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Abstract. Using a geometric approach, we define and investigate the conformal group of a
symmetric space with twist. In the non-degenerate case we characterize this group by a theorem
generalizing the fundamental theorem of projective geometry.

0. Introduction

The real projective space RPn = O(n + 1)/(O(n) × O(1)) and the Sphere Sn = SO(n +
1)/ SO(n) are examples of a class of symmetric spaces M = G/H which can also be written as a
quotient M = Gb/Q with respect to a “big Lie group” Gb . In the first case, Gb = PGl(n+1,R)
is the general projective group, characterized by the fundamental theorem of projective geometry
as the group preserving collinearity (if n > 1), and in the second case, Gb = SO(n+ 1, 1) is the
conformal group, characterized by a classical result of Liouville (1850) as the group preserving
the Riemannian metric of the sphere up to a scalar function (if n > 2). Another example is
the unitary group U(n) which is homogeneous under the “big group” SU(n, n). Here I.E. Segal
offered the conjecture that the “big group” can be characterized as the causal group of U(n)
([Se76, p.35]).

In this work we present a unified theory of the “big group”. We consider not only symmetric
spaces G/H which can globally be written as a quotient Gb/Q , but also spaces having “locally”
such a realization; in the semisimple case these are the “open symmetric orbits in symmetric
R -spaces” classified by B.O. Makarevič ([Ma73]). In our previous work [Be97] we have shown
that algebraically such spaces, called symmetric spaces with twist, are equivalent to Jordan triple
systems (JTS), and we have given an intrinsic geometric characterization which is the starting
point for the presentation given here.

Every symmetric space with twist admits a twisted complexicification; for example, if
M = RPn , then the twisted complexification is the complex projective space CPn . In the present
work we characterize the twisted complex spaces as circled spaces; these are complex manifolds
with a real affine connection such that multiplication by i in each tangent space extends to a
holomorphic affine (local) diffeomorphism (Chapter 1). By a sort of analytic continuation, we
deduce that multiplication by real scalars in each tangent space also has a canonical extension to
a local diffeomorphism (no longer affine). The corresponding local one-parameter group attached
to each point p in the manifold induces a vector field E = Ep which we call an Euler operator
on a symmetric space. In the example of M = RPn , using the usual affinization V = Rn of
M , the Euler operator E = E0 is nothing but the usual Euler operator E(x) = x on Rn . In
fact, to any Euler operator Ep on a symmetric space we canonically associate a chart, called
Jordan coordinates, such that Ep is represented by the usual Euler operator (Chapter 2). Now,
if M = G/H , then the Lie algebra g of G together with the Euler operators generate a “big Lie
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algebra” gb of vector fields on M , called the (inner) conformal Lie algebra. It is worth noticing
that, because of its relation with the group of non-zero scalars, the concept of an Euler operator
on a symmetric space is on the one hand sufficiently close to the original concepts of conformal
geometry (which essentially corresponds to the rank-one case; compare e.g. with [Mai98]), and
on the other hand it can be seen as the correct generalization of classical conformal geometry to
the higher rank case.

The next step is the construction and description of a “big Lie group” belonging to gb ,
called the conformal group. This is done on two levels: first (Chapter 3) we give a completely
general construction of the conformal group, and second (Chapter 4) we characterize it in the
non-degenerate case by a theorem generalizing the classical results mentioned above (Th. 4.1).
Our general construction follows ideas of M. Koecher ([Koe69a,b]); however, we have chosen
a more analytic approach in the spirit of the pseudogroup-concept (cf. [Ko72]) instead of the
algebraic framework used by Koecher. This simplifies the theory considerably and is much better
adapted to applications to harmonic analysis which we have in mind. Moreover, this approach
avoids the use of axiomatic Jordan theory; in fact, it offers new, computation-free proofs for some
fundamental algebraic identities in Jordan theory.

The characterization of the conformal group by the “fundamental theorem” Th.4.1 (i) is a
further development of our “Liouville theorem for Jordan algebras” ([Be96a]) which we reproduce
here for convenience of the reader (Th. 4.1 (ii)). The Liouville theorem deals with a condition
on first (total) differentials, but in fact it is a “hidden second-differential theorem”, i.e. it implies
a condition on the second differential which in turn is close to a formulation due to H. Weyl of
the fundamental theorem of projective geometry (cf. Ex. 4.8 (d)). Based on this observation,
we introduce notions of T-conformality and T-projectivity and characterize the conformal group
(Th.4.1) and the conformal Lie algebra (Th.4.2) by these properties in the non-degenerate case.

Since the 19th century the “conformal group” and its characterization has attracted much
mathematical interest. From the more recent work, we would like to mention a result by S.
Gindikin and S. Kaneyuki who have proved a theorem generalizing the Liouville-theorem to
simple Jordan triple systems not belonging to the projective space ([GiKa98]). The essentially
same result has been obtained earlier by A.B. Goncharov ([Go87]); see also the work of R.J.
Baston [Ba91] for closely related results on AHS-structures. Special cases of the above mentioned
results are theorems of Chow and Dieudonné (cf. Ex. 4.8 (c)) and the determination of causal
groups (cf. Ex.4.8 (a)). Another interesting problem is the characterization of the conformal
group by an invariant generalizing the classical cross-ratio which has been obtained for the
classical matrix-spaces by Hua ([Hua45]) and for Jordan algebras by Koecher ([Ko67]). An
algebraic approach to the conformal group by using the theory of Jordan pairs is due to O. Loos
([Lo79]). In Lie theory, the conformal Lie algebra is introduced by the so-called Kantor-Koecher-
Tits construction (Section 2.3; cf. [Sa80]). The automorphism groups of symmetric tube domains
are special cases of “conformal groups” (cf. [FK94]). Finally, the theory of the conformal group
presented here is an essential tool for the further study of the symmetric spaces with twist started
in [Be96b], [Be97] and [Be98a]; cf. [Be98b] for an overview.

Acknowledgements. We should like to thank J. Hilgert and O. Loos for helpful conver-
sations. The author gratefully acknowledges support by DFG-grant HI 412 5-1.

1. Circled spaces and Euler operators

1.0. Preliminaries. (a) Extensions of tangent objects.

Definition 1.0.1. Let M and M ′ be real manifolds and p ∈ M , q ∈ M ′ .
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(1) An extension of a linear map a : TpM → TqM ′ is a smooth map α : M → M ′ such that

α(p) = q, Tpα = a.

(2) A vector field extension of a tangent vector v ∈ TpM is a vector field v ∈ X(M) such that

vp = v.

(3) A vector field extension of an endomorphism A ∈ End(TpM) is a vector field X ∈ X(M)
such that Xp = 0 and for all v ∈ TpM and vector field extensions v of v ,

[v, X ]p = A(v).

If the extended object is only defined on a neighbourhood of p , then we speak of local extensions.

The value of [v, X ]p in part (3) does not depend on the chosen vector field extension of
v because the bracket of two vector fields vanishing at p vanishes again at p . If M ⊂ V is an
open domain and p = 0, then the condition from part (3) is equivalent to

DX(0) = A,

where we consider X as a function M → V after having identified all tangent spaces with V .
In this realization it is proved by elementary arguments that X is a (local) vector field extension
of A ∈ End(TpM) if and only if the flow ϕt of X is a local extension of exp(tA) ∈ Gl(TpM).

Example 1.0.2. (The Euler operator.) If M = V is a vector space and A = idV , then et idV
is a (global) extension of etA . The corresponding vector field extension of A is the vector field
E = E0 given by

E(p) = p, (1.1)

which is called the Euler operator.

Clearly extensions as defined above are highly non-unique. However, in the presence of
additional requirements they may become unique. For instance, extensions of tangent maps to
affine maps (i.e. maps compatible with affine connections) are always unique if they exist (cf.
[Lo69a, p.24]).

(b) Symmetric spaces. We adopt here the group-theoretic definition of a symmetric space:
a symmetric space is a connected homogeneous space of the form M = G/H where H is an
open subgroup of the group of fixed points of some non-trivial involution σ of G . We assume
further that G acts effectively on M and consider g as a subalgebra of the algebra X(M) of
vector fields on M . The base point eH of M is denoted by o , and g = h ⊕ q is the canonical
decomposition of g w.r.t. the differential of σ at the origin. The evaluation map

evo : q → ToM, X &→ Xo (1.2)

is bijective; we denote by
lo : ToM → q ⊂ X(M), v &→ lov (1.3)

its inverse. Then lov is a vector field extension of v in the sense of Def. 1.0.1. Since the base
point is arbitrary, we have in fact maps lp : TpM → g ⊂ X(M) for all p ∈ M .

We define the canonical connection on the tangent bundle of M by the formula

(∇XY )p := [lp(Xp), Y ]p (X,Y ∈ X(M)). (1.4)
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It is easily verified that this defines indeed a connection ∇ and that this connection coincides
with the one considered in [KoNo69] and [Lo69a]. It is torsionfree and has covariantly constant
curvature: ∇R = 0; a connection with these properties is called affine locally symmetric and
characterizes symmetric spaces locally. The curvature tensor is given by the formula

(R(X,Y )Z)p = −[[lp(Xp), lp(Yp)], lp(Zp)] (X,Y, Z ∈ X(M)). (1.5)

It is G-invariant and is therefore equivalent to Ro , i.e. to the Lie triple system (LTS) q with
the Lie triple product

[X,Y, Z] := [[X,Y ], Z] (X,Y, Z ∈ q). (1.6)

Homomorphisms of symmetric spaces are smooth maps which are affine (i.e. compatible with
connections). A main result in the theory of symmetric spaces affirms that the category of
connected simply connected symmetric spaces is equivalent to the category of (finite-dimensional
real) LTS (cf. [Lo69, Th.II.4.12]). This means in particlar that an element of Gl(ToM) has an
extension to an automorphism of M iff it is a LTS-automorphism, and an element of End(ToM)
has an extension to an affine vector field on M iff it is a derivation of the Lie triple product Ro .

Proposition 1.0.3. A manifold M with affine connection ∇ is locally affine symmetric if
and only if for all p ∈ M the endomorphism −1p = − idTpM has a (local) affine extension.

Proof. Clearly −1p is an automorphism of Rp . Therefore, if (M,∇) is affine symmetric,
then −1p has an affine extension. Conversely, let sp be an affine extension of −1p . Since sp
is affine, it preserves the torsion Tor, the curvature R and all their covariant derivatives, and
−1p , being its derivative at p , preserves these tensors at p . In particular,

Torp(u, v) = (−1p)Torp((−1pu,−1pv) = −Torp(u, v)

for all u, v ∈ TpM , whence Tor = 0. In the same way we see that −1p -invariant quadrilinear
maps from TpM to TpM vanish, whence ∇R = 0.

The affine extension sp of −1p defined by the preceding propositon is called the geodesic
symmetry w.r.t. the point p .

1.1. Circled spaces. We consider a smooth manifold M . Recall that a tensor field J of
type (1, 1) is a smooth field of endomorphisms J = (Jp)p∈M , Jp ∈ End(TpM). If J 2

p = −1p for
all p , then J is called an almost complex structure, and if J 2

p = 1p , it is called a polarization.

Definition 1.1.1. A locally (resp. globally) circled affine space or just a circled space is a
triple (M,J ,∇), where J is an almost complex structure and ∇ an affine connection on a real
manifold M such that

(1) J is invariant under ∇ (i.e. ∇J = 0),

(2) Jp extends, for all p , to a local (resp. global) affine map jp .

Recall that, by definition, (∇J )(X,Y ) = ∇X(J Y )− J (∇XY ), and condition (1) can be
written ∇X(J Y ) = J ∇XY for all X,Y ∈ X(M).

Theorem 1.1.2. The (locally) circled affine spaces are precisely the twisted complex (locally)
symmetric spaces, i.e. the (locally) symmetric spaces with invariant almost complex structure J
such that the curvature tensor R satisfies the relation R(J X,Y ) = −R(X,J Y ) .

Proof. Let (M,J ,∇) be a circled space. Since jp is an affine extension of Jp , j
2
p is an affine

extension of J 2
p = −1p . According to Prop. 1.0.3, (M,∇) is thus a (locally) affine symmetric

space. Now the condition ∇J = 0 implies that

R(X,Y )J Z = J R(X,Y )Z. (1.7)
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The arguments used in the proof of Prop. 1.0.3 show that Jp is an automorphism of Rp . In the
presence of (1.7) this is equivalent to

Rp(J
−1
p v,J−1

p w, u) = Rp(v, w, u), (1.8)

which in turn is equivalent to Rp(Jp v, w, u) = −Rp(v,Jp w, u) (u, v, w ∈ TpM ). This being true
for all p , we have shown that J is a twisted almost complex structure for the symmetric space
(M,∇).

Conversely, given a symmetric space (locally isomorphic to M = G/H ) with invariant
twisted almost complex structure J , let ∇ be the canonical connection of M . The invariance of
J under Go implies that ∇J = 0, and it follows that (1.7) holds. By assumption, (1.8) holds,
and together with (1.7) this implies that Jp is for all p an automorphism of Rp . Therefore Jp

has an extension to an affine map of (M,∇). Thus (M,∇,J ) is circled.

Since affine extensions are unique, it follows that for a circled space j2p = sp is the symmetry
w.r.t. p .

Proposition 1.1.3. If (M,J ,∇) is a circled space, then Jp has for all p a unique vector
field-extension to an affine vector field Jp of ∇ , and the operator etJp has, for all p ∈ M and
t ∈ R , a unique extension to a (local) affine diffeomorphism.

Proof. We have shown above that the relations R(J X,Y ) = −R(X,J Y ) and R(X,Y )J Z =
J R(X,Y )Z hold. It follows that

R(J X,Y )Z +R(X,J Y )Z +R(X,Y )J Z = J R(X,Y )Z, (1.9)

i.e. Jp is a derivation of Rp for all p . As remarked in the preceding section, it follows that J p

has an affine vector field extension Jp . Moreover, etJp is an automorphism of Rp and has thus
an affine extension.

1.2. Euler operators on symmetric spaces. We will use the fact that invariant (1,1)-
tensor fields J with the property J 2 = −1 or J 2 = 1 on a symmetric space M = G/H are
integrable (see Appendix). This means essentially that the Lie algebra

g(J ) = {X ∈ X(M)| ∀Y ∈ X(M) : [X,J Y ] = J [X,Y ]}

is stable under J and has a J -bilinear Lie-bracket (Appendix, Prop. A.2). Since J is invariant
under G , we have g = Lie(G) ⊂ g(J ).

Lemma 1.2.1. If (M,J ,∇) is a circled space and Jp denotes, for p ∈ M , the affine vector
field extension of Jp , then the vector field

Ep := J−1 Jp ∈ g(J )

is a vector field extension of the operator 1p = idTpM .

Proof. We remark first that (Ep)p = J −1
p (Jp)p = 0. Next, since Jp ∈ g ⊂ g(J ) and since

g(J ) is stable under J (Prop. A.2), Ep = −J Jp belongs to g(J ). Fix p ∈ M and choose a
vector field extension v of v ∈ TpM such that v ∈ g(J ), e.g. one may take v = lpv . Then

[v, Ep]p = [v,J −1 Jp]p = J −1
p [v, Jp]p = J −1

p Jp v = v;

thus Ep is a vector field extension of 1p .

In the following proposition we use the notation

q̂ := ad(Eo)q = {[Eo, X ]|X ∈ q} ⊂ g(J ) (1.10)

and
qb := q+ q̂ ⊂ g(J ). (1.11)
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Proposition 1.2.2. In the situation of the preceding lemma, the following holds:

(E1) [[q̂, q̂], q̂] ⊂ q̂ and [[qb, qb], qb] ⊂ qb (i.e, q̂ and qb are Lie triple-systems).

(E2) [[q, q̂], q] ⊂ q̂ .

(E3) For all X ∈ qb , ad(Eo)2X = X .

(E4) For all X,Y ∈ qb , ad(Eo)[X,Y ] = 0 .

Proof. Since J defines on g(J ) the structure of a complex Lie algebra, the inclusion

ι : g → g(J )

has a unique C-linear extension to a homomorphism

ιC : gC = g⊕ ig → g(J ), (X + iY ) &→ X + J Y.

Note that ιC(i−1Jo) = J −1 Jo = Eo , and since ιC is a homomorphism, the diagram

gC
ιC−→ g(J )

− ad(iJo) ↓ ↓ ad(Eo)

gC
ιC−→ g(J )

commutes. Using that [Jo, q] = q , this implies q̂ = J [Jo, q] = J q = ιC(iq) and qb = ιC(qC).
Since iq and qC are Lie triple systems, so are their images under ιC , proving (E1). The relation
[[q, iq], q] = i[[q, q], q] ⊂ iq yields (E2).

By assumption, ad(Jo) is an invariant twisted complex structure on q ; therefore ad(Jo) :
qC → qC , being its C-linear continuation, is an invariant twisted complex structure on qC . Since
(i ad(Jo))2 = i2(ad(Jo))2 is the identity on qC , it follows that ad(Eo)2 is the identity on qb ,
whence (E3). Since, for all X ∈ hC , [iJo, X ] = i[J0, X ] = 0, it follows that [Eo, Y ] = 0 for all
Y ∈ ιC(hC), in particular for all [U, V ] , U, V ∈ qb = ιC(qC); whence (E4).

Note that (E3) and (E4) imply that [ad(Eo)X,Y ] + [X, ad(Eo)Y ] = ad(Eo)[X,Y ] = 0, i.e.

(E5) ∀X,Y, Z ∈ qb : [[ad(Eo)X,Y ], Z] = −[[X, ad(Eo)Y ], Z]

holds. Using the terminology introduced in [Be97], (E3), (E4) and (E5) say that ad(Eo) is a
twisted invariant polarization on the LTS qb , and (E1) and (E2) say that q has the essential
properties of a para-real form of this polarized LTS. In fact, if the homomorphism ιC from the
preceding proof is injective, then qb is isomorphic to the polarized LTS qC ; we return to this
point below (Prop. 2.4.1).

Definition 1.2.3. An Euler operator on a symmetric space M = G/H is given by a vector
field extension E := Eo of 1o := 1ToM having properties (E1) – (E4). Property (E4) allows to
define a vector field extension Ep of 1p for all p ∈ M in a G-invariant way which is uniquely
determined by Eo ; then (Ep)p∈M will be called a distribution of Euler operators on M .

The Lie algebra gb := [qb, qb] + qb of vector fields generated by qb is called the associated
inner conformal Lie algebra.

We will see below that, in a suitable chart, the vector field Eo indeed coincides with the
usual Euler operator (cf. Ex. 1.0.2). Rephrasing Prop. 1.2.2, we can say that an Euler operator
is canonically associated to a circled space, as a sort of real version of the circled structure. It
is therefore not surprising that this structure is inherited by any real form of a circled space.
Recall that a real form is given by a conjugation, i.e. by an involutive automorphism τ with
τ∗ J = −J .
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Proposition 1.2.4. If τ is a conjugation of the circled space (M,J ,∇) such that τ(o) = o ,
then the vector field Eo is invariant under τ∗ , and it defines an Euler operator on the real form
M τ of M .

Proof. We have τ∗(Jo) = −Jo since τ∗(Jo) is an affine vector field extending τ∗(Jo) = −Jo .
Using this, we get

τ∗(E
o) = τ∗(J

−1 Jo) = −J−1 τ∗(J
o) = Eo.

Thus Eo can be restricted to M τ as a (locally defined) vector field, and qτ + ad(Eo)qτ is the
real form (qb)τ of qb ; the properties (E1) – (E4) continue to hold for all X,Y, Z ∈ (qb)τ .

Recall from [Be97] that a symmetric space with twist is by definition a real form of a twisted
complex symmetric space, i.e. of a circled space. Thus Prop. 1.2.4 assigns canonically an Euler
operator to any symmetric space with twist. A “twist” is by definition a Jordan-extension T of
the curvature tensor R , i.e. an invariant tensor field such that Tp defines a Jordan triple system
(JTS) on the tangent space TpM such that the relation

T (X,Y, Z)− T (Y,X,Z) = −R(X,Y )Z (X,Y, Z ∈ X(M)) (1.12)

holds (cf. [Be97]).

Proposition 1.2.5. Let (Ep)p∈M be a distribution of Euler operators on a symmetric space
M = G/H and recall from Section 1.0 the vector field extension lp : TpM → g .

(i) The formula

T (X,Y, Z)p := [[lp(Xp),
lp(Yp) + ad(Ep)lp(Yp)

2
], lpZp]p

defines a Jordan-extension of the curvature tensor R of M .

(ii) If M is a symmetric space with twist and (Ep)p∈M is the associated distribution of Euler
operators, then T is equal to the structure tensor of M .

Proof. (i) From the definition of T it is clear that T is a tensor field (i.e. it is function-
linear in all three arguments) and that it is G-invariant. Thus we have to show that To is a
Jordan-extension of Ro . If we identify ToM with q and let X,Y, Z ∈ q , then

To(X,Y, Z) =
1

2
([[X,Y ], Z]− ad(Eo)[[X, ad(Eo)Y ], Z]). (1.13)

As we have remarked after the proof of Prop. 1.2.2, ad(Eo) is an invariant twisted polarization
on the LTS qb in the sense of [Be97, Def. 1.4.1]. Therefore the formula

T̃ (X,Y, Z) :=
1

2
([[X,Y ], Z]− ad(Eo)[[X, ad(Eo)Y ], Z])

defines a Jordan-extension of the LTS qb , ([Be97, Th.1.4.2]). Because of (E1), (E2) and (E3), q
is stable under T̃ , and the restriction of T̃ to a triple product on q is a Jordan-extension of q .
But then formula (1.13) shows that this means precisely that To is a Jordan-extension of q .

(ii) Let us assume first that M is a circled space and (Ep) its associated field of Euler
operators. Then by definition (cf. [Be97, Section 1.3]) the structure tensor of M , evaluated at
the base point, is for X,Y, Z ∈ q given by

1

2
(R(X,Y )Z − J R(X,J−1 Y )Z)o =

1

2
([[X,Y ], Z]− ad(Jo)[[X, ad(Jo)−1Y ], Z])o

=
1

2
([[X,Y ], Z]− J−1 ad(Eo)[[X,J ad(Eo)−1Y ], Z])o

=
1

2
([[X,Y ], Z]− ad(Eo)[[X, ad(Eo)Y ], Z])o;

according to Eqn. (1.13), this is the tensor To defined in the claim. Since both Euler operators
and structure tensor can be restricted to real forms, it follows that the structure tensor and T
coincide at the base point.
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2. The conformal Lie algebra

We assume in this chapter an Euler operator Eo given on a symmetric space M = G/H .
In this chapter we are interested in local properties; strictly speaking, we should assume M to
be a germ of a symmetric space (cf. [Be97]).

2.1. Local Borel-imbedding.

Proposition 2.1.1. The LTS q̂ = ad(Eo)q is isomorphic to the dual of q (i.e. its Lie triple
bracket is isomorphic to the negative of the one in q). Consequently, the c-dual symmetric space
of M has locally a canonical realization with base point o on the underlying manifold of M .

Proof. From (E3) and (E4) we get for all X,Y, Z ∈ q ,

[[ad(Eo)X, ad(Eo)Y ], ad(Eo)Z] = ad(E0)[[X,− ad(Eo)2Y ], Z] = − ad(Eo)[[X,Y ], Z];

therefore ad(Eo) is an isomorphism from q onto the LTS obtained from q by taking the negative
of the usual triple Lie bracket. The second statement is otained by integrating locally at o the
vector fields X ∈ q̂ .

If (M,J ,∇) is a circled space, the c-dual symmetric space of (M,∇) admits, according
to the preceding proposition, a local imbedding into M . This is a local generalization of the
Borel-imbedding of a Hermitian symmetric space; it carries over to real forms.

2.2. Jordan coordinates and local Harish-Chandra imbedding.

Lemma 2.2.1. The inner conformal Lie algebra gb (cf. Def. 1.3.4) is Z/(3)-graded. More
precisely, gb is stable under the derivation ad(Eo) and decomposes as a direct sum

gb = m−1 ⊕m0 ⊕m1

of the eigenspaces mk for the eigenvalues k = 1, 0,−1 of ad(Eo) , and [mk,ml] ⊂ mk+l . In
particular, m±1 are abelian and [[m1,m−1],m±1] ⊂ m±1 . Moreover,

qb = m−1 ⊕m1, [qb, qb] = m0.

Proof. By definition, gb = [qb, qb] + qb ; this is a Lie algebra since qb is a Lie triple system.
Further, qb is stable under ad(Eo) whose square is, by (E3), the identity there; therefore
qb ⊂ m1⊕m−1 . On the other hand, by (E4), [qb, qb] ⊂ m0 , and we actually have equalities. This
establishes the decomposition of gb into eigenspaces.

Now, since ad(Eo) is a derivation, for all X ∈ mk , Y ∈ ml : ad(Eo)[X,Y ] = [ad(Eo)X,Y ]+
[X, ad(Eo)Y ] = [kX, Y ] + [X, lY ] = (k + l)[X,Y ] , proving the statement about the grading.

We will use the notation m± := m±1 , hb := m0 . Note that Ho = [H,Eo]o = 0 for all
H ∈ hb , and also Xo = 0 for all X ∈ m+ since Xo = [Eo, X ]o = −[X,Eo]o = −Xo .

Lemma 2.2.2. Every tangent vector v ∈ ToM has a unique vector field extension by an element
v ∈ m− . It is given by the formula

v =
1

2
(lov − [Eo, lov]),

where lo is the inverse of the bijective evaluation map q → ToM .

Proof. From the definition of qb (Eqn. (1.11)) it is clear that m− = {v| v ∈ ToM} . We
evaluate at the base point:

vo =
1

2
(lov + [lov, E

o])o =
1

2
(v + 1o(lov)o) = v.

It follows that the evalution map m− → ToM is bijective.
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Definition 2.2.3. If Eo is an Euler operator on a symmetric space M , we define a chart,
called Jordan coordinates, as follows: to a vector v lying in a suitable neighbourhood U of 0 in
V := ToM we assign the value of the integral curve ϕt(o) of v at t = 1.

Having fixed the base point o , we will consider Jordan coordinates as an identification of
an open neighborhood U of o ∈ M with an open domain U in V = ToM , i.e. we use the same
notation v for v ∈ U and for the corresponding point in M . Vector fields on U will be identified
with smooth functions U → V ; thus the vector fields v ∈ m− are identified with the constant
vector fields.

The notion of Jordan coordinates can be seen as a local Harish-Chandra imbedding: in fact,
integrating the vector fields X ∈ q yields a local realization of M as an open domain in the
vector space V ∼= m− . When M is a Hermitian symmetric space, this realization is known to
be global and is precisely the well-known Harish-Chandra imbedding.

2.3. Geometric version of the Kantor-Koecher-Tits construction.

Theorem 2.3.1. Let Eo be an Euler operator on a symmetric space M and gb the associated
inner conformal Lie algebra. Then gb is represented in Jordan coordinates as a Lie algebra of
quadratic vector fields, i.e. by polynomial maps V → V of degree at most two, such that the
grading

gb = m− ⊕ hb ⊕m+

(cf. Lemma 2.2.2) coincides with the grading given by the degree. More precisely, if we define
for v ∈ V a polynomial pv by

pv(x) :=
1

2
To(x, v, x),

where To is the trilinear map on V = ToM defined in Prop. 1.2.5, then

(1) m− = {v| v ∈ V } ,

(2) m+ = {pv| v ∈ V } ,

(3) q = {v − pv| v ∈ V } ,

(4) q̂ = {v + pv| v ∈ V } ,

(5) hb = [m+,m−] = Span{T (w, v)| v, w ∈ V } , where T (u, v)p := T (u, v, p) ,

(6) Eo is identified with the usual Euler operator on V , i.e. Eo(x) = x.

Proof. (1) is true by definition of the Jordan coordinates. In order to prove the other relations,
recall the formula

[X,Y ](z) = D Y (z) ·X(z)−DX(z) · Y (z) (2.1)

for the Lie bracket of two vector fields X,Y , considered as smooth functions on V . This formula
implies that for any Y and v ∈ V ,

ad(v)kY (p) = Dk Y (p) · (⊗kv),

where Dk Y : V → Hom(SkV, V ) is the ordinary k -th total differential of Y : V → V . Now, it
follows from Lemma 2.1.2 that [m−, [m−, [m−, gb]]] = 0, and therefore, for all Y ∈ gb and p in
the domain of the Jordan coordinates,

D3 Y (p) = 0.

Integration shows that Y is quadratic as claimed.
Let us prove (6): Eo is a linear vector field since [v, [v, Eo]] = −[v,v] = 0 and (Eo)o = 0.

Since [v, Eo] = vo = v , Eo = idV .
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Now, the solutions of the Euler differential equation

[Eo, X ](p) = DX(p) · p−X(p) = kX(p)

for k ∈ N0 are precisely the homogeneous polynomials of degree k+1; therefore hb is represented
by linear vector fields and m+ by homogenous quadratic ones.

It remains to calculate the second differential of the vector field low ∈ q for w ∈ V . We
use that for all w ∈ q , low = w + w̃ with w̃ := low+[Eo,low]

2 is the decomposition of low in a
constant term plus a homogeneous quadratic polynomial. Using the commutativity of m+ and
m− , we get [v, low] = [v, w̃] = [lov, w̃] and

(D2(low))(0) · v ⊗ v = [v, [v, low]]o

= [v, [lov, w̃]]o

= [lov, [lov, w̃]]o

= To(v, w, v)

whith To as in Prop. 1.2.5. Since D2 w = 0, we have D2(low) = D2(w̃); the vector field w̃
being homogeneous quadratic, it is given by the formula

w̃(x) =
1

2
D2(low)(0)(x, x) = −

1

2
T (x,w, x) = −pw(x).

This proves (2) and gives the formula

(low)(x) = w −
1

2
T (x,w, x),

proving (3). Next, [Eo,v − pv] = −v − pv , proving (4).
We prove (5): Clearly, [qb, qb] = [m+,m−] , and we have explicitly

[pv,w](p) = −(Dpv)(p)w = −T (w, v, p) = −T (w, v)p; (2.2)

this implies the claim.

Theorem 2.3.2. There is a canonical bijection between Jordan-extensions of the curvature
tensor and Euler operators on a symmetric space M .

Proof. In Prop. 1.2.5 we have associated to an Euler operator Eo a Jordan-extension T of
R . Conversely, given a Jordan-extension T of R , we let Eo be the Euler operator induced from
the twisted complexification given by T .

These two constructions are indeed inverse to each other: Starting with a Jordan-extension
T , we get again T from the associated Euler operator Eo (Prop. 1.2.5 (ii)). Starting with an
Euler operator Eo , let T be the associated Jordan-extension. Then it is easily verified that in
Jordan coordinates associated to Eo the Euler operator derived from T is again the usual Euler
operator on V and thus coincides with Eo by part (6) of the preceding theorem.

2.4. Faithful Jordan triple systems.

Proposition 2.4.1. Let Eo be an Euler operator on a symmetric space M corresponding to
a Jordan-extension T . Then the following are equivalent:

(i) q ∩ q̂ = 0

(ii) The map V → Hom(V ⊗ V, V ) , v &→ T (·, v, ·) is injective.
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If these properties hold, then the formula

Θ(X + Y ) := X − Y, X ∈ q, Y ∈ q̂

defines an involutive automorphism of the LTS qb such that Θ ◦ ad(Eo) = − ad(Eo) ◦ Θ . This
automorphism extends to an involution of the inner conformal Lie algebra gb given in the notation
of Th. 2.3.1 by the formula

Θ(v + T (a, b) + pw) = −w− T (b, a)− pv.

Proof. The equivalence of (i) and (ii) follows immediately from a comparison of formulas (3)
and (4) of Th. 2.3.1.

Now we assume that Eo = −J Jo is the Euler operator of a circled space, and as in the
proof of Prop. 1.2.2 we consider the inclusion ι : q → g(J ) and its complexification

ιC : qC = q⊕ iq → g(J ), X + iY &→ X + J Y.

Its kernel is
ker ιC = {X + iJ X |X ∈ q,J X ∈ q} = {Z ∈ qC| iJ Z ∈ qC}.

Thus
ker ιC = (q ∩ q̂)C,

and we see that (i) holds iff ιC is injective. If this is the case, Θ is nothing but complex
conjugation of qC w.r.t. q , which has clearly the properties stated. Moreover, automorphisms
of LTS extend always to automorphisms of the standard imbedding; thus Θ extends to an
automorphism of gb , and the explicit formula follows from Th. 1.3.1 along with the formula
[pv,w] = −T (w, v).

Passing to real forms of circled spaces, the claim now follows in the general case of a
symmetric space with twist.

Definition 2.4.2. A Jordan triple system T is called faithful if Condition (ii) from the
preceding proposition holds.

We will see later that faithfulness is a rather “weak” condition which is satisfied in all
interesting cases.

2.5. The structure group and its Lie algebra. Recall that, if X is a vector field on
V (considered as a smooth function V → V ) and ϕ a (locally defined) diffeomorphism of V ,
then the natural forward transport of X is given by

(ϕ∗X)(p) = (Dϕ−1(p))−1 ·X(ϕ−1(p)). (2.3)

Lemma 2.5.1. A locally defined diffeomorphism g of M satisfies the conditions

g(o) = o, g∗(m
−) = m−, g∗(m

+) = m+ (2.4)

(i.e. the locally defined vector field g∗X for X ∈ m± coincides on some domain U ⊂ V with an
element of m± ) if and only if it is represented in the canonical chart by an invertible linear map
g : V → V such that there exists an element g# ∈ Gl(V ) with

∀u, v, w ∈ V : gT (u, v, w) = T (gu, g#v, gw). (2.5)
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Proof. Let g satisfy (2.4). Then, for all v ∈ V , (g∗v)(p) = (D g−1(p))−1v has to be a
constant vector field, i.e., D g−1 is a constant function. Integrating, we obtain that g−1 is an
affine map of V ; it preserves the base point and is hence linear. Conversely, the invertible linear
maps preserve m− .

Using the description of m+ given by Th.2.3.1 (2), we see that the condition g∗(m+) = m+

means that, for every v ∈ V , there exists w ∈ V such that g∗(pv) = pw . If we denote by V0 the
kernel of the linear map p : V → m+, v &→ pv , and require w to be in a fixed complementary
subspace V1 of V0 , then the choice of w becomes unique. Now we define g# to be arbitrary
invertible on V0 and let g#(v) := w for v ∈ V1 . Then clearly the condition

g∗(pv) = pg!v (2.6)

holds for all v ∈ V , and since p is linear, so is g# . Finally, since

g∗(pv)(p) = g(pv)(g
−1(x)) =

1

2
gT (g−1x, v, g−1x),

and T is symmetric in the outer variables, (2.6) is equivalent to (2.5). Moreover, all arguments
can be reversed, and we thus see that (2.5) implies that g∗(m+) = m+ .

Definition 2.5.2. The group

Str(T ) = {g ∈ Gl(V )| ∃g# ∈ Gl(V ) : ∀u, v, w ∈ V : gT (u, v, w) = T (gu, g#v, gw)}

described in the previous lemma is called the structure group of the JTS T , resp. of the Euler
operator Eo which is equivalent to T . Its closure in End(V ) is called the structure monoid.

Proposition 2.5.3. If T is faithful and Θ denotes the involution of gb described in Prop.
2.4.1, then for all g ∈ Str(T ) the element g# is unique, it belongs again to Str(T ) , and & : g &→ g#

is an involutive automorphism of Str(T ) , determined by the condition

(g#)∗ = Θ ◦ g∗ ◦Θ.

Proof. Everything follows by comparing Eqn. (2.6) with

g∗pv = g∗(Θ(−v)) = Θ ◦ (Θ ◦ g∗ ◦Θ)(−v) = p(Θ◦g∗◦Θ)(v)

and noticing that g &→ g∗ is injective.

Lemma 2.5.4. The structure group is a closed subgroup of Gl(V ) whose Lie algebra is

str(T ) = {X ∈ gl(V )| [X,m+] ⊂ m+}

= {X ∈ gl(V )| ∃X# ∈ gl(V ) : ∀u, v, w ∈ V :

XT (u, v, w) = T (Xu, v, w) + T (u,X#v, w) + T (u, v,Xw)}.

It contains the algebra Der(T ) of derivations of T as a subalgebra. The endomorphisms T (u, v)
(u, v ∈ V ) belong to str(T ) , and one may choose T (u, v)# = −T (v, u) .

Proof. Clearly Str(T ) is an algebraic, hence closed subgroup of Gl(V ). Differentiating, resp.
integrating, we see that for X ∈ gl(V ) the conditions: ∀t : (exp tX)∗m+ ⊂ m+ and [X,m+] ⊂ m+

are equivalent, proving the first equation. If we define for X ∈ str(T ) the element X# similarly
as in the proof of Lemma 2.5.1 by [X,pv] = p[X!,v] , we get the second equality (note that this
condition does not define X# uniquely). The derivations of T arise precisely if X = X# .

Finally, it is clear that hb = [m+,m−] satisfies the first condition. In Prop. 1.2.5 we have
proved that T is a Jordan triple product, and the defining identity (JT2) of a Jordan triple
product (cf. [Be97] or [Sa80]) says precisely that the condition of the second description holds
with T (u, v)# = −T (v, u).
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Definition 2.5.5. The Lie algebra str(T ) is called the structure algebra of T , and its
subalgebra hb spanned by the T (u, v), u, v ∈ V is called the inner structure algebra.

A JTS T is called non-degenerate if the trace-form (x, y) &→ Tr(T (x, y)) is non-degenerate
(cf. [Sa80]).

Proposition 2.5.6. Let T be a non-degenerate JTS. Then

(i) T is faithful.

(ii) For all g ∈ Str(T ) , g# = (g∗)−1 , and for all X ∈ str(T ) , X# = −X∗ , where the adjoint is
taken w.r.t. the trace-form.

Proof. (i) By definition, T is non-degenerate iff the map

∗ : V → V ∗, v &→ v∗ := (x &→ TrT (x, v))

is injective. But ∗ is a composition of

A : V &→ W ⊂ Hom(S2V, V ), v &→ T (·, v, ·)

and
κ : Hom(S2V, V ) → V ∗, B &→ (x &→ Tr(B(x, ·))).

Therefore A has to be injective, i.e. T is faithful.
(ii) By definition of & , A has the equivariance property g ·A(v) = A(g#v), and κ is natural,

i.e κ(g · B) = (g∗)−1κ(B). When we identify V and V ∗ via ∗ , this proves the claim. Similarly
for X# .

2.6. The conformal Lie algebra: general properties.

Definition 2.6.1. The Lie algebra

co(T ) := m− ⊕ str(T )⊕m+

is called the conformal Lie algebra of T . Recall that its subalgebra gb = m− ⊕ hb ⊕m+ is called
the inner conformal Lie algebra of T .

Definition 2.6.2. A (possibly only locally defined) vector field X on V is called T -conformal
if it is of class C3 and, for all p ∈ V where X is defined, the first differential DX(p) belongs to
str(T ). It is called T-projective if in addition, for all p where X is defined, the second differential
D2 X(p) : V ⊗ V → V belongs to the space

W := {T (·, v, ·)| v ∈ V } ⊂ Hom(V ⊗ V, V ).

Proposition 2.6.3. The Lie algebra co(T ) is a Lie algebra of T -conformal and T -projective
vector fields.

Proof. Both properties are trivial for the vector fields belonging to m− or str(V ). Let us
assume that X = pv ∈ m+ . Then DX(p) = T (p, v) ∈ str(T ) and D2 X(p) = T (·, v, ·) ∈ W .

We will prove in Chapter 4 that in the non-degenerate case the converse also holds.

Theorem 2.6.4. Every derivation of the conformal Lie algebra is an inner derivation, and
the adjoint representation

ad : co(T ) → Der(co(T )), X &→ ad(X)

is an isomorphism onto.

Proof. [Koe69b, Satz 3.1]
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3. Conformal group and conformal completion

3.1. Definition of the conformal group. The conformal group is a Lie group with Lie
algebra co(T ), coming in a certain realization, namely as a group of birational maps of the vector
space V . Since birational maps are not defined everywhere, we start with local diffeomorphisms
ϕ of V , i.e. diffeomorphisms defined on some domain U ⊂ V .

Theorem 3.1.1. Let ϕ : U → ϕ(U) ⊂ V be a local (C1 -regular) diffeomorphism of V such
that

ϕ∗(co(T )) = co(T ),

i.e. if for all X ∈ co(T ) , the vector field ϕ∗(X) coincides on ϕ(U) with an element of co(T ) .
Then ϕ has a unique extension to a birational map ϕ̃ of V such that ϕ̃∗(co(T )) = co(T ) . The
birational maps thus obtained form a group.

Proof. Recall formula (2.1) for the push-forward of a vector field. Since (ϕ−1)∗ = (ϕ∗)−1 =:
ϕ∗ , the conditions ϕ∗(co(T )) = co(T ) and ϕ∗(co(T )) = co(T ) are equivalent.

Let X = v with v ∈ V (constant vector field). By assumption, ϕ∗v coincides on U with
an element of co(T ). Since co(T ) is a Lie algebra of (quadratic) polynomial vector fields (Th.
2.3.1), the map U → V , p &→ (ϕ∗v)(p) = (Dϕ(p))−1v is (quadratic) polynomial for all v ∈ V ,
and thus

dϕ : U → Gl(V ) ⊂ End(V ), p &→ dϕ(p) := (Dϕ(p))−1

is (quadratic) polynomial. Now consider the Euler operator X = Eo ∈ co(T ). The same
arguments as before show that

nϕ : U → V, p &→ (ϕ∗Eo)(p) = (Dϕ(p))−1 · ϕ(p)

is (quadratic) polynomial. Therefore

ϕ : U → V, p &→ ϕ(p) = dϕ(p)
−1 · nϕ(p)

is rational. We continue nϕ and dϕ to polynomials on V , and define

ϕ̃(x) := dϕ(x)
−1 · nϕ(x)

for all x with det dϕ(x) 0= 0 (since det dϕ is a non-zero polynomial, ϕ̃ is defined almost

everywhere). Then ϕ̃ is a birational map, its inverse given by ϕ̃−1 . Let us prove that ϕ̃∗(co(T )) =
co(T ). For all X ∈ co(T ),

((ϕ̃)∗X)(p) = (D ϕ̃(p))−1X(ϕ̃(p)) = dϕ(p)X(ϕ̃(p))

is rational in p and coincides for p ∈ U with the polynomial Y := ϕ∗X ∈ co(T ), whence
((ϕ̃)∗X)(p) = ϕ∗X(p) everywhere. In other words, (ϕ̃)∗(co(T )) ⊂ co(T ). The same being true
for ϕ−1 , we actually have equality.

If ϕ and ψ with ϕ∗(co(T )) = co(T ) and ϕ∗(co(T )) = co(T ) are given, then (although ϕ

and ψ may be not composable) ϕ̃ and ψ̃ are always composable on a dense open set, and

(ϕ̃ ◦ ψ̃)∗(co(T )) = ϕ̃∗(ψ̃∗(co(T ))) = co(T ).

This, and the remark made above that (ϕ̃)−1 = ϕ̃−1 , prove the last claim.
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Definition 3.1.2. The group of birational maps of V defined in the preceding theorem is
denoted by Co(T ) and is called the conformal group of T . For any g ∈ Co(T ), the quadratic
polynomial

dg : V → End(V ), x &→ (D g(x))−1

is called its denominator, and the quadratic polynomial

ng : V → V, x &→ (D g(x))−1 · g(x) = dg(x) · g(x)

is called its numerator (cf. the preceding proof).

The following result is due to Koecher ([Koe69b, Satz 2.2]). In order to introduce some
relevant notation, we include its proof.

Theorem 3.1.3. The representation

∗ : Co(T ) → Aut(co(T )), g &→ g∗

is injective, and its image Co∗(T ) is an open subgroup of Aut(co(T )) ; in particular, Co(T ) has
the structure of a Lie group with Lie algebra co(T ) .

Proof. We have seen above that g(p) = dg(p)−1ng(p) with dg(p)v = (g∗v)(p) and ng(p) =
(g∗E)(p). This defines an inverse of ∗ from Co∗(T ) onto Co(T ); thus ∗ is injective.

In order to prove that Co∗(T ) is open in Aut(co(T )) we are going to describe some special
elements in Co(T ). For X ∈ co(T ) let ϕt be the local flow of X . If X ∈ m− or X ∈ str(T ), then
the flows are global on V ; we write exp(X) := ϕ1 . Explicitly, we have exp(v) = tv (translation
by v ), and for X ∈ str(T ), exp(X) is given by the usual exponential of a matrix; according to
Lemma 2.5.4 it belongs to the structure group Str(T ).

Now consider X ∈ m+ . Since X vanishes of order 2 at 0, there is a neighbourhood U of
0 in V such that ϕt(x) is defined for x ∈ U and t = 1 (cf. [Be96a, annexe (A2)]). We let

expX : U → V, x &→ ϕ1(x).

Since X ∈ co(T ), it follows that (ϕt)∗ preserves co(T ) in the sense of Th. 3.1.1; in particular
exp(X) ∈ Co(T ). For simplicity of notation, we identify exp(X) with its rational continuation
guaranteed by Th. 3.1.1. Then the relation

∀Y ∈ co(T ) : (expX)∗Y = e− ad(X)Y

holds (the sign-change comes in because group actions and Lie algebras of vector fields are defined
on levels which behave contravariantly to each other). Summing up, ead(X) belongs to Co∗(T )
for all X ∈ m± and X ∈ str(T ); thus the identity component of the group Int(co(T )) of inner
automorphisms, generated by ead(co(T )) , belongs to Co∗(T ). But this is equal to the identity
component of Aut(co(T )) because ad(co(T )) = Der(co(T )) (Th. 2.6.4). Thus Co∗(T ) is open in
Aut(co(T )).

3.2. Conformality. We will precise now in which sense the conformal group is indeed
“conformal”. The question whether all conformal maps belong to the group Co(T ) leads to the
Liouville theorem which will be discussed in the next chapter.
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Definition 3.2.1. Let V be a vector space and G ⊂ Gl(V ) a closed subgroup. We say that
a locally defined diffeomorphism g of V is G-conformal, if, for all x where g is defined,

D g(x) ∈ G.

Theorem 3.2.2. All elements of Co(T ) are Str(T )-conformal.

Proof. Given x ∈ V with det dg(x) 0= 0, we let y := g(x) and g′ := t−y ◦ g ◦ tx . Then
g′ ∈ Co(T ), g′(0) = 0 and D g′(0) = D g(x). Replacing g by g′ , we may assume that x = 0 and
g(0) = 0.

We claim that then g∗(m+) ⊂ m+ . In order to prove this, note that m+ is the subalgebra
of elements of co(T ) vanishing of order 2 at the origin. Differentiating the expression (g∗X)(p) =
D g(g−1(x)) ·X(g−1(p)), we obtain

D(g∗X)(p) =
(
D2 g(g−1(p)) ·X(g−1(p))

)
◦D g−1(p)

+ D g(g−1(p)) ◦DX(g−1(p)) ◦D g−1(p).
(3.1)

If g(0) = 0, X(0) = 0 and DX(0) = 0, then the right-hand side vanishes at the origin. Also,
(g∗X)(0) = 0, and thus g∗(m+) ⊂ m+ .

Next we want to show that for all X ∈ m+ , g∗X = (D g(0))∗X . In order to prove this, we
differentiate the expression (3.1) and evaluate at 0. Then, under our assumptions on g and X ,
only one term remains, namely

D2(g∗X)(0) = D g(0) ◦D2 X(0) ◦D g(0)−1 ⊗D g(0)−1.

If we replace in this expression g by D g(0), the right-hand side does not change; therefore

D2(g∗X)(0) = D2((D g(0))∗X)(0).

Since both g∗X and (D g(0))∗X are are homogeneous quadratic vector fields, it follows that
g∗X = (D g(0))∗X .

We have shown that m+ = g∗(m+) = (D g(0))∗(m+). According to Lemma 2.5.1 and Def.
2.5.2, D g(0) belongs thus to the structure group.

Corollary 3.2.3. For all g ∈ Co(T ) , the image of the polynomial dg is contained in the
structure monoid.

Proof. This is an immediate consequence of the definition of the structure monoid as the
closure of the structure group in End(V ).

3.3. Projectivity. Conformality was defined by a condition on the first differential.
Similarly, projectivity will be defined by an additional condition on the second differential. The
question whether all transformations which are projective in this sense belong to Co(T ) leads to
the fundamental theorem (Th. 4.1 (i)).

Definition 3.3.1. A locally defined diffeomorphism g of V is called T -projective if it is
Str(T )-conformal and in addition for all x where g is defined,

(D g(x))−1 ◦D2 g(x) ∈ W,

where W = {T (·, v, ·)| v ∈ V } ⊂ Hom(V ⊗ V, V ) is the subspace introduced in Def. 2.6.2.
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We give a more conceptual definition of this condition: it is equivalent to requiring that

(g∗∇−∇)x ∈ W, (3.2)

where ∇ is the canonical flat connection of V given by (∇XY )p = D Y (p) · X(p) and g∗∇ is
the push-forward of a connection by a diffeomorphism g . In other words, g∗∇−∇ is a section
of the subbundle W of Hom(S2(TV ), V ) with constant fiber Wp = W . Conformality means
just that g preserves W . Therefore, if both g and h are T -projective, then

(gh)∗∇−∇ = h∗(g∗∇−∇) + g∗∇−∇

is again a section of W . This means that the composition of two T -projective maps, if it is
defined, is again T -projective. In other words, locally defined T -projective diffeomorphisms form
a pseudogroup of diffeomorphisms (cf. [Ko72] for the formal definition).

Theorem 3.3.2. All elements of Co(T ) are T -projective.

Proof. We know already that all elements of Co(T ) are Str(T )-conformal (Th. 3.2.2). In
order to prove T -projectivity, we reduce as in the proof of Th. 3.2.2 to the case x = 0 and
g(x) = x ; composing with D g(0)−1 , we may further reduce to the case D g(0) = idV .

We specialize Eqn. (3.1) to the Euler operator X = E :

D(g∗E)(p) = (D2 g(g−1(p)) · g−1(p)) ◦D g−1(p) + idV .

Thus, under our assumptions on g , D(g∗E)(0) = idV , and differentiating further and evaluating
at 0, we find that

D2(g∗E)(0) = (D2 g)(0).

Since g∗E ∈ co(T ) by definition of Co(T ), it follows from Prop. 2.6.3 that (D2 g)(0) ∈ W .

3.4. Fine structure of the conformal group. We return to the general case.

Proposition 3.4.1. An element g ∈ Co(T ) is uniquely determined by its 2-jet at one point
p ∈ V with dg(p) 0= 0 .

Proof. Let g1, g2 ∈ Co(T ) have the same 2-jet at a point p ∈ V . Then g := g−1
1 g2 has the

2-jet of the identity at p . Replacing g by t−g(p) ◦ g ◦ tp , we may further assume that p = 0.
We thus have to show that the only element g ∈ Co(T ) with g(0) = 0, D g(0) = idV and
D2 g(0) = 0 is the identity. The arguments proving Th. 3.3.2 show that, under these conditions
on g , g∗E = E . Then, for all v ∈ V ,

[E, g∗v] = [g∗E, g∗v] = g∗[E,v] = −g∗v.

However, the only solutions of the differential equation [E,X ] = −X are the constant vector
fields, therefore (g∗v)(p) = (D g−1(p))−1v is constant; this means that D g−1 : V → End(V ) is
constant and thus g−1 is linear. Since D g(0) = idV by assumption, this implies that g = idV .

Proposition 3.4.2. Let Co′(T ) := {g ∈ Co(T )| dg(0) 0= 0} . Then the map

κ : Co′(T ) → V × Str(T )×W, g &→ (g(0),D g(0),D g(0)−1 ◦D2 g(0))

is bijective.
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Proof. The map is well-defined since g is regular at 0 by definition of Co′(T ), and D g(0)
and D g(0)−1 D2 g(0) lie in the correct spaces according to Th. 3.2.2 and 3.3.2. Since these data
describe precisely the 2-jet of g , the preceding proposition now implies that κ is injective.

In order to prove that κ is surjective, we have to calculate the 2-jet of expX for X ∈ m+

(defined in the proof of Th. 3.1.3). It is easily seen that (expX)(0) = 0 and (D expX)(0) = idV
(cf. [Be96a, Appendix A2]). Therefore, as we have seen in the proof of Th.3.3.2,

D2(expX)(0) = D2((expX)∗E)(0),

and we can calculate
D2(expX)(0) = D2(e− ad(X)E)(0)

= D2(E − [X,E])(0)

= D2(X)(0)

since [X,E] = −X for all X ∈ m+ und thus ad(X)kE = 0 for all k > 1.
Now, given v, w ∈ V , g ∈ Str(T ), we let g := tv◦g◦exp(pw) ∈ Co(T ) and prove that κ(g) =

(v, g, 2T (·, w, ·)): In fact, g(0) = v , D g(0) = g and D g(0)−1 ◦ D2 g(0) = (D2 exp(pw))(0) =
D2(pw)(0) = 2T (·, w, ·).

We collect the preceding results. By

Co(T )0 := {g ∈ Co′(T )| dg(0) 0= 0, g(0) = 0}

we denote the “stabilizer of the base point”, and by

Co(T )00 := {g ∈ Co(T )0|Dg(0) = idV }

the kernel of the first isotropy representation g &→ D g(0) of Co(T )0 .

Theorem 3.4.3. Co(T ) is a Lie group with Lie algebra co(T ) . It is generated by exp(m−) ,
exp(m+) and Str(T ) . More precisely:

(1) Co(T )00 = exp(m+) .

(2) Co(T )0 = Str(T ) exp(m+) ; this is a semidirect product.

(3) Co′(T ) = exp(m−) Str(T ) exp(m+) , and this decomposition is unique, i.e. every element
ϕ of the open dense set Co′(T ) ⊂ Co(T ) has a unique decomposition

g = tg(0) D g(0) exp(pw), tg(0) ∈ exp(m−), D g(0) ∈ Str(V ), pw ∈ m+.

(4) Co(T ) = exp(m−) Str(T ) exp(m+) exp(m−) (the corresponding decomposition is not unique).

(5) If T is faithful, then Co(T ) carries an involution Θ such that Θ(Co′(T ))−1 = Co′(T ) and
for all v, w ∈ V , h ∈ Str(T ) ,

Θ(tvh exp(pw))
−1 = t−w(h

#)−1 exp(p−v). (3.3)

The decomposition from part (3) can be written

g = tg(0) D g(0)Θ(t−Θ(g)−1(0)), (3.4)

and the relation
D(Θ(g−1))(0) = Θ(D g(0))−1 (3.5)

holds.
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(6) If T is associated to a Jordan algebra with Jordan inverse j(x) = x−1 via T (u, v, w) =
2(u(vw)−v(uw)+(uv)w) , then Co(T ) is generated by the translations, elements of Str(T )
and j . In this case, T is faithful and Θ is given by conjugation with j .

Proof. Claims (1), (2) and (3) are a direct consequence of Prop. 3.4.2.
(4): If g ∈ Co(T ), we choose a point p with dg(p) 0= 0; we let g′ := g ◦ tp ; then dg′(0) 0= 0,

and we can apply (3).
(5): The involutive automorphism Θ of co(T ) described in Prop. 2.4.1 induces by conju-

gation an involution of the group Aut(co(T )) which is again denoted by Θ . We have to show
that the subgroup Co∗(T ) ⊂ Aut(co(T )) is stable under Θ . But this is easily checked on the
generators of Co(T ) exhibited in Part (4):

Θ(tv) = Θ(exp(−v)) = exp(Θ(−v)) = exp(pv)

and Θ(g) = g# for g ∈ Str(T ) (cf. Prop. 2.5.3). This also proves Equation (3.3) and that
Θ(Co′(T ))−1 = Co′(T ).

If g = vhn abreviates the decomposition (3) of g ∈ Co′(T ), then Θ(g)−1 = Θ(n)−1Θ(h)−1Θ(v)−1

is the corresponding decomposition of Θ(g)−1 , and the unicity statement in (3) implies that
Θ(n)−1 = tΘ(g)−1(0) and Θ(h)−1 = D(Θ(g)−1(0). This yields formulas (3.4) and (3.5).

(6): The Jordan inverse j is a birational map of V with differential D j(x) = − 1
2P (x)−1

where P (x) = T (x, ·, x) (cf. [FK94, Ch.II]). Thus, for v ∈ V , jttvj is a one-parameter group of
birational maps of V . It is generated by the vector field

X(p) =
d

dt
|t=0j(tv + jp) = D j(j(p)) · v = −

1

2
P (x)v = −pv(p).

It follows that m+ = j∗(m−) and therefore j∗(co(T )) = co(T ), and thus j ∈ Co(T ). Comparing
with Prop. 2.4.1, we see that T is faithful and Θ = j∗ .

Note that our proof, in contrast to related results of Loos ([Lo79]) and Koecher ([Koe69a,b]),
does not use other algebraic identities than the ones defining a JTS. Therefore this approach can
be used to derive alternative proofs of many identies for Jordan pairs and -triple systems (cf.
the identities JP1 – JP35 in [Lo77]). Since methods and results are similar as in the Jordan
algebra case treated in [Be98a] (item (6) of the preceding theorem), we content ourselves here
with defining the principal objects appearing in Jordan-theoretic formulas.

Definition 3.4.4. The polynomial

B : V × V → End(V ), (x, y) &→ B(x, y) := idV −T (x, y) +
1

4
P (x)P (y),

where P (z) = T (z, ·, z), is called the Bergman polynomial of the JTS T .

Proposition 3.4.5.

(i) For all x, y ∈ V ,
dexp(py)(x) = B(x, y).

(ii) For all x, y ∈ V ,

nexp(py)(x) = x−
1

2
P (x)y.

(iii) If DetB(x, y) 0= 0 , then B(x, y) ∈ Str(T ) and

exp(py)(x) = B(x, y)−1(x −
1

2
P (x)y).

Proof. One uses the definition of the nominators and denominators in a similar way as in the
proof of [Be98a, Prop. 1.2.1].
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Note that, if T is faithful, Part (iii) together with Θ(ty)−1 = exp(py), yields the explicit
formula

(Θ(ty))
−1(x) = B(x, y)−1 · (x−

1

2
P (x)y). (3.6)

In [Lo77] and [Lo79] this expression is called the quasi-inverse and is denoted by xy .

3.5. Conformal completion and structure bundle. We denote by P := Str(T ) exp(m+)
the stabilizer Co(T )0 and by p := str(T )⊕m+ its Lie algebra. Then P is closed in Co′(T ) and
in Co(T ).

Definition 3.5.1. The space V c := Co(T )/P as well as the map

V → V c, v &→ tvP

are called the conformal completion of V (w.r.t T ). If V c is compact, then it is also called the
conformal compactification of V .

Proposition 3.5.2. The conformal completion is an imbedding with open dense image.

Proof. The map V → V c is injective since P ∩ tV = {idV } . Its image is open dense
since it is the image of the open dense set Co(T )′ ⊂ Co(T ) under the surjective submersion
π : Co(T ) → V c , g &→ gP .

We identity V with the corresponding open dense domain of V c . It is clear that co(T ) is
realized as an algebra of vector fields on V c and that Co(T ) is precisely the group normalizing
this algebra. It suffices to assume that diffeomorphisms normalizing co(T ) are only locally
defined in order to conclude a global continuation onto V c ; in particular, all elements of co(T )
are complete vector fields on V c , and in this sense V c is “complete”. It is known that, if T is
non-degenerate, then P is a parabolic subgroup of the semisimple group Co(T ) and hence V c

is compact.

Proposition 3.5.3. The subbundle W of Hom(S2(TV ), TV ) with constant fiber Wp = W
(where W is as in Def. 2.6.2) has a unique extension to a Co(T )-invariant subbundle (again
denoted by W ) of the bundle Hom(S2(T (V c)), T (V c)) .

Proof. We only have to check that W = W0 is invariant under the natural action of the
stabilizer P . But this is clear since, for all p ∈ P , D p(0) belongs to Str(T ) which is precisely
the linear group preserving W .

The arguments of the preceding proof show that, more generally, a locally defined diffeo-
morphism preserves the structure bundle if and only if it is Str(T )-conformal.

Definition 3.7.4. The subbundle W of Hom(S2T (V c), T (V c)) is called the structure bundle
associated to T .

4. Liouville theorem and fundamental theorem

Let us recall from Definitions 2.6.2, 3.2.1 and 3.3.1 the notions of conformality and projec-
tivity: given a JTS T on a vector space V , we introduce the following conditions on a vector field
X , resp. on a locally defined diffeomorphism g : for all p ∈ V , where the expression is defined,

(C1) DX(p) ∈ str(T ),

(P1) D2 X(p) ∈ W,

(C2) D g(p) ∈ Str(T ),

(P2) (D g(p))−1 ◦D2 g(p) ∈ W.

(4.1)

Then conditions (C1) and (C2) define T -conformality and (P1) and (P2) define T -projectivity.
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Theorem 4.1. Let T be a non-degenerate JTS containing no ideal isomorphic to R or C .

(i) (The Fundamental Theorem) Any local T -projective diffeomorphism (of class C4 ) is bira-
tional, and its birational continuation belongs to Co(T ) . In other words, Co(T ) is exactly
the group of T -projective transformations.

(ii) (The Liouville-Theorem) If T is associated to a semisimple Jordan algebra via T (x, y, z) =
1
2 (x(yz)− y(xz) + (xy)z) , then every local Str(T )-conformal diffeomorphism is birational,
and its birational continuation belongs to the group Co(T ) , i.e. it is a composition of the
translations tv , v ∈ V , of elements of Str(V ) and of the Jordan inverse j(x) = x−1 .

Proof. We have already seen that elements of Co(T ) satisfy the conditions (C2) and (P2)
(Th. 3.2.2 and Th. 3.3.2). The proof of the converse occupies the remainder of this chapter. It
is done in both cases by proving first an algebraic version on the level of vector fields, which we
state next; the corresponding statement on the group-level is then deduced.

Theorem 4.2. Let assumptions be as in the preceding theorem.

(i) (Infinitesimal version of the Fundamental Theorem) Any locally defined T -projective vector
field (of class C3 ) is polynomial and belongs to co(T ) . In other words, co(T ) is precisely
the space of T -conformal vector fields.

(ii) (Infinitesimal version of the Liouville Theorem) If T is associated to a semisimple Jordan
algebra, then co(T ) is exactly the space of T -conformal vector fields.

Proof. We have already seen that elements of co(T ) satisfy the conditions (C1) and (P1) of
Eqn. (4.1) (Prop. 2.6.3). Conversely, let X be a vector field defined on some domain U and
satisfying (C1) and (P1). We abbreviate L := Str(T ) ⊂ Gl(V ) and l := str(T ) ⊂ gl(V ). Then
by (C1), DX is a map

DX : U → l ⊂ Hom(V, V ), p &→ DX(p);

therefore the second differential D2 X = D(DX) takes values in Hom(V, l). On the other hand,
D2 X(p) is a symmetric bilinear map V × V → V . Thus D2 X can be considered as a map

D2 X : U → Homs(V, l) := Hom(V, l) ∩ Hom(S2V, V )

= {T : V → l| ∀u, v ∈ V : T (u)v = T (v)u}.

Deriving further, we see that Dk X takes values in

Homs(S
k−1V, l) := Hom(SkV, V ) ∩ Hom(Sk−1V, l).

Note that this is a L - and a l-submodule of Hom(SkV, V ) (sometimes denoted by l(k−1) , cf.
[Ko72]). Similarly, condition (P1) implies that D3 X takes values in

Homs(V,W ) := Hom(V,W ) ∩ Hom(S3V, V )

= {α : S3V → V | ∀x ∈ V : α(x, ·, ·) ∈ W}.

Note that

W ⊂ Homs(V, l)

since T (u, x) ∈ str(T ) = l and T (u, x)v = T (v, x)u for all u, v, x ∈ V . Thus condition (P1) is a
refinement of condition (C1).
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Lemma 4.3.

(i) If Homs(V,W ) = 0 , then the Lie algebra co(T ) is precisely the space of T -projective vector
fields.

(ii) If Homs(V, g) = W and Homs(S2V, g) = 0 , then the Lie algebra co(T ) is precisely the
space of l-conformal vector fields.

Proof. (i) If Homs(V,W ) = 0 and X is T -conformal, then D3 X = 0 and we can integrate.
We then find that X is in fact quadratic, given by

X(x) = X(0) + DX(0) · x+
1

2
D2 X(0) · (x, x).

Since D(0) ∈ str(T ) and D2 X(0) ∈ W by conformality, X is of the form given in Th. 2.3.1, i.e.
X ∈ co(T ).

(ii) If Homs(S2V, l) = 0 and X is l-conformal, then D3 X = 0, and we can conclude as
above, using that D2 X ∈ Homs(V, l) = W .

Proposition 4.4. If T is a non-degenerate JTS containing no ideal isomorphic to R or C ,
then Homs(V,W ) = 0 .

Proof. By Prop. 2.5.6, the map A : V → W , v &→ T (·, v, ·) is bijective. Therefore

Homs(V,W ) → End(V ), α &→ β := A−1 ◦ α

is injective, i.e., we define β by the relation α(u) · v ⊗ w = T (v,βu,w). By the assumption on
α , this expression is totally symmetric in u, v, w . In particular, the relation

T (v,βu) = T (u,βv) (4.2)

holds for all u, v ∈ V . When applying & to both sides, the relation T (a, b)# = −T (b, a) (cf.
Lemma 2.5.4) yields T (βu, v) = T (βv, u). Using the notaton R(a, b) = T (b, a)− T (a, b), we get
R(v,βu) = R(u,βv), i.e.

R(v,βu) = −R(βv, u) (4.3)

holds for all u, v ∈ V . We claim that this implies the relation

R(v, u) ◦ β = −β ◦R(v, u) (4.4)

for all u, v ∈ V . In order to prove this, we note that for all x, y ∈ V , (y|βx) = trT (y,βx) =
trT (βy, x) = (βy|x), i.e. β is self-adjoint. Using this and the relation

(R(x, y)u|v) = (R(u, v)x|y),

which holds for all x, y, u, v ∈ V (cf. [Hel62, p.68]), we get from (4.3)

(R(u, v)βx|y) = (R(βx, y)u|v)

= −(R(x,βy)u|v)

= −(R(u, v)x|βy)

= −(βR(u, v)x|y).

Since the trace-form is non-degenerate, (4.4) follows by comparing the first and the last expres-
sion. From (4.4) we deduce that for all a, b, u, v ∈ V ,

[R(a, b), R(u, v)] ◦ β = β ◦ [R(a, b), R(u, v)]. (4.5)



Conformal group and fundamental theorem for a class of symmetric spaces 23

Thus equations (4.4) and (4.5) together imply that for all H ∈ [h, h] ⊂ h ,

H ◦ β = β ◦H = 0. (4.6)

It follows that β(V ) ⊂ V is a submodule on which [h, h] acts trivially.
Let us assume now that T is simple and not isomorphic to the one-dimensional real or

complex JTS. Then R 0= 0 and [h, h] 0= 0. If T is simple, then by a result of E. Neher ([N85,
Th. 1.11]) either

(A) R is a simple LTS, or
(B) R is is the direct sum of two simple non-abelian LTS, or
(C) R is the direct sum of a simple LTS and a non-dimensional center. This case arises

precisely if T comes from a simple Jordan algebra (over K = R or C) with product (x, y) &→ xy
via the formula T (u, v, w) = 2(u(vw) − v(uw) + (uv)w), and the trivial submodule is the space
Ke of multiples of the unit element e .

Moreover, if R is simple, then either V is an irreducible h-module or it is the direct sum
of two irreducible [h, h] -modules which are dual to each other ([Koh65, Th. 3]). Thus we end up
with the following two cases:

(a) V is the direct sum of several irreducible [h, h] -modules of dimension bigger than one;
(b) V is the direct sum of a trivial one-dimensional and an irreducible non-trivial [h, h] -

module.
In the first case the only submodule on which [h, h] acts trivially is zero, whence β = 0. In

the second case β has to be a multiple of the projection onto the trivial one-dimensional module.
Thus β is given by β(x) = λ(x|e)e with λ ∈ K , and

T (u,βv) = λ(v|e)T (u, e) = 2λ(v|e)L(u),

where L(u)x = ux . If λ 0= 0, then condition (4.2) with v = e implies that L(u) = (u|e)L(e) =
(u|e) idV for all u ∈ V . Since h = [L(V ), L(V )] , this implies that h = 0; this case corresponds
to the simple Jordan algebra V = K and is excluded. Therefore λ = 0 and β = 0.

Thus the proposition is proved in the case that T is simple. If T is a non-degenerate JTS
on V , we decompose V = ⊕iVi into simple ideals w.r.t. T ; then W = ⊕iWi where the Wi

correspond to the Vi . From the definition of Homs(V,W ) one easily gets that

Homs(V,W ) = ⊕iHoms(Vi,Wi),

and in this way the general statement is reduced to the case of a simple JTS (cf. also [Be96a,
Lemme 1.3.3]).

The preceding proposition together with Lemma 4.3 (i) proves part (i) of Th. 4.2.

Proposition 4.5. If V is a semisimple Jordan algebra and l = str(V ) is its structure algebra,
then Homs(V, l) = W .

Proof. [Be96a, Prop. 1.2.1]

Note that, for S ∈ Homs(S2V, l) and v ∈ V fixed, S(v, ·) belongs to Homs(V, l). Therefore
the preceding two propositions together imply that, if V is a semisimple Jordan algebra having no
ideal isomorphic to R or C , then Homs(S2V, l) ⊂ Homs(V,W ) = 0. Now part (ii) of Theorem 4.2
follows from Prop. 4.3 (ii), and Theorem 4.2 is completely proved. In order to deduce Theorem
4.1 from Theorem 4.2, we need the following proposition.
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Proposition 4.6. Let g be a locally defined diffeomorphism of V and X a vector field on V .

(i) If g satisfies (C2) and X satisfies (C1)), then g∗X satisfies (C1)).

(ii) If X satisfies (C1) and (P1) and g satisfies (C2) and (P2), then g∗X satisfies (P1).

Proof. (i) We denote by Γ(W) the space of smooth sections over V of the structure bundle
W ; these are just the smooth functions V → W . Thus Γ(W) is a subspace of the space of
smooth functions V → Hom(S2V, V ), and condition (C2) means that g preserves this subspace.
Similarly, (C1) is equivalent to the condition

X · Γ(W) ⊂ Γ(W).

Thus, if g satisfies (C2) and X satisfies (C1), then

(g∗X) · Γ(W) = g · (X · (g−1 · Γ(W))) ⊂ Γ(W).

(ii) Let ∇ be the canonical flat connection of V . Recall that (P2) is equivalent to
g ·∇−∇ ∈ Γ(W). Similarly, (P1) is equivalent to

X ·∇ ∈ Γ(W).

Using this and part (i), we get

(g∗X) ·∇ = g · (X · (g−1 ·∇)) ∈ g · (X · (∇+ Γ(W))) ⊂ g · Γ(W) ⊂ Γ(W);

thus g∗X satisfies (P1), and (ii) is proved.

Now we prove part (i) of Theorem 4.1. By Theorem 4.2 (i), co(T ) is precisely the space of
vector fields (of class C3 ) satisfying (C1) and (P1). If g is of class C4 and satisfies (C2) and (P2),
then part (ii) of the preceding proposition implies that g∗ preserves co(T ). Thus by Th. 3.1.1, g
is actually birational and belongs to the conformal group Co(T ) (Def. 3.1.2). In a similar way,
Th. 4.2 (ii) and part (i) of the preceding proposition imply Th. 4.1 (ii).

Remark 4.7. The proof of Th. 4.1 (i) shows that a “fundamental theorem” holds whenever
Homs(V,W ) = 0.

Example 4.8. (a) If V is a Euclidean Jordan algebra (cf. [FK94]), then Th. 4.1 (ii) contains
the determination of the causal group of V , cf. [Be96a, Th.2.3.1 (iii)], and of some causal
symmetric spaces such as the de-Sitter and the anti de-Sitter model of general relativity and
of the unitary group U(n), thus giving an affirmative answer to the conjecture of I.E. Segal
mentioned in the introduction (cf. [Be96b]).
(b) If V is the Jordan algebra associated to a positive definite quadratic form, then Th. 4.1 (ii)
is the original theorem of Liouville.
(c) If V = M(n, n;R), Sym(n,R) or Herm(n,C), then Th. 4.1 (ii) is essentially equivalent to
results of Chow and Dieudonné (cf. [D63] and [Be96b, Th.1.8.1]).
(d) If V = M(1, n;R), then Th. 4.1 (i) is equivalent to the fundamental theorem of projective
geometry. Here V = Rn with the JTS given by

T (u, v, w) := uvtw + wvtu, (4.7)

and Str(T ) = Gl(n,R). Oberserve that (C1) and (C2) are empty in this case. Condition (P2)
is now a special case of a well-known Theorem of H. Weyl stating that two torsionfree affine
connections have same (unparametrized) geodesics iff their difference is a section of the bundle
with fibre W associated to the JTS (4.7).
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Appendix: Integrability of almost complex structures

It is well-known that invariant almost complex structures on symmetric spaces are inte-
grable (cf. [KoNo69]). For convenience of the reader, we give short proofs of the basic results.
Recall that an almost complex structure (resp. polarization) is a tensor field J of type (1,1)
such that J 2

p = −1p (resp. J 2
p = 1p ) for all p ∈ M . It is called integrable if its torsion tensor

N(X,Y ) := [J X,J Y ] + J 2[X,Y ]− J [X,J Y ]− J [J X,Y ]

vanishes.

Proposition A.1. Let J be a G-invariant almost complex structure or polarization on a
symmetric space M = G/H . Then J is integrable.

Proof. We use the canonical connection ∇ of M (cf. Section 1.0). Since [X,Y ] = ∇XY −
∇Y X for all X,Y ∈ X(M), we get

N(X,Y ) = ∇J X J Y−∇J Y J X+J 2(∇XY−∇Y X)−J (∇X J Y−∇J Y X−∇J XY+∇Y J X).

The condition G · J = J implies ∇J = 0; this means that ∇Z J S = J ∇ZS for all
Z, S ∈ X(M). Using this property, all terms in the above expression of N(X,Y ) cancel out.

We consider the invariance group G(J ) of J ; this is the group of diffeomorphisms g of
M such that for all Y ∈ X(M), g∗(J Y ) = J g∗Y holds. We call G(J ) also the group of almost
(para-) holomorphic transformations of (M,J ). The corresponding infinitesimal object is the
Lie algebra

g(J ) := {X ∈ X(M)| ∀Y ∈ X(M) : [X,J Y ] = J [X,Y ]}.

We remark that for all X,Y ∈ g(J ),

N(X,Y ) = [J X,J Y ]− J 2[X,Y ],

and therefore, if J is integrable, then we have for all X,Y ∈ g(J ),

[J X,J Y ] = J 2[X,Y ]. (A.1)

Proposition A.2. Let J be an integrable almost complex structure or a polarization on a
manifold M and assume that g(J ) contains for any point p ∈ M a local basis of X(M) around
p . Then g(J ) is stable under the map X &→ J X . In particular, if J 2 = − idX(M) , then g(J )
is a complex Lie algebra with complex structure J .

Proof. Let X ∈ g(J ) and Y ∈ X(M). On a neighbourhood of a point p ∈ M we can write
Y =

∑m
i=1 fiYi with smooth functions fi and Yi ∈ g(J ). Without loss of generality we may

assume that m = 1 and write Y = fỸ . Then using (A.1), locally,

[J X,J Y ] = [J X, f J Ỹ ] = df(J X) · J Ỹ + f [J X,J Ỹ ]

= J (df(J X) · Ỹ + [J X, Ỹ ])

= J [J X,Y ].

Using a partition of unity, we get the same relation for general Y ∈ X(M), whence J X ∈ g(J ),
proving the claim.
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