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Abstract. We define Weil spaces, Weil manifolds, Weil varieties and Weil Lie
groups over an arbitrary commutative base ring K (in particular, over discrete
rings such as K = Z), and we develop the basic theory of such spaces, leading
up the definition of a Lie algebra attached to a Weil Lie group. By definition,
the category of Weil spaces is the category of functors from K-Weil algebras to
sets; thus our notion of Weil space is similar to, but weaker than the one of Weil
topos defined by E. Dubuc ([Du79]). In view of recent result on Weil functors for
manifolds over general topological base fields or rings ([BeS12]), this generality
is the suitable context to formulate and prove general results of infinitesimal
differential geometry, as started by the approach developed in [Be08].

1. Introduction

The present work is a contribution to general infinitesimal Lie theory, and to
the general theory of infinitesimal spaces. In preceding work [Be08], based on
[BGN04], we have been able to describe basic features of Lie theory for Lie groups
and manifolds over general topological base fields or rings. This approach is very
satisfying in many respects, but still has the drawback that it relies on topology,
hence does not apply to spaces defined over discrete rings such as Z; related to this,
it does not lead to cartesian closed categories, nor does it apply to singular spaces.
In the present work, we introduce the category of Weil spaces and Weil laws, and
the one of Weil Lie groups, which do not have these drawbacks.

The basic ideas how to achieve this goal can be traced back to Weil’s paper
[We53], which influenced both the development of algebraic geometry and of syn-
thetic differential geometry. As Weil puts it (loc. cit.), “Cette théorie ... a pour
but de fournir, pour le calcul différentiel d’ordre infinitésimal quelquonque sur une
variété, des moyens de calcul et des notations intrinsèques qui soient aussi bien
adaptés à leur object, et si possible, plus commodes que ceux du calcul tensoriel
classique pour le premier ordre.”1 We show that this aim can be reached in a simple
and general way in the framework of the category of functors from K-Weil algebras
to sets. The approach may appear primitive, but it seems to us that it is supported
by recent developments, such as general infinite dimensional Lie theory. I will, first
of all, describe the approach, and then discsuss the relation with other work.
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1“The aim of the theory is to furnish, for infinitesimal differential calculus of arbitrary order

on a manifold, the tools of calculus, and intrinsic notions that are as suitable and, possibly, more
flexible than usual first order tensor calculus.”
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1.1. From polynomial laws to Weil laws. Already undergraduate students are
taught to distinguish between a polynomial P ∈ K[X] and the polynomial map
K → K induced by P . For several, possibly infinitely many variables, N. Roby
([Ro63]) explains that polynomial laws play the same rôle with respect to polynomial
maps between general modules over a ring K (for a summary, see the appendix of
[Lo75]): a “polynomial” P between K-modules V and W is something that can be
“extended” to a map PA between V A = V ⊗KA and WA, for any ring extension A of
the base ring K. It is common for such concepts that the “underlying” polynomial
map P = PK need not determine the abstract object “polynomial”, but in certain
contexts (e.g., infinite fields) it does.

For smooth maps f , at a first glance, there is no such thing as a “scalar extension”
fA. However, a smooth map f always admits an extension by its tangent map Tf ,
and we have shown in [Be08] that Tf can rightly by interpreted as a scalar extension
of f by the ring TK = K ⊕ εK (ε2 = 0) of dual numbers. This generalizes for all
ring extensions of K by algebras of infinitesimals, nowadays called Weil algebras:
these are commutative unital K-algebras of the form

A = K1⊕ Å,

where Å is a nilpotent ideal, moreover free and finite-dimensional over K. For usual,
real manifolds, the theory of Weil functors (see [KMS93]) shows that a smooth
map f : M → N admits an extension to a map fA : MA → NA, for every Weil
algebra A. This extension behaves like a tangent map of kind A; therefore the
notation TAf : TAM → TAN is often used in the literature. Indeed, when A = TK
(dual numbers), then TM := T TKM is precisely the “usual” (first) tangent bundle,
when A = TTK, then TAM = TTM , is the second order tangent bundle, and so
on – this has been generalized, and at the same time conceptually explained, in
[Be08, So12, BeS12]: most importantly, the map fA := TAf is indeed smooth over
A, which fully justifies to consider it as an “A-scalar extension of f”. Motivated by
this, we define Weil spaces and Weil laws following the same pattern as in Roby’s
definition of polynomial laws (section 3): a Weil space is a functor M from the
category WalgK of K-Weil algebras to the category of sets; it assigns to every K-

Weil algebra A a set MA that plays the rôle of an A-tangent bundle over the base
M = MK. Weil laws f are the natural morphisms, i.e., natural transformations,
between two such functors: for each Weil algebra A, there is an “A-tangent map”
fA : MA → NA, depending functorially both on f and on A. As explained above,
usual smooth manifolds and maps furnish an example of this pattern.

1.2. Weil manifolds. Every K-module V defines a “flat” Weil space, that can be
used as model space to define manifolds in the usual way via “gluing data”: for
each Weil algebra A, V A can be described as

V A = V ⊗K A = V ⊗K (K⊕ Å) = V ⊕ (V ⊗K Å) = V × VÅ.

In the same way we can define UA := U × (V ⊗K Å) for any non-empty subset U of
V ; this presentation makes explicit the fibered structure of UA over U = UK. Since
the purely set-theoretic “gluing data” of a manifold (by forgetting about topology)
can be formulated in terms of subsets of V and bijections between such subsets, a
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Weil manifold can be defined to be a functor from WalgK into the category of “set

theoretic manifolds” (section 5).

The absence of a “usual” topology gives rise to some uncommon features; but
this is remedied by always speaking of manifolds with atlas: the atlas is part of the
structure of a manifold, and since it is given by a covering, it defines a topology
which we call the atlas-topology. Structures such as dimension and the Lie algebra
depend on this atlas – just as for usual Lie groups they depend on topology: e.g., a
usual Lie group G with discrete topology gives rise to a zero-dimensional Lie group
Gdiscr, and Rn gives rise to n+ 1 different Lie groups Rk × (Rn−k)discr.

1.3. Weil varieties. An important feature of Weil manifolds, compared to gen-
eral Weil spaces, is that they are “infinitesimally linear” (in synthetic differential
geometry one uses the term microlinear): the tangent spaces (fibers of TM over
M) are linear spaces, as they should, and hence the fibers of the double tangent
bundle TTM are bilinear spaces (see [Be08]), and so on: the geometry of higher
order tangent objects is polynomial. Since Weil manifolds are not the only Weil
spaces having such properties (e.g., affine algebraic varieties share them), it is use-
ful to define the category of Weil varieties as the infinitesimally linear Weil spaces
(section 6). In order to understand Lie brackets and other bilinear objects, we prove
some basic facts on second order tangent bundles.

1.4. Weil Lie groups. Clearly, usual Lie groups are generalized by group objects in
the three categories discussed so far (Weil spaces, Weil varieties, Weil manifolds).
It turns out that, for developing basic Lie theory, the category of Weil varieties
is best adapted, hence we define a Weil Lie group to be a group object in this
category. This is the good setting to define a bilinear Lie bracket and to generalize
the theory of the higher order tangent groups T kG and JkG from [Be08] (section
7). In principle, we follow here the presentation given by Demazure and Gabriel in
[DG70], II, §4, just by forgetting about the language of schemes and sheaves and
instead insisting on functorial properties of Weil algebras. In the same way, one
may recast the infinitesimal theory of symmetric spaces, as developed in [Be08].

1.5. Symmetric spaces and differential geometry. In order to keep this work
concise, we do not develop general notions of differential geometry in any detail;
we just give one major result (theorems 8.2, 8.4) illustrating that the conceptual
framework of Weil varieties is well-adapted to generalize, and to simplify by the way,
most of the concepts and results from [Be08]. In particular, as explained in loc. cit.,
we consider the theory of connections to be the core of infinitesimal geometry. The
thesis [So12] contains a good deal of the theory to be developed in this context, and
these topics certainly deserve further study.

1.6. Discussion. As said above, our notion of Weil space is, in some sense, quite
“primitive”: we have an imbedding of the category of usual manifolds into the
category of Weil spaces, but this imbedding is not full, that is, for two classical
manifolds M and N , not every morphism f between the corresponding Weil spaces
M and N is induced by a usual smooth map f : M → N . Indeed, our category of
Weil spaces is essentially what E. Dubuc in [Du79] calls (in the real case) the Weil
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topos, and Dubuc explicitly describes examples of morphisms in the Weil topos
that are not induced by smooth maps (loc. cit., p. 258/59). The reason for this
failure is that morphisms in the Weil topos only have “infinitesimal regularity”, but
there is no reason why infinitesimal regularity should imply local regularity, such as
continuity or usual smoothness. In order to get full imbeddings, Dubuc constructs
in loc. cit. more sophisticated topoi, which since then have been further refined and
used in synthetic differential geometry (cf. [Ko06, La87, MR91]).

However, I believe that there are several good reasons to develop this “primitive”
approach, in spite of the apparent “lack of fullness”:

(1) Fullness is not needed for defining and studying infinitesimal objects such as
Lie brackets, connections, curvature tensors and the like. The methods are simple,
they apply directly to usual manifolds, even in “very infinite dimensional settings”,
and hence give conceptual and general proofs for results in this framework.

(2) As Ivan Kolář stresses in several of his papers (see [Kol86, Kol08]), there are
two approaches to Weil functors which are sort of dual to each other, and which
he calls covariant, resp. contravariant. As far as I understand, the topoi mentioned
above, in the spirit of algebraic geometry, follow the contravariant approach: in-
evitably, at some place, the relation of a vector space (or K-module) V with its dual
space V ∗ = HomK(V,K) comes into the game, be it in the language of function al-
gebras, or sheaves, or schemes. This makes things technically more complicated,
and, at some point, breaks down: it works well in finite-dimensional, or other suf-
ficiently regular situations, but becomes problematic already for real topological
vector spaces beyond Fréchet spaces. This is even more so for general modules V
over rings (not assumed to be free), where V ∗ may be very poor: if there are not
enough linear functionals, then there won’t be enough smooth scalar functions or
germs neither! On the other hand, the differential calculs developed in [BGN04],
and the subsequent work [Be08, Be13, BeS12, So12], are “purely covariant”: at no
point, the theory relies on function algebras or dual spaces (e.g., vector fields are
not defined as derivations, although they may of course act as such). This is the
reason why this approach works so well in arbitrary dimension.

(3) Finally, I conjecture that it is possible to obtain fullness also by a “purely
covariant approach”, which then would combine advantages of the sophisticated
topoi with those of a simple approach. Moreover, understanding how this works
should also lead to important insights into the structure of differential calculus
itself: the key observation (see [Be08b, Be13]) is that every usual smooth map
admits even more general scalar extensions than those by Weil algebras; thus there
should be a class of bundle algebras (cf. Section 2), strictly bigger than the one
of Weil algebras, such that the functor category from this category to set really
corresponds to a “smooth” category. We hope to be able to develop this approach
in subsequent work.

Related to the preceding item, another, very interesting, topic for further research
is to extend the theory to classes of non-commutative (bundle) algebras, and fore-
most, to super-commutative algebras – see recent work [AHW13, AlL10, BCF13]
(where super Weil algebras are introduced) making already important steps into
this direction.
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Notation. K is a unital commutative ring that may be considered to be fixed once
and for all (think of K = R), A, B,... are associative commutative and unital
K-algebras. Categories and functors are usually underlined; the category of K-
algebras is denoted by AlgK, and the category of sets and maps by set; categories

whose objects are functors (functor categories) are doubly underlined, e.g., Wsp
K

.

2. Bundle algebras, Weil algebras, and vector algebras

We define some categories of algebras that play an important rôle in differential
geometry, and we develop the basic theory as far as needed for our purposes.

Definition 2.1. (1) A scalar extension of K is an associative commutative uni-
tal K-algebra A, or, in other words, a morphism φ : K → A of unital com-
mutative rings. Scalar extensions of K form a category AlgK, morphisms
being K-algebra homomorphisms.

(2) A K-bundle algebra is an associative unital K-algebra of the form

A = K⊕ Å
where K = K1 and Å is an ideal of A, called the fiber of A, which is assumed
to be free and finite-dimensional as a K-module. Morphisms of bundle alge-
bras are algebra homomorphisms preserving fibers. K-bundle algebras form
a category denoted by BalgK.

(3) A K-Weil algebra is a commutative bundle algebra such that the fiber Å is
a nilpotent ideal, called the ideal of infinitesimals. K-Weil algebras form a
category denoted by WalgK, morphisms being bundle algebra morphisms.

(4) The height of a Weil algebra A is the smallest natural number k such that

Åk+1 = 0. Weil algebras of height ≤ k form a category denoted by WalgkK.

(5) A Weil algebra A is called a vector algebra if it is of height one, i.e., if the

ideal of infinitesimals has zero product: ∀a, b ∈ Å: ab = 0.

Elements in a bundle algebra will be written (x, a) ∈ K⊕ Å, so the product is

(2.1) (x, a) · (x′, a′) = (xx′, xa′ + ax′ + aa′),

and in a vector algebra we have, moreover, aa′ = 0.

Definition 2.2. For any bundle algebra A = K ⊕ Å, the projection π : A → K
is a morphism with kernel Å, called the projection onto the base ring, and the
natural injection ζ : K → A is a morphism called the zero section. Thus A is a
ring extension of K, via the zero section, but K is also a ring “extension” of A,
via the projection. However, we will rather say that K is obtained from A by scalar
restriction.

Example 2.1. Our main examples of bundle and Weil algebras are:

(1) The tangent algebra of K, or dual numbers over K, is the vector algebra

TK := K[ε] := K[X]/(X2) = K⊕ εK, ε2 = 0.
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(2) The idempotent algebra of K is the bundle algebra

IK := K[j] := K[X]/(X2 −X) = K⊕ jK, j2 = j.

(3) The k-jet algebra is the Weil algebra of height k

JkK := K[X]/(Xk+1) = K⊕ (δK⊕ . . .⊕ δkK), δk+1 = 0.

(4) Let I0 := (X) be the ideal of polynomials in K[X] that vanish at 0. For
(s1, . . . , sk) ∈ Kk we define a bundle algebra

A = K[X]/(X(X − s1) · · · (X − sk)) = K⊕ I0/(X(X − s1) · · · (X − sk)).

This bundle algebra is used in simplicial differential calculus, see [Be13].
(5) More generally, let I0 = (X1, . . . , Xm) be the ideal of polynomials in m

variables that vanish at the origin of Km, and J ⊂ I0 an ideal having a free
complement. Then A = K[X1, . . . , Xm]/J is a bundle algebra, and it is a
Weil algebra if Ir0 ⊂ J for some r, i.e., if it is a quotient of the Weil algebra
of m-dimensional r-velocities

Dr
m := K[X1, . . . , Xm]/Ir0 .

Every Weil algebra can be presented in this way; such presentations play an
important rôle in synthetic differential geometry.

(6) Tensor products and fiber products can be used to construct new bundle or
Weil algebras from given ones, see below. Of particular importance will be
the second tangent algebra

TTK := TK⊗K TK = (K⊕ ε1K)⊗ (K⊕ ε2K) = K⊕ (ε1K⊕ ε2K⊕ ε1ε2K)

with ε2
1 = 0 = ε2

2. It is isomorphic to K[X1, X2]/(X2
1 , X

2
2 ).

Definition 2.3. In the categories of bundle or Weil algebras, pushouts and pull-
backs are given by the following constructions: given two algebras in these cate-
gories, A = K⊕ Å and B = K⊕ B̊,

(1) the pushout (with respect to the zero sections) is the tensor product over K,
which can be identified with the K-module

A⊗K B = (K⊕ Å)⊗K (K⊕ B̊) = K⊕ (Å⊕ B̊⊕ Å⊗K B̊),

with product given by:
(x; a, b, u⊗ v) · (x′; a′, b′, u′ ⊗ v′) =

(
xx′;xa′ + x′a+ aa′,

xb′ + x′b+ bb′, xu′ ⊗ v′ + x′u⊗ v + uu′ ⊗ vv′ + a⊗ b′ + a′ ⊗ b
)
,

(2) the pullback (with respect to the projections) is the fibered product or Whit-
ney sum over K, which can be identified with the K-module

A×K B = K⊕ (Å⊕ B̊)

with product given by:

(x; a, b) · (x′; a′, b′) = (xx′;xa′ + x′a+ aa′, xb′ + x′b+ bb′).
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Remark 2.1. The height of A ×K B is the maximum of the heights of A and B,
whereas the height of A⊗K B is their sum. In particular, the Whitney sum of two
vector algebras is again a vector algebra, whereas their tensor product is of height
two (cf. the example of TTK given above).

Obviously, there is a natural sequence of morphisms of Weil (or bundle) algebras

(2.2) K → (Å⊗K B̊)⊕K → A⊗ B
pA,B→ A×K B → K

which is exact in the following sense:

Definition 2.4. An ideal of a bundle (resp. Weil) algebra A = K ⊕ Å is an ideal

I of A contained in Å that is free as K-module and admits some free K-module
complement C. Note that A/I then is again a bundle (or Weil) algebra, and so is

Î := K⊕ I.

We then say that the following is a short exact sequence of Weil or bundle algebras:

0 → Î → A → A/I → 0.

The sequence (2.2) is exact, and the vertical bundle algebra of A⊗ B is its kernel:

A�K B := A� B := ˚̂A⊗K B̊ = (Å⊗K B̊)⊕K,

Finally, a vector ideal is an ideal I acting as zero on Å: ∀a ∈ Å, ∀i ∈ I: ai = 0.

The preceding constructions lead to natural morphisms between bundle or Weil
algebras, all of which will have important global counterparts:

Lemma 2.5. Let A be a commutative bundle algebra.

(1) The product map in A gives rise to a morphism of bundle algebras

µ : A⊗K A→ A, (x, a)⊗ (y, b) 7→ (x, a)(y, b) = (xy, xb+ ay + ab) .

(2) The flip or exchange map is an automorphism of bundle algebras:

τ : A⊗K A→ A⊗K A, a⊗ b 7→ b⊗ a.

(3) If A is a vector algebra, then addition in Å gives rise to a morphism

α : A×K A→ A, (x, a, b) 7→ (x, a+ b) ,

and each scalar r ∈ K gives rise to an algebra endomorphism

ρr : A→ A, (x, a) 7→ (x, ra).

(4) Let I be a vector ideal in the bundle algebra A. Then the map

β : Î×K A = K⊕ I⊕ Å→ A, (x; i, a) 7→ (x; i+ a)

is a bundle algebra morphism lying over A/I in the sense that

Î×K (A/I) = K⊕ I⊕ (Å/I)→ A/I, (x; i, [a]) 7→ (x; [i+ a])

is simply projection onto the second factor.
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Proof. (1) and (2) hold for any commutative associative algebra A. To prove (3),
assume A is a vector algebra. Then

α((x, a, b) · (x′, a′, b′)) = α(xx′, xa′ + x′a, xb′ + x′b) = (xx′, xa′ + x′a+ xb′ + x′b)
= (x, a+ b)(x′, a′ + b′) = α(x, a, b) · α(x′, a′, b′)

and ρr((x, a)(x′, a′)) = ρr(xx
′, xa′ + x′a) = (xx′, rxa′ + rx′a) = ρr(x, a) · ρr(x′, a′).

(4) Similarly, by direct computation, with ai′ = 0 = a′i = ii′,

β((x, i, a) · (x′, i′, a′)) = β(xx′, xi′ + x′i, xa′ + x′a+ aa′)
= (xx′, xi′ + x′i+ xa′ + x′a+ aa′)
= (xx′, x(a′ + i′) + x′(a+ i) + (a+ i)(a′ + i′))
= (x, i+ a)(x′, i′ + a′) = β(x, i, a) · β(x′, i′, a′),

and the last claim is immediate since [i+ a] = [a]. �

3. Weil spaces and Weil laws

3.1. The category of Weil spaces.

Definition 3.1. A K-Weil space is a covariant functor

M : WalgK → set, A 7→MA, φ 7→Mφ.

A morphism between K-Weil spaces M and N , also called K-Weil law, is a natural
transformation

f : M → N.

In other words, for each A ∈WalgK, there are mappings

fA : MA → NA

varying functorially with A: for any Weil algebra morphism φ : A → B and Weil
spaces M,N , there are maps Mφ, Nφ such that the following diagram commutes:

MA fA−→ NA

Mφ ↓ ↓ Nφ

MB fB−→ NB

Weil spaces and Weil laws over K become a category, denoted by Wsp
K

, if we define

the composition g ◦ f of two K-Weil laws f : M → N , g : N → P by

∀A ∈WalgK : (g ◦ f)A := gA ◦ fA : MA → PA.

Isomorphisms and automorphisms in the category of Weil spaces will be called Weil
isomorphisms, resp. Weil automorphisms.

Definition 3.2. Replacing the category WalgK by some other category of K-algebras,
we may define categories of “stronger” or “weaker” Weil spaces. For instance, tak-
ing WalgkK (Weil algebras of height at most k), we get a weaker category of “k

times differentiable Weil spaces”, and taking the full category of (free and finite
dimensional) commutative K-algebras, we get “algebraic Weil spaces”.2

2R. Lavendhomme ([La87], p. 195, referring to Kock [Ko77]) considers this category as a very
simple, but logically satisfying model for the axiomatic setting of synthetic differential gometry.
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As said in the introduction, there should be some category of bundle algebras such
that the “stronger” category of Weil spaces defined by it should correpond to what
one might call “smooth Weil spaces”.

Definition 3.3. The direct product M ×N of two Weil spaces is defined by

∀A ∈WalgK : (M ×N)A := MA ×NA,

and the direct product of Weil laws f × g is defined similarly.

Definition 3.4. A subspace U of a Weil space M is a Weil space U such that, for
each Weil algebra A, UA is a subset of MA. If each UA is of cardinality 1, then U
is called a point in M .

Obviously, intersection U ∩ U ′ and union U ∪ U ′ of subspaces of M , defined by

(U ∩ U ′)A := UA ∩ (U ′)A, (U ∪ U ′)A := UA ∪ (U ′)A

are again subspaces of M , and this holds also for arbitrary intersections and unions.

3.2. Fibered structure over the base M .

Definition 3.5. The underlying set of a K-Weil space M is the set M := MK, and
the underlying map of a K-Weil law f : M → N is the map f := fK : M → N .

The underlying map f does in general not determine the abstract law f (see
examples, next section). Applying functoriality of f to projection π : A→ K, resp.
zero section ζ : K→ A, of a Weil algebra A, we get:

Lemma 3.6. Weil spaces and Weil laws are fibered over their underlying set the-
oretic objects in the sense that, for all Weil algebras A, the following diagram
commutes

MA fA−→ NA

Mπ ↓ ↓ Nπ

M
f−→ N

.

Moreover, these fibratations have canonical zero sections in the sense that the fol-
lowing diagram commutes

MA fA−→ NA

M ζ ↑ ↑ N ζ

M
f−→ N

.

The term “fibration” is used here in the abstract set-theoretic sense; there is no
condition of “local triviality” (since so far we do not consider any topology).

Definition 3.7. The bundle TAM := MA over M will be called the A-tangent
bundle of M , and TAf := fA the A-tangent map of f . The fiber of MA over x ∈M
will often be denoted by

TA
xM := (MA)x,

and the map between the fibers over x and f(x) by

TA
x f : TA

xM → TA
f(x)N.
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These maps preserve origins in fibers; we write 0x or ζ(x) for the origin in TA
xM .

When A = TK, the ring of dual numbers over K, then we simply write TM and
Tf and just call them tangent bundle, resp. tangent map of f .

In Chapter 6 we will introduce sufficient conditions ensuring that the fibers of
TM are linear spaces and that tangent maps are linear maps in fibers, and we will
see that this condition is satisfied by TM for our main examples.

3.3. Transitivity of extension. For any smooth manifold M over a topological
ring K, the extension TAM is as manifold smooth over the ring A = TAK (see
[BeS12]) – this is a conceptual version of what Weil in [We53] calls “transitivité des
prolongements” (loc. cit., théorème 5). In the present context, it reads as follows:

Theorem 3.8 (Transitivity of extension). Given two Weil algebras A and B with
a morphism B → A (in other words, A is a B-algebra), there is a natural functor
of scalar extension of Weil spaces from B to A

TA,B : Wsp
B
→Wsp

A

associating to a B-Weil space M the A-Weil space given on the level of objects by

WalgB → set, D 7→MD⊗BA

and similarly on the level of morphisms. In particular, there are natural functors
of scalar extension and scalar restriction

TA,K :Wsp
K
→Wsp

A
,

TK,B :Wsp
B
→Wsp

K
,

and the composed “A-tangent functor” is defined by

TA := TK,A ◦ TA,K : Wsp
K
→Wsp

K
, M 7→MA

All of these functors are product preserving functors in the sense of [KMS93], i.e.,
they are compatible with direct products.

Proof. This follows directly from the corresponding transitivity properties of the
scalar extension functor (tensor product) on the level of rings, in particular from
the natural isomorpism D ⊗B (B ⊗K A) = D ⊗K A. (Note that only properties of
bundle algebras are needed for this; nilpotency of the ideals plays no rôle here.) �

The notation MA,B := TA,BM may also be useful: it indicates that we look at “the
A-bundle MA, seen over MB”. The letter T now stands for a covariant bifunctor

T : WalgK ×WspK →WspK, (A,M) 7→MA.

3.4. Internal hom-spaces, and cartesian closedness. It is well-known that
spaces of smooth maps between manifolds are rarely manifolds. One of the mo-
tivations to develop topos theory and synthetic differential geometry is to define
categories which behave better with respect to this issue. As said in the introduc-
tion, our model is rather primitive, compared to topoi used in synthetic differential
geometry; thus the proof of the following result is standard in category theory.
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Theorem 3.9 (Internal hom-spaces, and cartesian closedness). Let M and N be
K-Weil spaces. Then the morphisms (K-Weil laws) from M to N ,

X := Mor(M,N),

form again a K-Weil space, by considering, for each A ∈WalgK, the set

XA := {fA : MA → NA | f ∈ X}

with natural transformations given for a morphism φ : A→ B by

Xφ : (XA → XB, fA 7→ (u 7→ fB(Mφ(u))).

It follows that the category Wsp
K

of K-Weil spaces is cartesian closed.

Proof. Direct check of definitions, see [BW85], Section 2.1, Theorem 4. �

4. Examples of Weil spaces

4.1. K-modules. Any K-module V gives rise to a Weil space

V : WalgK → set,

A 7→ V A := V ⊗K A, (φ : A→ B) 7→ (idV ⊗K φ : V A → V B).

In fact, it gives rise to the stronger structure of an “algebraic Weil space” (cf.
Definition 3.2), since it defines also a functor on all scalar extensions

V : AlgK → set, A 7→ V A := V ⊗K A, φ 7→ idV ⊗K φ.

The morphisms in this stronger sense are precisely the polynomial laws:

Definition 4.1 (N. Roby, [Ro63]). A polynomial law between two K-modules V
and W is a natural transformation f : V→W.

As shown in loc. cit. (cf. also [Lo75], Appendix), the underlying map f : V → W
of a polynomial law corresponds to classical concepts of polynomial mappings. By
restriction to the subcategory WalgK, any polynomial law gives rise to a Weil law;
in particular, linear maps define Weil laws. When nothing else is said, a K-module
V will always be considered as Weil space V in the way defined above.

Definition 4.2. Let V be a K-module. The canonical trivialization of the Weil
space V is given by the decomposition, for each Weil algebra A,

V A = V ⊗ (K⊕ Å) = V ⊕ (V ⊗ Å) =: V ⊕ V Å.

Using the trivialization, tangent maps give rise to differentials: elements of V A are
written in the form u = (x, v) or u = x⊕ v. A Weil law f : V → W is written, with

respect to the trivializations, fA(x, v) = (g(x, v), h(x, v)). Since fA is fibered over
f : V → W , the first component is just f(x), so that, letting dAf(x)v := h(x, v),

(4.1) fA(x, v) =
(
f(x), dA(x)v)

)
= f(x)⊕ dAf(x)v.

The condition zW ◦ f = fA ◦ zV gives us dAf(x)0 = 0.
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Example 4.1. If A = TK = K⊕ εK (ε2 = 0), then V A = TV = V ⊕ εV , and, letting
df(x) := dTKf(x), (4.1) is the analog of the usual first order Taylor expansion

Tf(x+ εv) = f(x) + εdf(x)v.

In section 6 we show that, for all x ∈ V , the map df(x) : V → W is linear.

Example 4.2. Assume f : V → W is K-linear. Then Tf : TV → TW is its TK-
linear extension, whence Tf(x + εv) = f(x) + εTf(v) = f(x) + εf(v). Comparing
with the preceding formula, we get df(x)v = f(v); thus df(x) = f is constant.
Likewise, the differential of a bilinear map b : V × V → W is computed “as usual”.

Example 4.3. For any Weil algebra B, B is the Weil space associating to A the tensor
product B⊗K A. In particular, the affine line K associates to A its underlying set.

Example 4.4. Let V = K be the affine line. The product map m : K × K → K is
bilinear, hence polynomial, and gives rise to a Weil law m, where mA is simply the
product map of A. Similarly for the addition map. Summing up, the Weil functor
TA, applied to the base ring K, yields the ring structure of A. Similarly, if g is a
K-algebra (associative, Lie, or other), then g is the law given by scalar extension

A 7→ gA = g⊗K A (which is again associative, Lie, or other), and hence g becomes
an algebra object (associative, Lie or other) in the category of Weil spaces. For
instance, we may speak of the associative Weil law M(n, n;K).

Example 4.5. Vor V = 0, we obtain the terminal object associating K to each A
(4.2) 0 : A 7→ K.
A point p in M is the same as a morphism p : 0→M .

4.2. Domains in K-modules. Using the trivialization of V A, we can mimick the
definition of the “usual” tangent bundle for any subset of V (thought of as “open”):

Definition 4.3. Let V be a K-module. A domain in V is the Weil space U given
by a non-empty subset U ⊂ V : to A, it assigns the subset of V A defined by

UA := U × (V ⊗K Å) = U × V Å ⊂ V A = V × V Å

and to a morphism φ : A→ B the restriction of id⊗ φ from UA to UB.

Example 4.6. We may take a singleton U = {p}. Then the “tangent space” is
Tp{p} = εV , corresponding to the idea that U is considered as “open” in V . We
denote by 0V the functor defined by the singleton {0V }:

(4.3) 0V : A 7→ {0V } × V Å.

Thus 0V represents the “collection of all A-tangent spaces of V at 0”, whereas 0
represents the “common origin” in these tangent spaces.

Example 4.7. (Inversion law.) Let U := K× ⊂ V = K and i : U → U the law

“inversion”. Since Å is nilpotent, the set UA = K× × Å is precisely the set A×
of invertible elements in A, and then we let iA(u) = u−1, the inversion map of A.
This defines a Weil law. Note that, if K = Z, whence U = {1,−1}, the base map
is iK = idU , but the Weil law i is different from the identity law idU (for instance,
iTK(1 + εv) = 1− εv; only if K = Z/2Z, we cannot distiguish i and idU).
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4.3. Subspaces defined by equations, and affine algebraic Weil spaces. Let
M be a Weil space and S some set of scalar valued Weil laws f : M → K. Then we
define its zero locus to be the functor

Z(S) : A 7→ Z(S)A := {x ∈MA | ∀f ∈ S : fA(x) = 0}

and associating to φ : A → B the restriction of Mφ; then Z(S) is a K-Weil space,
in fact, a subspace of M , called the subspace defined by the equations S. In case
M = V is a K-module and the equations are polynomial laws, we may call it also
an affine algebraic Weil space. Of course, instead of scalar valued laws one might
also take laws with other target spaces.

Example 4.8. The Weil space SL(n,K) is of this type: it associates to A the set

SL(n,A). Here, S = {det−1}. Since det(1 + εX) = 1 + ε tr(X), the tangent space
at 1 is the space of matrices of trace zero.

4.4. Weil manifolds. A Weil manifold is a Weil space with the additional struc-
ture of being a functor from the category of Weil algebras into the category of set
theoretic manifolds modelled on some K-module V :

5. Weil manifolds

5.1. Set theoretic manifolds. This is what remains if, in the usual definition of
topological manifolds, we retain the atlas and forget about the given topology:

Definition 5.1. A set theoretic manifold over K is given by (M,V, (Ui, φi, Vi)i∈I),
where M is a set, V is a K-module, and, for each i belonging to an index set I,
Ui ⊂M and Vi ⊂ V are non-empty subsets such that M = ∪i∈IUi, and φi : Ui → Vi
is a set-theoretic isomorphism (bijection). We then also say that A = (Ui, φi, Vi)i∈I
is an atlas on M with model space V , and we say that the topology generated by
the sets (Ui)i∈I on M is the atlas-topology on M . The atlas is called saturated if
the Ui form a basis of the atlas-topology.

At this stage, the ring K does not play any rôle. If the atlas is made of “big”
charts, then the atlas topology will not be separated (e.g., projective spaces M =
KPn, when K is a field, with the usual atlas given by n+1 canonical charts). On the
other hand, the definition does not exclude charts given by singletons, so that the
atlas-topology may be discrete. In practice, when M already carries some topology,
one will require that the atlas-topology is coarser than the given one. Given an
atlas, we let for (i, j) ∈ I2,

(5.1) Uij := Ui ∩ Uj ⊂M, Vij := φj(Uij) ⊂ V,

and the transition maps belonging to the atlas are defined by

(5.2) φij := φi ◦ φ−1
j |Vji : Vji → Vij.

They are bijections satisfying the cocycle relations

(5.3) φii = id and φijφjk = φik (where defined).

Definition 5.2. A morphism of set theoretic manifolds (M,A), (N,A′) is an atlas-
continuous map f : M → N , i.e., a map which is continuous with respect to the
atlas-topologies on M and N .
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The continuity condition permits to recover the morphism from local data, see
theorem below. Obviously, set theoretic manifolds [modelled on K-modules V ] with
their morphisms form a category, denoted by SetMfK. Recall that a manifold can
be reconstructed from local data, as follows:

Theorem 5.3 (Reconstruction from local data). Assume given the following data:

• a K-module V (the model space), and an index set I,
• subsets Vij ⊂ V , for i, j ∈ I,
• bijections (φij : Vij → Vji)i,j∈I satisfying the cocycle relations (5.3).

Then there exists a unique (up to isomorphism) set theoretic manifold M having V
as model space and the φij as transition laws. Moreover, f : M → N is a morphism
if and only if all fij := ψi ◦ f ◦ φ−1

j (restricted to suitable intersections of chart
domains) are morphisms.

Proof. Existence: define M to be the quotient M := S/ ∼, where S := {(i, x)|x ∈
Vii} ⊂ I × V with respect to the equivalence relation (i, x) ∼ (j, y) if and only
if (φij)(y) = x. We then put Vi := Vii, Ui := {[(i, x)], x ∈ Vi} ⊂ M and φi :
Ui → Vi, [(i, x)] 7→ x. All properties, as well as uniqueness, are now checked in a
straightforward way; we omit the details (cf. [BeS12, Be13].) �

Example 5.1. If all Uij are empty for i 6= j, then M is just the disjoint union of the
sets Vi := Vii. On the other hand, every subset U ⊂ V is a manifold (with |I| = 1).

5.2. Weil manifolds.

Definition 5.4. A K-Weil manifold (with atlas) is a functor from the category
of Weil algebras into the category of set-theoretic manifolds; in other words, it is a
Weil space M together with an atlas A = (U i, φi, V i)i∈I modelled on some K-module

V , i.e., for each K-Weil algebra A, AA is an A-atlas on MA with model space V A.
A law of Weil manifolds is a natural transformation of Weil manifolds.

Weil manifolds with their laws obviously form a category, which we denote by
WmanK. For i, i ∈ I, we let V ij := φ

i
(U i ∩ U j) (subspace of V i). Since the φ

i
, are

Weil isomorphisms, it follows that the transition laws

φ
ij

:= φ
i
◦ φ−1

j
|φj(Vji) : Vji → Vij

are Weil isomorphisms. From Theorem 5.3 we get:

Theorem 5.5. (Reconstruction from local data) Assume given the following data:

• a K-module V (the model space), and an index set I,
• Weil subspaces V ij ⊂ V , for i, j ∈ I,
• K-Weil laws (φ

ij
: V ij → V ji)i,j∈I satisfying for each Weil algebra A the

cocycle relations (5.3).

Then there exists a unique (up to isomorphism) Weil manifold M having V as model
space and the φ

ij
as transition laws.

Example 5.2. All usual (finite-dimensional real) manifolds are Weil manifolds over
K = R ([KMS93], Theorem 35.13), and all smooth manifolds over non-discrete
topological fields or rings K are K-Weil manifolds ([BeS12], Theorem 1.2).
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Example 5.3. For any commutative ring K, and any K-module V admitting a direct
sum decomposition V = E ⊕ F , the Grassmannian of type E and co-type F , M =
GrasFE(V ) (space of all K-submodules isomorphic to E and having a complement
isomorphic to F ) gives rise to a Weil manifold: the Weil space structure is given

by MA = GrasF
A

EA(V A), and the charts by the natural affine space structure on the
set of complements of some fixed module. In particular, the projective space laws
KPn := GrasKK(Kn+1) are K-Weil manifolds.

This example has a vast generalization: every Jordan geometry associated to
a Jordan pair over K carries a structure of K-Weil manifold, and so does any
associative geometry associated to an associative pair over K ([Be13b]).

6. Weil varieties

6.1. Infinitesimal linearity of Weil varieties. The fact that Weil manifolds
admit local trivializations, in the sense of definition 4.2, implies rather directly that
they are infinitesimally linear: the fibers of the tangent bundle TM are K-modules.
For instance, tensoring the exact sequence (2.2): A � B → A ⊗ B → A ×K B for a
pair (A,B) of Weil algebras with a K-module V gives the decomposition

(6.1) V A⊗B = V Å⊗B̊ ⊕ V Å ⊕ V B̊ ⊕ V,
showing that the following sequence is exact over the base V , in the sense that it is
an exact sequence in the fiber over V :

(6.2) V → V Å⊗KB̊ ⊕ V → V A⊗B pA,B→ V Å ⊕ V B̊ ⊕ V → V

This is already the main ingredient in the proof of

Theorem 6.1. Assume M is a Weil manifold over K.

(1) For all pairs (A,B) of Weil algebras, there is a natural isomorphism between
MA×KB and the fiber product of MA and MB over the base M :

MA×KB = MA ×M MB .

Naturality means here, that for any K-Weil law f : M → N ,

fA×KB = fA ×M fB.

(2) An exact sequence of Weil algebras Î→ A→ A/I (cf. definition 2.4) induces
an exact sequence of bundles over M

M → M Î → MA → MA/I → M

i.e., in each fiber over M the induced maps form an exact sequence of pointed
sets: the inverse image of 0 under the second map is the image of the first.

Proof. Assume first that M = V is given by a K-module V . Then, since tensor
products over K are compatible with direct sum decompositions over K, we get
from (2.2) the sequence (6.2). Similarly, an exact sequence of Weil algebras as in
def. 2.4 (where A = K⊕ I⊕ C) gives rise by tensoring to

V A = V ⊗K (K⊕ I⊕ C) = V ⊕ (V ⊗K I)⊕ (V ⊗K C),
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where V ⊗K C = VA/I . From these identifications, both assertions (1) and (2)
immediately follow.

If M is a general Weil manifold, then we apply the preceding arguments in each
domain V ij, and since the properties are of local (even: infinitesimal) nature, and
chart changes induce isomorphisms on the set level, they hold also for M . �

6.2. Weil varieties. To formulate the general definition of Weil varieties, we note
that for any Weil space M and pair of Weil algebras (A,B), there is a natural map

(6.3) pA,B : MA×KB →MA ×M MB

which, in the fiber over x ∈M , for u ∈MA×KB, is simply given by

(6.4) pA,B(u) =
(
pA(u), pB(u)

)
where pA : MA×KB →MA and pB : MA×KB →MB are induced by A×K B→ A and
A×KB→ B. This is a simple consequence of the very definition of the fiber product
of MA and MB over M : MA ×M MB is defined to be the pullback in the category
set, and it can be constructed as equalizer of the two projections πA : MA → M
and πB : MB →M :

(6.5) MA ×M MB = {(u, v) ∈MA ×MB | πA(u) = πB(v)},

and the fiber over x ∈ M then is the direct product TA
xM × T B

xM . The map pA,B

then exists by the universal property, and is explicitly given by (6.4).

Definition 6.2. A Weil variety is a Weil space M such that, for each pair (A,B)
of Weil algebras, resp. for each Weil ideal I of A,

(1) the natural map pA,B is a bijection,

(2) the exact algebra sequence Î→ A→ A/I induces an exact bundle sequence.

The bundle M Å�B̊ := M Å⊕B̊⊕K over M is called the verticle bundle with respect to
(A,B). Combining (1) and (2), we get an exact sequence over M

(6.6) MA�B → MA⊗KB → MA ×M MB.

If A = B = TK, then there is is a canonical isomorphism of Weil algebras,

TK→ TK� TK = K⊕ (ε1K⊗K ε2K) = K⊕ ε1εK, (x+ εv) 7→ x+ ε1ε2v,

whose inverse we denote by ν. It induces an isomorphism

(6.7) ν : MTK�TK → TM,

between TM and “the” vertical bundle, and we have the exact sequence

(6.8) M → TM → TTM → TM ×M TM → M.

Remark 6.1. From the algebra isomorphism A⊗(B̊⊕B̊′⊕K) = (A⊗B̊)⊕(A⊗B̊′)⊕A,
we get the following “distributivity isomorphism” of bundles over TAM

(6.9) TA(T BM ×M T B′
M) ∼= TAT BM ×TAM TAT B′

M.
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6.3. Linear and affine bundles induced by vector algebras and ideals.

Theorem 6.3. Let A be a vector algebra over K and M a K-Weil variety.

(1) TAM is a linear bundle over M , that is, the fibers TA
xM carry a natural

K-module structure with origin 0x, and if f : M → N is a Weil law between

K-Weil varieties, then tangent maps TA
x f : TA

xM → TA
f(x)N are K-linear.

(2) The “usual” tangent bundle TM and tangent maps Tf are linear in fibers.
(3) When M = V is a K-module, the linear structure is the one given by the

trivialization: in each fiber it coincides with the one coming from the K-
module VÅ = V ⊗K Å, and if M is a Weil manifold, then the linear structure
is obtained from the linear structure underlying chart domains, for any chart.

Proof. (1) The structure maps aM : MA×MA →MA (fiberwise addition) and K×
MA →MA (fiberwise multiplication by scalars) are induced from the corresponding
canonical morphisms of vector algebras, α : A×K A→ A, (x, a, b) 7→ (x, a+ b) and
ρr : A→ A, (x, v) 7→ (x, rv) (Lemma 2.5): while ρr induces morphisms on any Weil
space, for aM we need that M is a Weil variety, to get

(6.10) a = Mα : MA ×M MA ∼= MA×KA →MA.

Once these structure maps are well-defined, it follows by purely “diagrammatic”
arguments that they define a linear bundle structure on MA: associativity and
commutativity of Å are expressed by commutative diagrams involving α and di-
agonal imbeddings; by functoriality, these translate to diagrams for a, thus we get
commutative associative products ax on the fibers (MA)x. The neutral element of
ax is given by the origin 0x: this is again a diagrammatic argument, following from
idA = α◦(id×K ζ) = α◦(ζ×K id) which holds on the level of Weil algebras. Thus we
get a monoid, and we write ax(u, v) =: u + v. Concerning inverses in this monoid,
the map (−1)A := ρ−1 : A→ A, (a, r) 7→ (−a, r) (Lemma 2.5) is an automorphism
of A and hence induces an Weil automorphism law (−1)MA of MA, which in the
fiber over x is nothing but the inversion map needed in order to get the group
structure (TA

xM,+). Now it follows by the same kind of arguments that the maps
ρr induce a scalar action on (MA, a). Summing up, we have defined a K-module
structure in each fiber over MA. These definitions are natural (defined in terms of
structure data of the Weil algebras), hence commute with natural transformations
f ; and this means that fA is linear in fibers.

(2) is the special case of the vector algebra A = TK = K[X]/(X2).

(3) For M = V , the map a from (6.10) is nothing but vector addition in VÅ, since

α is addition in Å. Similarly, the scalar action is the usual one, since it is induced
from the usual scalar action of K on Å. �

Theorem 6.4. Assume I is a vector ideal in a Weil algebra A. Then MA is an

affine bundle over the base MA/I, modelled on the linear bundle M Î. More precisely,
there is a natural action morphism of Weil varieties

M Î ×M MA →MA
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such that, for x ∈ M fixed, the total space E = (MA)x is a principal bundle over
the base E/V = (MA/I)x, with structure group the additive group V = (MÎ)x acting
freely on E.

Proof. The proof follows exactly the lines of the one of Theorem 6.3: the corre-
sponding action morphism on the level of Weil algebras is given by Lemma 2.5; it
is compatible with the given data and hence induces a morphism on the level of
varieties, which has the required properties. �

If, with notation from the theorem, for u, v ∈ E belonging to the same V -orbit,
we denote by u − v ∈ V the unique element g ∈ V such that g.v = u, we get a
“difference morphism”

(6.11) MA ×MA/I MA →M Î, (u, v) 7→ u− v.
If M = V for a K-module V , then V A = VI⊕VC⊕V , and (u, y, x), (u′, y′, x′) belong
to the same fiber over VA/I = VC ⊕ V iff x = x′ and y = y′, and then the difference
u − v we have defined by (6.11) coincides with the difference u − v in the module
VI. Applying Theorem 6.4 to the sequence (2.2) of A⊗ B, we get, if both A and B
are vector algebras (so the vertical ideal Å⊗ B̊ is a vector ideal in A⊗ B):

Corollary 6.5. Assume (A,B) is a pair of vector algebras over K, and M a Weil
variety. Then the bundle MA⊗B is an affine bundle over MA ×M MB, modelled on
the vertical bundle MA�B.

In order to fix notation, let us consider the case A = K[ε1] = TK, B = K[ε2] = TK
and A⊗KB = K[ε1, ε2] = TTK. On the level of Weil algebras, we have the following
diagrams of injections (zero sections) and surjections (projections):

TTK
ζ1

↗
ζ2

↖
TK → TK×K TK ← TK ,

↖ ↑ ↗
K

TTK
p1

↙ ↓ p12
p2

↘
TK ← TK×K TK → TK

↘ ↓ ↙
K

Note that there is no “zero section ζ12” (the inclusion map is not a morphism
of Weil algebras; it is precisely at this point that connections come into play, cf.
[Be08, So12]). On the level of second tangent bundles, this gives rise to diagrams

TTM
ζ1

↗
ζ2

↖
TM → TM ×M TM ← TM ,

↖ ↑ ↗
M

TTM
p1

↙ ↓ p12
p2

↘
TM ← TM ×M TM → TM

↘ ↓ ↙
M

where p12 is an affine bundle with translation bundle TM acting on TTM . More-
over, on each bundle MA⊗A, hence also on TTM , there is a canonical flip

(6.12) τ : TTM → TTM

induced by the flip of TTK exchanging ε1 and ε2 (Lemma 2.5, Part (2)).
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Remark 6.2. The category of Weil varieties is cartesian closed (see Remark 8.2), and
the zero set Z(S) (Section 4.3) in a Weil variety is again a Weil variety; in particular

affine algebraic Weil spaces are Weil varieties (details will be given elsewhere).

7. Weil Lie groups

7.1. Definition and examples.

Definition 7.1. A Weil Lie group is a group object in the category of Weil varieties:
it is given by (G,m, i, e) where G is a Weil variety, and Weil laws m : G×G→ G
and i : G→ G and e : 0→ G (so eA ∈ GA is a distinguished element) such that for
each Weil algebra A, we have a group (GA,mA, iA, eA).

A law of Weil Lie groups is a natural transformation f between two Weil Lie

groups G,H: thus fA : GA → HA is a group homomorphism, for all A. We say
that G is a Weil-Lie goup with atlas if it is also a Weil manifold such that the group
laws are morphisms of Weil manifolds.

Example 7.1. (1) A usual (real, or complex) analytic Lie group G is a Weil-Lie
group, where GA is the Weil bundle over G, which is a Lie group ([KMS93]);
and this holds more generally for a smooth Lie group over an arbitrary
topological field ([BeS12]).

(2) With K = Z, GL(n,Z), SL(n,Z),O(n,Z), etc., are the Weil Lie groups over

Z assigning to a Z-Weil algebra A the groups GL(n,A), SL(n,A), resp.
O(n,A). Note that GL(n,Z) has a natural atlas (modelled on M(n, n;Z)),
and similarly for O(n,Z) (having the Cayley rational chart, modelled on
Skew(n,Z)), but for SL(n,Z) it is more difficult to define an atlas modelled
on the space of integer matrices of trace zero.

(3) For any K-module V , GlK(V ) is a Lie group (modelled on the module
EndK(V )). More generally, for any unital associative K-algebra A, the func-
tor of invertible elements A× defines a Weil Lie group, modelled on A.

(4) The Weil laws from a Weil space M into some fixed Weil Lie group G form
again a Weil Lie group with “pointwise” multiplication (“loop group”).

(5) Let g be any algebra over K (Lie, Jordan, or other). Then the K-algebra
automorphisms give rise to a Weil variety (associating AutA(gA) to A), and
hence to a Weil Lie group AutK(g). In finite dimension over R, there is an
atlas given by the exponential map, but in general there is no such atlas.

(6) Let K = Q and g be a Lie algebra over K. For each Weil algebra A =

K ⊕ Å let GA := g ⊗K Å be equipped with its Baker-Campbell-Hausdorff

multiplication: X ·A Y = X+Y + [X,Y ]
2

+ ... (finite sum since Å is nilpotent).
Then G is a Weil Lie group (this can be seen as an infinitesimal version of
Lie’s Third Theorem). Note that here G = GK is just a point.

7.2. First approximation: vector addition. If G is a K-Weil Lie group, then
for each Weil algebra A, (GA,mA) is a Weil Lie group (defined over A); it associates
to a Weil algebra B the group GA⊗B. For instance, the tangent group TG = GTK is
again a Weil Lie group, and there is an exact sequence of Weil Lie groups

(7.1) 0 → TeG → TG → G → 1
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where TeG is the functor associating to a Weil algebra A the group (GTA)e, fiber
of GTA over e ∈ G. This sequence is split with section ζ : G→ TG induced by the
inclusion K ⊂ TK.

Theorem 7.2. The kernel g := TeG appearing in the sequence (7.1) is an abelian
Weil Lie group, and its group law coincides with the additive law of the tangent
space of G at e. The group G acts on by conjugation on g is via linear maps; this
representation is called the adjoint representation

Ad : G→ GlK(g), g 7→ Ad(g) = (X 7→ gXg−1).

The group TG is a semidirect product Gn g via Ad.

Proof. The first differential T(e,e)m is linear, so the group law is, for X, Y ∈ g,

T(e,e)m(X, Y ) = T(e,e)(X, 0e) + T(e,e)(0e, Y ) = X + Y,

where 0e is the neutral element of TG. Since Ad(g) is the tangent map of G→ G,
x 7→ gxg−1 at e, it is linear. Since the sequence (7.1) is split exact, TG is a
semidirect product. �

Example 7.2. We compute the tangent group of G = GLK(V ): by definition, TG =

GLTK(TV ), which is the same as GLε(V ⊕ εV ), the invertible K-linear maps F on
V ⊕ εV commuting with ε =

(
0 0
1 0

)
. The condition

(
0 0
1 0

)(
a b
c d

)
=

(
a b
c d

)(
0 0
1 0

)
leads

to a = d, b = 0, whence F = Fa,c =
(
a 0
c a

)
: (x+ εv) 7→ ax+ ε(av + cx):

TG = {Fa,c ∈ EndK(TV ) | a ∈ GLK(V ), c ∈ EndK(V )}

with product Fa,c ◦ Fa′,c′ = Faa′,ac′+a′c.

Example 7.3. Let β : V × V → V be a K-bilinear map. We compute the tangent
group of the automorphism group G := AutK(V, β): TG is the group of all Fa,c that

preserve Tβ(x + εv, x′ + εv′) = β(x, x′) + ε(β(x, v′) + β(x, v′)). This implies that
a ∈ AutK(V, β), and for a = id, we get the condition that c is a derivation of β.
Thus TG is a semidirect product of AutK(V, β) with the vector group

DerK(V, β) = {c ∈ EndK(V ) | ∀x, x′ ∈ V : cβ(x, x′) = β(cx, x′) + β(x, cx′)}.

7.3. Second approximation: Lie bracket. As is well-known, the Lie bracket
associated to a Lie group is defined in terms of second derivatives of the group
structure. In order to explain this in a conceptual and functorial way, consider the
sequence (6.8) and the diagrams for TTM given at the end of the preceding section,
and replace M by G: then all spaces in questions are groups and all canonical maps
are group morphisms. The group (TTG)e is in general non-abelian, and the Lie
bracket will be defined in terms of the group commutator law of G:

(7.2) Γ : G×G→ G, ΓA(g, h) = ghg−1h−1, ∀g, h ∈ GA.

Theorem 7.3 (Lie bracket). Let G be a Weil Lie group over K. Then, with ν
defined by Eqn. (6.7), the law

Λ := ν ◦ Γ ◦ (ζ
1
× ζ

2
) : g× g→ g
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defines a Lie algebra law on g. On the level of the second tangent group TTG, this
formula means that the Lie bracket is given for X, Y ∈ g by

[X, Y ] := ΛK(X, Y ) = ν(ε1X · ε2Y (ε1X)−1 · (ε2Y )−1).

This formula can be rewritten, equivalently, by using the notation [ , ]grp := Γ for
the group commutator, and by using a minus sign to denote the difference of two
elements of (TTG)e lying in the same fiber over (TG×G TG)e = g× g:

[ε1X, ε2Y ]grp = ε1ε2[X, Y ]alg

ε1X · ε2Y · (ε1X)−1 − ε2Y = ε1ε2[X, Y ]alg

ε1X · ε2Y − ε2Y · ε1X = ε1ε2[X, Y ]alg

Proof. In the following proof, we write arguments using elements on the level of
TTG; it is possible to formulate things in an element-free way using diagrams
(hence showing that actually all identities are laws over K); but this would make
the proof longer and harder to read, and so we leave this task to the reader.

First of all, the maps are well-defined, and all three formulae for the Lie bracket
agree: let X, Y ∈ g; since p12 defines a group morphism (TTG)e → g× g, and g× g
is abelian, we have

p12(ε1X · ε2Y ) = p12(ε1X) + p12(ε2Y ) = ε1X + ε2Y = p12(ε2Y · ε1X)

and likewise p12(ε1X ·ε2Y ·(ε1X)−1 ·(ε2Y )−1) = 0. It follows that Z := [ε1X, ε2Y ]grp
belongs to the vertical fiber over e, whence ν[ε1X, ε2Y ]grp ∈ TeG = g is well-defined.
Moreover, Z · ε2Y ε1X = ε1Xε2Y , whence Z = ε1Xε2Y − ε2Y ε1X by definition of
the affine bundle TTG over TG×G TG in the preceding chapter. Similarly, Z can
be written as Z = ε1X · ε2Y · (ε1X)−1 − ε2Y .

Let us show that [Y,X] = −[Y,X]. Classically, this relies on symmetry of second
differentials; in our setting, this corresponds to the fact that the preceding con-
struction is natural and hence commutes with the flip τ : TTG→ TTG exchanging
ε1 and ε2 (equation (6.12), that is,

ε1ε2[X, Y ] = τ(ε1ε2[X, Y ]) = τ(ε1X · ε2Y · (ε1X)−1 · (ε2Y )−1)

= ε2Xε1Y (ε2X)−1 · (ε1Y )−1 = (ε1ε2[Y,X])−1.

Now, inversion in the vertical bundle is Z 7→ −Z, whence [X, Y ] = −[Y,X].

In order to show that the bracket is K-bilinear, we use the following fact, which is
obvious in differential calculus, and whose proof in the category of Weil spaces is is
rather straightforward and will be omitted here: for a binary map f : M ×N → P
and u ∈ TTM , v ∈ TTN , we have maps Tf(u, ·) : TN → TP and Tf(·, v) : TM →
TP , and then

TTf(u, v) = T (Tf(·, v))(u) = T (Tf(u, ·))v.
Apply this to the commutator map f = Γ and u = ε1X, v = ε2Y to see that the
expression is linear in X and in Y (since tangent maps for Weil varieties are linear).

Finally, in order to prove the Jacobi identity, various strategies are possible. The
simplest is probably the one given in [DG70], II.§4, no. 4, following the classical fact
that [X, Y ] = ad(X)Y , where ad is the derivative of the adjoint representation Ad
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at e: the construction of the Lie bracket is natural, that is, G acts via the adjoint
representation by automorphisms of the Lie algebra, so we have a morphism

Ad : G→ AutK(g, [ , ]).

In particular, TAd is a morphism TG → T (Aut(g)), and hence also its restriction
to fibers over neutral elements is a morphism (K-linear map, since these fibers are
just vector groups). From Exemple 7.2 we know that the fiber of T (Aut(g)) over
id is Der(g), hence we have

ad := TAd|g : g→ Der(g).

The formula ε1X · ε2Y · (ε1X)−1 = ε2Y + ε1ε2[X, Y ]alg already established above
shows that [X, Y ] = ad(X)Y , and saying that ad(X) ∈ Der(g) gives the Jacobi
identity. �

Remark 7.1. Some words on other proofs of the Jacobi identity. In one way or
another, one has to use third derivatives. A proof that can be adapted to the present
context is given in [Be08], p. 117: the higher order tangent groups TG, TTG, T 3G
can be trivialized from the left or from the right, and the group law can then be
described by explicit formulae. Using this, expanding ε3Z · (ε2Y · ε1Z) = (ε3Z ·
ε2Y ) · ε1Z in two different ways and comparing, the Jacobi identity drops out. This
proof is closely related to the proof by using Hall’s identity (see [Ko10], p. 219 for a
detailed discussion, following Serre’s proof). Also, the recent work [Viz13] is closely
related to this – it would be very interesting, if the trivialization of the jet bundles
JkG used in loc. cit. can be defined in our categorical context; then this would
lead to another approach to the Lie bracket in terms of the jet bundles J2G, J3G.
Finally, most textbooks define the Lie algebra of usual Lie groups G in terms of left
invariant vector fields, see next section.

7.4. Weil Lie torsors (grouds) and symmetric spaces.

Definition 7.4. A Weil variety with binary (ternary) multiplication is a Weil
variety M together with a binary or ternary Weil law µ : M × M → M , resp.
µ : M ×M ×M → M . Morphisms are Weil laws compatible with the respective
multiplication laws.

Definition 7.5. A Weil Lie torsor3 is a Weil variety G together with a Weil law µ :

G3 → G, such that, for each Weil algebra A, writing (xyz)A instead of µA(x, y, z),

(1) ∀x, y ∈ GA: (xxy)A = y = (yxx)A,
(2) ∀x, y, u, v, w ∈ GA: (xy(uvw)A)A) = ((xyu)Avw)A) = (x(vuy)Aw)A.

Every Weil Lie group (G,m) with the law (xyz)A := mA(x,mA(y, z)) is a Weil
Lie torsor, and, conversely, any choice of base point y in a Weil Lie torsor gives a

Lie group with neutral element y and product mA(x, yA, z) (cf. [BeKi09]). Thus Lie
theory of Weil Lie torsors is the same as “base point-free Lie theory”. For instance,
rewriting Theorem 7.3 in a base-point free way gives a field of Lie brackets, which
can also be interpreted as the torsion tensor of a canonical connection (cf. [Be08]):

3Besides “torsor””, other existing terminology is: groud, heap, pregroup,..., cf. [BeKi09].
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Theorem 7.6. On a Weil Lie torsor G, consider the Weil law given for each A by

ΓA(x, y, z) := (x(xyz)Az)A = ((xzy)Axz)A = (xz(yxz)A)A.

Then the law
Λ := ν ◦ Γ ◦ (ζ1 × ζ2) : TG×G TG→ TG

defines a field of Lie algebra laws on G. It can also be written as(
ε1X, 0y, ε2Z

)
−
(
ε2Z, 0y, ε1X

)
= ε1ε2[X,Z]y.

Definition 7.7. A (Weil) symmetric space is a Weil space with a binary Weil law
s : M ×M →M such that, for each Weil algebra A,

(1) ∀x ∈MA: sA(x, x) = x
(2) ∀x, y ∈MA: sA(x, sA(x, y)) = y
(3) ∀x, y, z ∈M : sA(x, sA(y, sA(x, z))) = sA(sA(x, y), z)
(4) ∀x ∈MA, y ∈ Tx(MA): sTA(0x, y) = −y.

Theorem 7.8. (1) For each Weil algebra A, the Weil bundle MA of a symmet-
ric space M is again a symmetric space.

(2) Every Weil Lie group G becomes a symmetric space when equipped with the
law sA(x, y) = xy−1x.

Proof. (1) All four axioms can be expressed by commutative diagrams involving the
structure map s and natural maps such as the diagonal imbedding, so that applying
a functor T B yields structures of the same type. The diagrams for the first three
axioms are given in [Lo69], p. 75; to write axiom (4) as a diagram, use zero section
ζ : MA → TMA and fiberwise multiplication by −1, (−1)TMA : TMA → TMA.

(2) Any abstract group G with s(x, y) = xy−1x satisfies (1), (2), (3). If G is a
Weil Lie group, then (4) holds since, in a Lie group, the tangent map of inversion
at the origin is −idTeG. �

Now one can define a Lie triple system attached to a symmetric space, see Cor. 8.7.

8. Vector fields and groups of infinitesimal automorphisms

8.1. Structure of A-automorphism groups. The following results provide im-
portant general tools for differential geometry. Since the proofs follow closely the
ones given [Be08], Chapter 28, our account will be rather concise.

Definition 8.1. Let M be a Weil space and A a Weil algebra. An infinitesimal
endomorphism of the Weil bundle MA is an A-endomorphism

F : MA →MA

preserving fibers over M , that is, such that pA ◦ F = pA. It is called an infini-

tesimal automorphism if, moreover, it is an automorphism of MA. Obviously, the
infinitesimal automorphisms form a group, which we denote by InfautA(MA).

Theorem 8.2. For any Weil space M , the group InfautA(MA) is a normal subgroup
of AutA(MA); more precisely, it fits into the following exact sequence of groups

1 → InfautA(MA) → AutA(MA) → AutK(M) → 1

which splits via AutK(M)→ AutA(MA), g 7→ gA.
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Proof. The Weil algebra projection A→ K induces, for any A-Weil law F : MA →
NA, a map FK : (MA)K → (NA)K, and similarly a law FK(recall Theorem 3.8).
Now define the K-Weil law f := p ◦ FK ◦ z : M → N (where p : (NA)K → N is

projection and z : M → (MA)K injection). Let us call f the base law of F . It
depends functorially on F ; in particular, for M = N , it defines a group morphism
AutA(MA) → AutK(M) whose kernel is formed by automorphisms having as base
law the identity law on M , that is, the infinitesimal automorphisms. It is also clear
that for g : M →M , the base law of gA is g itself, hence the group morphism splits

via g 7→ gA, and thus the sequence is exact. �

Definition 8.3. Let M be a Weil space and A a Weil algebra. An A-vector field
is a section of the canonical projection pA : MA → M , that is, a K-Weil law

X : M →MA such that p ◦X = idM .

Theorem 8.4. Let M be a Weil space and A a Weil algebra.

(1) There is a canonical bijection between A-vector fields X and infinitesimal
endomorphisms F , given by associating to F the A-vector field X := F ◦ ζ,
and to X the infinitesimal endomorphism given by

F := µ ◦XA : MA →MA⊗A →MA,

where µ : MA⊗A →MA is the law induced by µ : A⊗ A→ A (lemma 2.5).
(2) The space of A-vector fields forms a monoid with respect to the law X ·Y :=

µ ◦ XA ◦ Y and neutral element the zero section. If M is a Weil variety
and A = TM , this monoid is the abelian group of “usual” vector fields with
group law given by pointwise addition in tangent spaces.

(3) If M is a Weil manifold, then every infinitesimal endomorphism is an au-
tomorphism, and hence the monoid from the preceding item is a group, for
all Weil algebras A.

Proof. (1), (2) The proof from [So12], Thm. 8.2.2 carries over almost word by word,
so we will not repeat the details. See [Be08], Thm. 28.1 for the case A = T kK.

(3) Both the proofs from [Be08] and [So12], loc.cit., use chart arguments, and
they carry over for general Weil manifolds (but we do not know if the claim holds
for general Weil varieties or even Weil spaces). �

Corollary 8.5 (Lie bracket of vector fields). For any Weil variety M , the law GA :=
AutA(MA) defines a Weil Lie group G = AutK(M). Its Lie algebra is the space

g = X(TM) of sections of TM ( usual vector fields, identified with infinitesimal
automorphisms), with Lie bracket being the bracket of vector fields, described by the
formula from [Be08], Theorem 14.4:

(8.1) [ε1X, ε2Y ]group = ε1ε2[X, Y ]alg.

Moreover, if M is a Weil manifold, the bracket may be computed in a chart by the
usual chart formula in terms of ordinary differentials (as defined in equation (4.1)):

(8.2) [X, Y ](x) = dX(x)Y (x)− dY (x)X(x).
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Proof. It is straightforward that A 7→ GA defines a group object in the category
of Weil spaces, but it is less obvious that this object is again a Weil variety. Here
we use the description of the fibers given by the preceding theorem: since a group
is homogeneous, if suffices to consider the fiber over the neutral element idM ; by
the preceding theorem, this fiber is given by the collection of A-vector fields over
M , and using this, it is quite easy to deduce that the defining properties of a Weil
variety hold for G. Now the Lie algebra of G is the fiber of AutTK(TM) over idM ,
that is, the space of usual vector fields, and the construction of the Lie bracket from
the preceding chapter translates to the context of vector fields as described in the
theorem. �

Remark 8.1. Conversely, the Lie algebra of a Lie group can also be described as the
space of left (or right) invariant vector fields on the group, with bracket given by
the bracket of vector fields.

Remark 8.2. The argument from the preceding proof can be extended to show that
the category of Weil varieties has internal hom spaces and hence is cartesian closed.

8.2. Automorphisms and derivations.

Theorem 8.6. Let M be a Weil variety with binary multiplication s : M×M →M .
For a vector field X : M → TM , the following are equivalent:

(1) X is a homomorphism of multiplications s and Ts,
(2) the infinitesimal automorphism F corresponding to X is an automorphism

of multiplication Ts,
(3) the vector field X is a derivation: for each Weil algebra A and p, q ∈MA,

XA(sA(p, q)) = TsA(XA(p), 0q) + TsA(0p, X
A(q)),

or, in notation following [Lo69], Lemma 4.2,

X(p · q) = X(p) · q + p ·X(q).

The derivations of s (vector fields satisfying (3)) form a Lie subalgebra Der(M, s)
of the Lie algebra of vector fields. A similar result holds for general n-ary Weil laws
on a Weil variety.

Proof. The proof from [Lo69], p. 52, Lemma 4.2 and Prop. 4.3 a), carries over in a
rather straightforward way. �

Corollary 8.7. The derivations of a symmetric space (M, s) form a Lie subalgebra
of the Lie algebra of vector fields. If 2 is invertible in K, then, for any choice of base
point o in M , this Lie algebra inherits a Z/2Z-grading induced from the symmetry
with respect to o, and the −1-eigenspace is in canonical bijection with the tangent
space ToM ; in this way, the Lie triple system of a symmetric space attached to o
can be defined as in [Be08, Lo69]. It depends functorially on the symmetric space
with base point.

Remark 8.3. The Lie triple system can be interpreted as curvature tensor of a
canonical connection, cf. [Be08, Lo69].
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Remark 8.4. If M is a Weil variety with multiplication s, then then the automor-
phisms of s form a Weil Lie group Aut(M, s), Lie subgroup of the group AutK(M),
given by associating to a Weil algebra A the group

AutA(MA, sA) := {gA | g ∈ Aut(M), s ◦ (g × g) = g ◦ s},

and Der(M, s) is its Lie algebra. The main point here is to show that Aut(M, s)
is a Weil variety, cf. remark 6.2 on categorical properties of Weil varieties. In this
context, the higher order analog of the derivation property is the expansion property
(see [KMS93], 37.6). This will be discussed in more detail elsewhere.
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