6. M(p, q; C) U(p+ q)/(U(p)×U(q))
7. Asym(2n+ 1,C) SO(4n+ 2)/U(2n+ 1)

The second class is given by real forms of compact Hermitian symmetric spaces:

real Jordan pair V V c as symmetric R -space
1.1. Herm(n,C) = iAherm(n,C) U(n)
1.2. M(n,R) O(2n)/(O(n)×O(n))
1.3. M(m,H) Sp(2m)/(Sp(m)× Sp(m))
2.1. Sym(n,R) U(n)/O(n)
2.2. Herm(m,ϕ,H) ∼= Aherm(m,H) Sp(n)
3.1. Herm(m,H) ∼= Aherm(m,ϕ,H) U(2n)/ Sp(n)
3.2. Sym(J,R) ∼= Asym(2n,R) SO(2n)
4.1. Rp × Rq Sp × Sq
6.1. M(p, q; R) O(p+ q)/(O(p)×O(q))
6.2. M(p, q; H) Sp(p+ q)/(Sp(p)× Sp(q))
7.1. Asym(2n+ 1,R) SO(2n+ 1)

The symmetric R -spaces also appear in the tables of the next section, where the corresponding
Cartan-involution of the conformal group is specified.

4. Classification of simple symmetric spaces with twist

In this section we give a list of the symmetric spaces with twist M
(α)
0 (as homogeneous

spaces G(α)/H ) belonging to the triple systems T (α) classified in the preceding section, and
of their complexification diagrams. In principle, this means that we calculate the standard
imbedding of the LTS RT (α)(X,Y ) = T (α)(Y,X) − T (α)(X,Y ). For most of the cases, the
calculations are explicitly carried out in Section XI.5, based on the theory of conformal groups
of Jordan algebras. As explained in Section IV.2.4, most calculations can also be done without
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using conformal groups or Jordan algebras. The reader who is interested in special cases may
choose the method he prefers. The approach using Jordan algebras and Jordan inverse is in
most cases clearer and less calculatory. When using this approach, it is often useful to note the
isomorphism Co(T )(jα)∗ ∼= Co(V −) if T belongs to a Jordan algebra V and α is a “generic”
Jordan algebra automorphism (cf. Prop. XI.2.8). By “generic” we mean essentially that α is
not the identity and not a Peirce-involution (cf. [BeHi98, Section 1.8]). If V is a Jordan algebra
and α = idV , the complexification diagram from Prop. X.3.7 reduces to

↗ Str(VC)/Aut(VC) ↘
Str(V )/Aut(V ) → Co(V )/(Str(VC))j∗τ∗ → Co(VC)/Str(VC).

↘ Co(V )/ Str(V ) ↗

The special feature to be noted here is that MhC and MphC are homogeneous under the same
group.

Notation: A symmetric space of group type is denoted by X = (H ×H)/H where a Lie
group H is identified with the diagonal in H ×H ; its c-dual space is given by HC/H .

Table XII.4.1. Spaces having invariant structures of all three types. These are the spaces
Co(TC)/ Str(TC), where TC is a complex JTS from Table XII.2.1:

VC G = Co(VC)o H = Str(VC)o
1. P Gl(2n,C) P(Gl(n,C)×Gl(n,C))
2. P Sp(n,C) Gl(n,C)
3. P SO(4m,C) Gl(2m,C)
4. SO(n+ 2,C) SO(n,C)× SO(2,C)
5. E7 E6 × C∗
6. P Gl(p+ q,C) P(Gl(p,C)×Gl(q,C))
7. P SO(4m+ 2,C) Gl(2m+ 1,C)
8. E6 SO(10,C)× C∗

Any of the three complexification functors, applied to one of these spaces, yields a direct product
of the space with itself. The space of type 4 carries a second structure of symmetric space with
twist, given by Table XII.4.4, 6.a. (q = 2).

Table XII.4.2. Para-Hermitian symmetric spaces without straight complex structure. These
are the spaces Co(V )/ Str(V ) with V a Jordan pair from Table XII.2.2. They are obtained as
straight real forms of the spaces given in the preceding table.
V G = Co(V )o H = Str(V )o
1.1. P SU(n, n) Gl(n,C)/R∗
1.2. P Gl(2n,R) P(Gl(n,R)×Gl(n,R))
1.3. n = 2m : P Gl(2m,H) P(Gl(m,H)×Gl(m,H))
2.1. P Sp(n,R) Gl(n,R)
2.2. n = 2m : P Sp(m,m) Gl(m,H)
3.1. SO∗(4m) Gl(m,H)
3.2. n = 2m : P SO(n, n) Gl(n,R)
4.1. SO(p+ 1, q + 1) SO(p, q)× SO(1, 1), p+ q = n
5.1. E7(−25) E6(−25) × R+

5.2. E7(7) E6(6) × R+

6.1. P Gl(p+ q,R) P(Gl(p,R)×Gl(q,R))
6.2. p = 2r , q = 2s : P Gl(r + s,H) P(Gl(r,H)×Gl(s,H))
7.1. n = 2m+ 1: P SO(n, n) Gl(n,R)
8.1. E6(6) SO(5, 5)× R+

8.2. E6(−26) SO(1, 9)× R+
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The straight and the twisted complexification of the space labelled by i.j. is given by the space
in Table XII.4.1. labelled by i. The space of type 4.1. has another structure of symmetric space
with twist given by Table XII.4.5, 6.1.a (i = j = 1). The spaces 1.1., 2.1., 3.1., 4.1. and 5.1.
have invariant causal structures; they are known as causal symmetric spaces of Cayley type.

Table XII.4.3. Pseudo-Hermitian symmetric spaces.

α G(α) G(−α) H

1. A. Gl(n,H) Gl(2n,R) Gl(n,C)
1. B. U(p+ v, q + u) U(p+ u, q + v) U(u, v)×U(p, q)
2. A. Sp(p, n− p) Sp(n,R) U(p, n− p)
3. A. SO(2p, 4m− 2p) SO∗(4m) U(p, 2m− p)
4. A. SO(p− 1, q + 3) SO(p+ 1, q + 1) SO(p− 1, q + 1)× SO(2)
4. B. SO∗(2 + 2q) SO∗(2 + 2q) SO∗(2)× SO∗(2q)
6. A. U(l + i, k + j) U(l + j, k + i) U(k, l)×U(i, j)
7. A. SO∗(4m− 2) SO(2p, 4m+ 2− 2p) U(p, 2m+ 1− p)
The straight complexification and twisted para-complexification of space i.X. is given by space
i. in Table XII.4.1. The space of type 4.A. carries a second structure of symmetric space with
twist, given by Table XII.4.5, 6.1.a (i = 2, j = 0), and the space of type 4.B. carries a second
structure given by Table XII.4.5, 6.2.b (p = 1). The following are pseudo-Hermitian symmetric
spaces of tube type in the sense of [FG96]: 1.A.+, 1.A.-, 1.B.+(p = u, q = v ), 2.A.+, 2.A.-, 3.A.+,
3.A.-, 4.A.+ .

Table XII.4.4. Straight complex spaces having no twisted complex structure.
α G(α) ∼= G(−α) H

1. a. H ×H H = Gl(n,C)
1. b. O(2n,C) O(n,C)×O(n,C)
1. c. Sp(2m,C) Sp(m,C)× Sp(m,C)
2. a. Gl(n,C) O(n,C)
2. b. H ×H H = Sp(m,C)
3. a. Gl(2m,C) Sp(m,C)
3. b. H ×H H = SO(2m,C)
4. a. SO(p+ 1,C)× SO(q + 1,C) SO(p,C)× SO(q,C)
6. a. O(p+ q,C) O(p,C)×O(q,C)
6. b. p = 2r, q = 2s : Sp(r + s,C) Sp(r,C)× Sp(s,C)
7. a. H ×H H = SO(2m+ 1,C)

The twisted complexification and para-complexification of space i.x. is given by space i. in Table
XII.4.1. The complex spheres carry three structures of symmetric space with twist: they appear
in the above table as types 6.a. p = 1 and 4.a. q = 0, and also in Table XII.4.5, 4.1.b. Further,
the spaces of type 4.a. carry also structures of reducible symmetric spaces with twist, namely
those given by direct product of the structures on the complex spheres. Finally, the space of type
6.a. q = 2 carries a second structure of symmetric space with twist given by Table XII.4.1, 4.

Table XII.4.5. Spaces without invariant complex or paracomplex structure. These are the
spaces M (α) and M (−α) corresponding to the JTS from Table XII.2.6. In the last column we
list the twisted complexification of the space: it is given by the line of Table XII.4.3 with the
indicated label. The additional parameter “−” means that in the corresponding line of Table
XII.4.3, α and −α have to be exchanged. For example, the twisted complexification of the
group Sp(m,R) (line 2.1.b, first and third column) can be found in Table XII.4.3, line 2.A,
second and third column with the indicated parameters: it is the space Sp(2m,R)/U(m,m). For
some symplectic series one has to take twice the parameters as given in Table XII.4.3 in order to
get the twisted complexification; this is indicated by “double param.”
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The twisted para-complexification of space i.j.x. is given by space i.j. of Table XII.4.2,
and the “double complexification” is given by space i. of Table XII.4.1.

Most of the resulting complexification diagrams are given in explicit form in Section IV.1.

α G(α) G(−α) H twisted compl.
1.1.a. H ×H HC = Gl(n,C) H = U(p, q) 1.B, v = p, u = q
1.1.b. SO∗(2n) SO(n, n) SO(n,C) 1.A
1.1.c. Sp(2m,R) Sp(m,m) Sp(m,C) 1.A.-
1.2.a. HC = Gl(n,C) H ×H H = Gl(n,R) 1.A
1.2.b. Sp(2m,R) Sp(2m,R) Sp(m,R)× Sp(m,R) 1.B.-, p = q = u = v = m
1.2.c. O(p+ v, q + u) O(p+ u, q + v) O(u, v)×O(p, q) 1.B
1.3.a. HC = Gl(2m,C) H ×H H = Gl(m,H) 1.A.-
1.3.b. O∗(4m) O∗(4m) O∗(2m)×O∗(2m) 1.B.-, p = q = u = v = m
1.3.c. Sp(p+ v, q + u) Sp(p+ u, q + v) Sp(u, v)× Sp(p, q) 1.B, double param.
2.1.a. U(p, q) Gl(n,R) O(p, q) 2.A
2.1.b. H ×H HC = Sp(m,C) H = Sp(m,R) 2.A.-, p = m = n/2
2.2.a. U(m,m) Gl(m,H) SO∗(2m) 2.A.-, p = m = n/2
2.2.b. H ×H HC = Sp(m,C) H = Sp(r,m− r) 2.A, p = 2r, n = 2m
3.1.a. U(2p, 2q) Gl(m,H) Sp(p, q) 3.A, double param.
3.1.b. H ×H HC = SO(2m,C) H = SO∗(2m) 3.A.-, p = m
3.2.a. U(m,m) Gl(2m,R) Sp(m,R) 3.A.-, p = m
3.2.b. H ×H HC = SO(2m,C) H = SO(p, 2m− p) 3.A
4.1.b. SO(p+ 1,C) SO(p+ 1,C) SO(p,C) 4.B, p = q
6.1.a. O(l + i, k + j) O(l + j, k + i) O(k, l)×O(i, j) 6.A
6.1.b. Sp(r + s,R) Sp(r + s,R) Sp(r,R)× Sp(s,R) 6.A, k = l = r, i = j = s
6.2.a. Sp(l + i, k + j) Sp(l + j, k + i) Sp(k, l)× Sp(i, j) 6.A, double param.
6.2.b. O∗(2p+ 2q) O∗(2p+ 2q) O∗(2p)×O∗(2q) 6.A, k = l = 2p, i = j = 2q
7.1.a. H ×H HC = SO(2m+ 1,C) H = SO(p, 2m+ 1− p) 7.A.-

Finally, for the space of type 4.1.a we define

Hp,q := Hp,q(R) := SO(p, q + 1)/ SO(p, q);

for q = 0 these are the real hyperbolic spaces. Then we have in case 4.1.a

M (α) ∼= Hr−1,s ×Hp−s,q−r+1, M (−α) ∼= Hs,r−1 ×Hq−r+1,p−s,

and the twisted complexification is given by 4.A.

The following spaces have several structures of symmetric spaces with twist:
6.2.b. (cf. Table XII.4.3),
6.1.a. for i = 2, j = 0 (cf. Table XII.4.3) and for i = j = 1 (cf. Table XII.4.2),
4.1.b. (cf. Table XII.4.4),
4.1.a. for r = 1, s = 0 (cf. 6.1.a. with i = 1, j = 0). Among the latter are the real hyperbolic

spaces.
4.1.a. also have structures of reducible symmetric spaces with twist.
The reader may have noticed that all multiple structures come out of the relation between types
4 (“classical” conformal space) and 6, p = 1 (projective space). Finally, the one-dimensional
LTS has a continuous family of Jordan-extensions – all scalar multiples of T (x, y, z) = xyz . The
corresponding complexifications of the real line can be understood as the hyperbolic plane which
is deformed into the flat complex plane as the positive scalar factor tends to zero, and similarly
with the Riemann sphere if the scalar factor is negative. The corresponding para-complexification
is the one-sheeted hyperboloid.
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Remark XII.4.6. (Causal symmetric spaces with twist) If the underlying Jordan pair of T
is the Jordan pair belonging to a Euclidean Jordan algebra, then the corresponding symmetric
space with twist is a causal symmetric space, cf. Section XI.3. These are the spaces 1.1.a,b,c;
2.1.a,b; 3.1.a,b and 4.1.a (p = 1) in Table XII.4.5 and 1.1; 2.1; 3.1; 4.1; 5.1 in Table XII.4.2.

Remark XII.4.7. (A semi-exceptional space.) According to [Ma73, p.416], the symmetric
spaces of classical type M = Sl(4,H)/ Sp(3, 1) and MC = Sl(8,C)/Sp(4,C) have exceptional
structures of symmetric spaces with twist, namely

MhC = E7(2)/(E6(2) × S1)

and
MphC = Co(Herm(3,O))/Str(Herm(3,O))

(cf. Table XII.4.2). Central extensions of M and MC have classical structures of Makarevič
space, cf. Table XII.4.5, 3.1.a and XII.4.4, 3.a, corresponding to the equation of dimensions
dim Herm(3,O) = dim Herm(4,H) − 1. The fact that classical LTS’s may have exceptional
Jordan-extensions has also been observed by Loos [Lo77, 11.19] and Neher [N85].

Remark XII.4.8. (Berger’s list.) Comparison with Berger’s list ([B57]) of irreducible sym-
metric spaces shows that the symmetric spaces appearing in Tables XII.4.1 – XII.4.5 exhaust the
irreducible symmetric spaces (of non-exceptional type) in the following sense: Some spaces from
our tables (e.g. the group Gl(n,R)) are not irreducible as symmetric spaces; in these cases the
simple part (Sl(n,R) in the example) appears in Berger’s list. This observation has already been
mentioned in the introduction to Ch. IV (Observation A). We have indicated the spaces which
appear several times in our tables (only the sphere SnC appears three times, most spaces of rank
1 appear twice, and the other spaces only once), thus making the Observation B from Ch. IV
more precise.

Notes for Chapter XII.

XII.1. The classification of complex simple Jordan algebras is equivalent to the classification
of simple Euclidean Jordan algebras; the result (Table XII.1.1) goes back to Jordan, von Neumann
and Wigner; cf. [BK66] and [FK94]. The classification of simple real Jordan algebras (Table
XII.1.2) has been carried out by K.-H. Helwig ([Hw67]); however, his results have not been
completely published; cf. [Kay94]. The methods used by Helwig have been generalized by E.
Neher in order to classify simple real JTS (cf. notes for Chapter IV). The precise description of
structure and automorphism groups (Table XII.1.3) is also due to E. Neher ([Ne80]). Note that
the structure group only depends on the underlying Jordan pair of T whereas the automorphism
group depends really on the JTS; this explains that the automorphism groups listed here are not
always the same as the ones listed in [Ne80].

XII.2. For the principles of classification, see Chapter IV.2 and Notes for Chapter IV.
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XII.3. Symmetric R -spaces have been introduced by M. Takeuchi ([Tak65]). In [Lo85] it
is proved that they coincide with the spaces Co(T )/P considered as symmetric spaces which are
classified in Table XII.3.3.

XII.4. We follow the classification by B.O. Makarevič ([Ma73]). When comparing with
[Ma73], it should be noted that in case of the projective spaces Gr1,n+1(F) not all of the
“open symmetric orbits” considered by B.O. Makarevič are of the form M (α) ; in fact, if V
is a semisimple Jordan algebra, then the semisimple part of the cone Ω = (Str(V )/Aut(V ))e
yields an open orbit P(Ω) of the subgroup P(Str(V )) of P Gl(V ) in the projective space P(V )
such that P(Ω) is a symmetric space, but it is not an orbit of the form M (α) . The non-trivial
fact that, if V c is not isomorphic to a projective space, the open symmetric orbits are indeed all
of the form M (α) is due to A.A. Rivillis ([Ri70]).



208 Chapter XIII: Further topics

Chapter XIII: Further topics

The aim of these notes was to introduce and to define the geometric objects corresponding
to (real) Jordan structures, to present a fairly exhaustive description of the main examples and
to give in this way a self-contained “geometric” introduction to Jordan theory. However, we have
not even started to develop a “structure theory” in the usual sense which should contain the
following elements:

- A root theory for symmetric spaces with twist: relate the Peirce decomposition w.r.t. a
complete system of orthogonal tripotents (cf. [Lo75], [Ne82]) with the root theory for
symmetric spaces – see [Lo85] for the case of compact spaces. We have developed the
theory as far as possible without root theory in order to convince the reader that in Jordan
theory much can be done before root theory really becomes necessary – in contrast to Lie
theory where root theory is an almost indispensable tool.

- A representation theory: relate representations of Lie groups and symmetric spaces to
representations of Jordan objects. With this aim in mind, we have in our presentation paid
some attention on functorial questions – they show the way one has to go if one wants
to understand what a geometric representation theory of Jordan objects should look like.
Although there exists not yet even the outline of a theory, we can already see that (at
least in the semisimple case) homomorphisms quite often have “good” properties in the
sense that they carry over to Jordan-extensions, to conformal Lie algebras or even -groups,
etc. The representation theory of Hermitian symmetric spaces is treated by Lie theoretic
methods in [Sa80]; for some interesting results on representations of Jordan algebras cf.
[Cl92].

- A theory of invariant differential operators and enveloping algebras: there exist concepts
of enveloping algebras in Jordan theory (cf. [Lo75]). What is their geometric counterpart?
Can they be realized by certain spaces of invariant differential operators on symmetric
spaces with twist? An explicit description of the algebra of invariant differential operators
is very important in harmonic analysis.

- A theory of Siegel-domain realizations of symmetric spaces with twist: cf. Introduction to
Ch. XI and Remark XI.2.4.

- A geometric theory of alternative algebras, triple systems and pairs: As explained in [Lo75],
alternative triple systems and pairs correspond to Peirce-1-spaces in Jordan structures, and
these play an important role in the classification. What is the geometric meaning of the
additional structure given by the alternative law?

- Other base fields: It would be nice if the geometric methods which turn out to be so
successful in the real and complex case could be generalized to other base fields. When we
try to do this, the question arises: what do we mean by “geometric”? For people working
in harmonic analysis, “geometry” and “differential geometry” are more or less the same,
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and at least the first half of our presentation follows this way of thinking. However, the
more it becomes clear that Jordan theory already contains the global and not only the local
geometry, one is already in the real case lead to stress the analogy of Jordan theory with
classical projective geometry. Therefore a geometric Jordan theory for general base fields
will be based on a more classical notion of “geometry” (work in progress).

This list of further topics is not complete. We hope that working on a structure theory in this
sense will also lead to answers to the problems we consider to be central in the whole theory:
the problem of the Jordan-Lie functor (cf. Section 0.6), and the problem of the relation between
extrinsic and intrinsic theory (cf. Section 0.9).

The reader interested in applications in harmonic analysis can find some literature in our
list of references; in most cases, the use of Jordan theory there is somewhat hidden or even not
mentioned at all, but the reader will find that methods belonging to Jordan theory often play an
important role in analyzing “concrete” cases, so that one might be tempted to call Jordan theory
“the general theory of special cases”. We even would like to include Weyl’s classic [Wey39] into
this remark since it seems not be an accident that the classical groups are precisely those which
are in the image of the Jordan-Lie functor (cf. Section 0.6). The most systematic study of the
interplay between Jordan theory and harmonic analysis is the monograph [FK94] (where many
more references are given). An interesting outlook on a vast area of open problems in harmonic
analysis related to “generalized conformal geometry” can be found in the overview article [Gi98]
by S. Gindikin.
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[A74] Arnold, V., Équations différentielles ordinaires, Editions MIR, Moscow 1974.

[Ar66] Artin, E., Geometric Algebra, Interscience, New York 1966.

[B57] Berger, M., “Les Espaces Symétriques non Compacts”, Ann. Ec. Norm. Sup.
(3) 74 (1997), p. 85 - 177.

[B87] Berger, M., Geometry (2 volumes), Springer-Verlag, Berlin 1987.
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[Kay94] Kayoya, J.B., “Analyse sur les algèbres de Jordan simples,” thesis, Université
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classiques, Hermann, Paris 1986.

[Nai83] Naitoh, H., “Pseudo-Riemannian Symmetric R -spaces”, Osaka J. Math. 21,
733 - 764, 1984.

[Ne79] Neher, E., “Cartan-Involutionen von halbeinfachen reellen Jordan-Tripelsyste-
men”, Math.Z. 169, 271 – 292, 1979.

[Ne80] Neher, E., “Klassifikation der einfachen reellen speziellen Jordan-Tripelsyste-
me”, manuscripta math. 31, 197–215, 1980.

[Ne81] Neher, E., “Klassifikation der einfachen reellen Ausnahme-Jordan-Tripelsyste-
me”, J. reine angew. Math. 322, 145–169, 1981.

[Ne82] Neher, E., Jordan Triple Systems by the Grid Approach, Springer Lecture Notes
1280, New York 1982.

[Ne85] Neher, E., “On the Classification of Lie and Jordan Triple Systems”, Comm. in
algebra 13, 2615–2667, 1985.

[Os92] Osgood, B., “The Schwarzian Derivative and Conformal Mappings of Rieman-
nian Manifolds”, Duke Math. J 67, 57 – 99, 1992.

[Po62] Pohl, W.F., “Differential geometry of higher order”, Topology 1, 169 - 211,
1962.

[Pe67] Petersson, H., “Zur Theorie der Lie-Tripel-Algebren”, Math. Z. 97, 1-15, 1967.

[Pev98] Pevsner, M., “Analyse conforme sur les algèbres de Jordan”, thesis, Paris 1998.
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Index of notation

A : V →W , x 7→ Ax – JTS T in the form Ax(y, z) = T (y, x, z), VII.2.4
Asym(A,F),Aherm(A, ε,F) – spaces of skew-symmetric (-Hermitian) matrices, I.6
B(x, y) – Bergman operator, VIII.2
Co(T ) – conformal group of a JTS T , VIII.1
Co(V ) – conformal group of a Jordan algebra V VIII.2
Co′(T ) – set of g ∈ Co(T ) with dg(0) 6= 0, VIII.2
Co(T )0 – set of g ∈ Co(T ) with g(0) = 0, VIII.2
Co(T )00 – set of g ∈ Co(T ) with g(0) = 0, Dg(0) = idV , VIII.2
co(T ), co(V ) – conformal Lie algebra of a JTS T (a Jordan algebra V ), VII.1
dg – denominator of a conformal transformation g , VIII.1
Der(V,A) – derivation algebra of a bilinear map A : V ⊗ V → V , II.1
E = (Ep)p∈M – Euler operator on M , VII.1
exp – exponential map of a Lie group, I.5
Exp – exponential map of a connection or of a symmetric space, I.B
F – symmetric matrix, I.6
γ – Cayley transform, XI.2
gb – inner conformal Lie algebra, VII.1
G(M) – group of displacements I.3
Grp,p+q(F) – Grassmannian variety, VIII.4
H – skew field of quaternions, I.6
Herm(A, ε,F) – space of Hermitian matrices, I.6
Ip,q – diagonal matrix with signature (p, q), I.6
j – Jordan inverse, II.2
J – standard symplectic matrix, I.6
J – complex structure or polarization on a LTS, III.1, III.3
J = (Jp)p∈M – almost complex structure or polarization on M , III.1
Jp – vector field extension of Jp , VI.1, VII.1
jp – affine extension of Jp , VI.1
Lag(A, ε,F) – variety of Lagrangian subspaces, VIII.4
lp(v) – vector field extension of a tangent vector v , I.2, I.A
L(v) – operator of left multiplication by v , II.1
µ – multiplication map of a symmetric space, I.4
MC , MhC – straight, resp. twisted or Hermitian complexification of M , III.4.3
MphC – twisted para-complexification of M , III.4.3
M (α) – α -modification of the space belonging to a JTS T X.1
ng – numerator of a conformal transformation, VIII.1
O(A,F) – orthogonal group w.r.t. A , I.6
Ω – open symmetric orbit in a vector space, II.1
P – stabilizer of 0 in Co(T ), VIII.3
p – Lie algebra of P VIII.3
P ′ – intersection of Co(T ) with the affine group of V VIII.3
P (v) = 1

2T (v, ·, v) – “quadratic representation” of a JTS T , VIII.2
pv – quadratic vector field pv(x) = P (x)v , VIII.2
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q – −1-eigenspace in an involutive Lie algebra; LTS, I.1
Q – quadratic map of a symmetric space I.5
R – curvature tensor, Lie triple product I.1, I.2
Ric – Ricci-tensor, V.1
r̃x, r̃x,y – exponential of a twisted polarization, VI.2
r±x,y, rx,y – “multiplication by r ∈ R∗ w.r.t. a point (x, y)”, VI.3
Str(T ) – structure group of a JTS T VIII.1
Str(V ) – structure group of a Jordan algebra V II.3
Svar(T ) – structure variety of a JTS T III.4
Sym(A,F) – space of symmetric matrices, I.6
sx – Symmetry w.r.t. a point x in a symmetric space, I.3
Θ – involution of Co(T ) and of co(T ), VII.2, VIII.2
T – structure tensor, Jordan triple product III.2, III.3, III.4
T (α) – α -modification of a JTS T III.4
T 2
pM – second order tangent space, I.B
tx – translation by a vector x , I.A
t̃x – exponential of the quadratic vector field px , VIII.2
U(A, ε,F) – A-unitary group, I.6
v – constant vector field, I.A.1
V ′ – set of invertible elements in a Jordan algebra V , II.2
V c – conformal completion of V VIII.3
W – vector space V with Str(T )-action by g.w = Θ(g)(w) – II.2
W – subspace {T (·, v, ·)| v ∈ V } of Hom(S2V, V ) VII.2
W c – conformal completion of W , VIII.3
W = (Wp)p∈V c – structure bundle VIII.3
X(M) – Lie algebra of vector fields on M , I.A.1
[X,Y, Z] – Lie triple product, I.1
∇ – affine connection, I.B

Differential calculus: We distinguish in our notation three different kinds of “differential”: by
Tpϕ : TpM → Tϕ(p)N we denote the tangent map at p of a smooth map ϕ between manifolds
M and N . By Dϕ : V ⊃ M → Hom(V,W ), x 7→ Dϕ(x) we denote the total differential of a
smooth map ϕ having domain M in a vector space V and range in a vector space W . (The
second total differential is then a map D2ϕ : M → Hom(S2V,W ) ⊂ Hom(V,Hom(V,W )), where
Hom(S2(V,W ) is the space of symmetric bilinear maps from V to W .) Finally, dω is the exterior
derivative of a p -form ω ; in particular, df for a function f is a one-form. – For further notation
concerning differential calculus and transformation groups cf. Appendix I.A.

Quadratic maps: to a quadratic map q : E → F we associate the symmetric bilinear map
q : E × E → F defined by q(x, y) = q(x+ y)− q(x)− q(y).



Index

affine
– connection I.B
– locally symmetric space I.2
– map I.B
affinization VIII.3
almost complex structure III.1
associative
– algebra II.3
– form V.4
Bergman operator VIII.2
Borel imbedding VII.3, X.1
canonical connection I.2
Cartan involution X.6
causal
– compactly-, non-compactly- XI.3
– diffeomorphism IX.2.3
– group IX.2
– intervals XI.3
– Makarevič space XI.3
– symmetric space XI.3
– structure IX.2
Cayley
– transform I.6, XI.2
– type spaces XI.3
c-dual I.1
circled space VI.1
classical group I.6
complexification
– diagram III.4
– straight III.1
– twisted III.2
cone
– regular- IX.2.3
– symmetric V.5
conformal
– compactification VIII.3
– completion VIII.3
– group VIII.1

– Lie algebra VII.1
– map (T -, G -) VIII.1
conformally equivalent XI.5
connected pair III.3
curvature tensor I.2, I.B

denominator VIII.1
density X.6
displacement group I.3
elliptic
– realization of a cone XI.3
– tripotent X.5
equivariant map I.1
Euclidean Jordan algebra V.5
Euler operator I.A, VII.1
exponential map I.B, X.4
extension
– of a vector field I.A
– of a tangent map I.A

faithful JTS VII.2
first kind XI.1
fundamental
– formula II.2, VIII.C
– theorem IX.1, IX.2

geodesic symmetry I.3
global
– polarized space VIII.3
– space X.2
graded Lie algebra III.3
graph VIII.4
Grassmannian VIII.4
Harish-Chandra imbedding VII.2, X.2
Helwig-space II.4, XI.4
Hermitian
– (para-) complexification III.4
– symmetric space V.5
– JTS III.2
homomorphism



– of symmetric spaces I.2, I.4
hyperbolic
– functions on a JTS X.4
– space I.6
– realization of a cone XI.3
– tripotent X.5
integrability VI.A
invertible element XI.1

jet VIII.2
Jordan
– algebra II.2
– coordinates VII.2
– extension III.4
– inverse II.2
– -Lie functor III.4
– pair III.3
– triple system (JTS) III.2

Lagrangian I.6
Lie
– functor I.1
– group I.1
– triple system (LTS) I.1
– triple algebra II.1
linear relation IX.2
Liouville theorem IX.1
Makarevič space XI.1
multiplication map I.4
non-degenerate JTS V.4
numerator VIII.1

orbit
– symmetric- II.1
– open symmetric- II.1, X.1
parabolic realization of a cone XI.3
para
– complex structure III.3
– conjugation III.3
– Hermitian symmetric space III.4
– real form III.3
Peirce decomposition X.5
polarisation III.3
polarized LTS, JTS III.3
prehomogeneous
– vector space II.1
– symmetric space II.1
pseudo
– Hermitian symmetric space V.4

– metric V.1, X.6
projective (T -) VII.2, VIII.1

quadratic
– map I.5
– prehomogenous symmetric space II.2
– representation II.2
powers
– in a symmetric space I.5
– in a Jordan algebra II.2
power associative II.2, X.A
quasi-inverse VIII.2

real
– Cayley transform I.6, XI.2
– form III.1
relative invariant V.4
representation
– of a symmetric space I.5
– polynomial- II.2
Ricci form V.1
ruled space VI.2
semisimple
– LTS V.1
– JTS V.4
– symmetric space V.1
Siegel space I.6
simple
– LTS V.1
– JTS V.4
sphere I.6, IV.1
standard imbedding I.1
straight complexification III.1
structure
– algebra II.2, VII.2
– bundle VIII.3
– group II.2, VIII.1
– monoid VIII.1
– tensor III.2
– variety III.4
symmetric space
– algebraic I.4
– (straight) complex I.1, III.1
– para-Hermitian V.4
– polarized III.3
– (pseudo-) Riemannian V.1
– (pseudo-) Hermitian V.4
– topological I.4



– twisted complex III.2
– with twist III.4
symmetric
– cone V.5
– pair I.1
– Lie algebra I.1
– submanifold II.4
– R -space V.5, X.6
trace form V.4

tripotent X.5
tube domain XI.2
twisted
– complex structure III.1
– complexification III.4
– para-complexification III.4
– polarization III.3
underlying Jordan pair IV.2
vector field extension I.A


