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0. Introduction

If Ω is an open convex cone in a real vector space V , then one defines a Hardy space of
holomorphic functions on the tube domain TΩ := V + iΩ ⊂ VC by

H2(TΩ) := {f ∈ O(TΩ)| ||f ||
2 := supy∈Ω

∫

V
|f(x+ iy)|2 dx < ∞}, (0.1)

where dx is a fixed Lebesgue measure on V . It is well-known that if Ω does not contain
affine lines, then the Hardy space is a non-trivial Hilbert space such that the point evaluations
f $→ f(z) are continuous. Thus there exists a vector Kz ∈ H2(TΩ) such that f(z) = 〈f,Kz〉
for all f ∈ H2(TΩ); the function K(z, w) = Kw(z) is called the reproducing kernel of H2(TΩ)
(cf. e.g. [FK94, Section IX.4]). Another classical Hardy space of holomorphic functions can be
defined for a bounded domain D ⊂ Cn which is starshaped around zero: given a measure µ on
the Shilov boundary Σ of D one defines

H2(D,µ) := {f ∈ O(D)| ||f ||2 := sup0<r<1

∫

Σ
|f(rx)|2 dµ(x) < ∞}. (0.2)

In both cases the integration is carried out over a region of the boundary of a complex domain,
after translating the function by elements of a certain semigroup of (strict) compressions of the
domain (i.e. a semigroup of diffeomorphisms carrying the closure of the domain into its interior).

The simplest example arises when D is the unit disc; then Σ = S1 is the unit circle,
and the most natural choice for µ is the normalized rotation invariant measure on S1 . As is
well-known, the Cayley transform C(z) = i(1 + z)(1− z)−1 carries the unit disc onto the upper
half-plane which is just the tube domain R + iR+ . There is an important class of bounded
domains, called bounded symmetric domains of tube type, for which there exists via a generalized
Cayley transform an unbounded realization as a tube domain TΩ for a symmetric cone Ω (cf.
[FK94, Ch. X]). In this case, there exist a number of classical and also more recent results on
the Hardy spaces defined above which, however, have so far not been explained in a satisfactory
way. In particular, we are interested in the following four facts for which one wishes to have new
and geometric proofs:

Fact 1: The unitary action of a “big” group. If D is the unit disc and µ the rotation
invariant probability measure on the circle, then the group G = SU(1, 1) operates unitarily on
H2(D,µ) via

(g.f)(z) = (Det dg−1(z))1/2f(g−1z) (0.3)

(the square root can be defined in a consistent way since SU(1, 1) is a double cover of the
group Aut(D) = P SU(1, 1)). By the same formula the group Sl(2,R) acts on the Hardy space
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H2(TΩ), and, more generally, a double cover of the automorphism group of a tube type domain
acts unitarily on the corresponding Hardy space. However, this action is not obvious from the
geometric data because the measure µ , resp. dx on the boundary is far from being invariant
under SU(1, 1), resp. under Sl(2,R).

Fact 2: The isomorphism of classical Hardy spaces. The Cayley transform C
induces an isomorphism of Hardy spaces

H2(D) → H2(TΩ), f $→ (z $→ (Det dC−1(z))1/2f(C−1z)). (0.4)

This is not at all obvious from the definitions: firstly, the spaces V + iy over which one integrates
in the definition of H2(TΩ) are transformed via C into horocycles of D which are not the same
as the “concentric circles” rΣ used in the definition of H2(D), and secondly the measures used
on the Shilov boundary (resp. on its open dense part C(V )) are not the same. In fact, no
geometric reason for this isomorphism is given in the literature; it is only deduced from the
explicit knowledge of the reproducing kernels.

Fact 3: Hardy spaces are “square roots” of Bergman spaces. The reproducing
kernel of H2(D), called the Cauchy-kernel and denoted by S(z, w), turns out to be a square
root of the Bergman-kernel K(z, w) of D : there is a constant c )= 0 such that

cS(z, w)2 = K(z, w). (0.5)

The Bergman kernel is by definition the reproducing kernel of the Bergman space

B2(D) = {f ∈ O(D)|

∫

D
|f(z)|2 dz < ∞}, (0.6)

where dz is Lebesgue measure on VC , restricted to D .
Similarly, the reproducing kernel of H2(TΩ) is the square root of the Bergman kernel of TΩ

(this information allows to prove that (0.4) is an isomorphism). Put in another way, the Hardy
space turns out to belong to a parameter in the analytic continuation of a family of weighted
Bergman spaces (cf. [FK94, Ch.XIII]). Once more this seems to be rather an accident and no
geometric interpretation of this fact is given.

Fact 4: Imbedding of classical Hardy spaces into non-classical Hardy spaces.

Motivated by the so-called “Gelfand-Gindikin program”, the problem of imbedding “classical”
or “commutative” Hardy spaces into “non-classical” or “non-commutative” Hardy spaces has
attracted much interest during the last years (cf. [BH98b], [BO98], [Cha98], [KØ96], [KØ97],
[OØ98]). One wants to understand a class of Hardy spaces which are of interest in group theory
but whose kernels are very complicated by comparing them with the more classical and better
known Hardy spaces on bounded symmetric domains of tube type. When working on this problem
([BH98b]), we remarked that usually the Facts 1 – 3 mentioned above are taken for granted
although they remain mysterious in the usual framework of Hardy spaces. Once this observation
was made, it became clear that a geometric explanation of Facts 1 – 3 is precisely the groundwork
needed to understand what is really going on in the problem of imbedding one class of Hardy
spaces into another.

“Geometric Bergman- and Hardy spaces”. The definition of “geometric Bergman
spaces” is well-known: the Bergman space of a complex manifold M is the space of holomorphic
n-forms ω on M such that the real 2n-form

in
2

ω ⊗ ω
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is integrable over M . From this definition it is immediately clear that the group Aut(M) of
holomorphic automorphisms of M acts unitarily on the geometric Bergman space. If we trivialize
the geometric Bergman space w.r.t. a nowhere vanishing holomorphic n-form, we obtain a
function space in which the group Aut(M) acts via a multiplier representation similar to (0.3).
This should be compared to Fact 1.

Fact 3 indicates what kind of bundle we have to take in order to realize the Hardy space
as a space of sections: the bundle must be a “square root” of the bundle defining Bergman
spaces, i.e. a holomorphic line bundle L such that L⊗ L is isomorphic to the canonical bundle
KM = Λn(T ∗M) of M . Such bundles are called (holomorphic) half-form bundles, cf. [GS77]. For
the definition of Hardy spaces of sections one needs much more structure than for the definition
of Bergman spaces: besides a half-form bundle over a domain we need a certain “boundary” of
this domain and a semi-group over which the supremum in the definition of the Hardy-norm will
be taken. This geometric information will be called “Hardy-space data” (Def. 1.3.3). Just as the
definition of geometric Bergman spaces does not require a measure, the definition of geometric
Hardy spaces will not require a measure on the boundary. This allows a “big group” to operate
unitarily on the geometric Hardy space, explaining Fact 1. Also Fact 3 is explained in a natural
way: whenever the “big group” acts transitively on the domain (as is the case for bounded
symmetric domains), both the reproducing kernels of the geometric Bergman- and Hardy space
define invariant sections of K , resp. of L , and since L ⊗ L ∼= K , there must be a constant c
with cS ⊗ S = K . However, the main problem is now to show that c )= 0: it is more difficult to
prove that a geometric Hardy space is not reduced to zero than to prove this for Hardy spaces
of functions. In the case of a bounded symmetric domain D we prove that c )= 0 (Thm. 2.2.3)
using a result of J.-L. Clerc ([Cl98]) saying that elements of the compression semigroup S(D)
are also contractions of the Bergman metric of D . Once we know that the geometric Hardy
space of D is not reduced to zero, we can explain Fact 2: The Hardy spaces H2(D) and H2(TΩ)
are essentially defined by taking suprema over certain subsemigroups of S(D); this supremum
is smaller than the one over S(D) used in the definition of the geometric Hardy space, and
therefore the geometric Hardy space can be realized as a subspace of H2(D) and H2(TΩ). But
this subspace contains enough elements in order to prove that we have in fact equality (Thm.
2.3.1 and Thm. 2.3.3).

This paper is meant to provide some quite general background information to a wide range
of non-expert readers who are interested in the geometric analysis of Hardy spaces. Therefore we
do not go too far into the details related to Fact 4. We just collect some general remarks
on Bergman- and Hardy spaces related to homogeneous spaces (Section 3) which, however,
already lead directly to some of the most subtle problems which have implicitly shown up in
the literature mentioned above (Fact 4): namely, before comparing Hardy spaces, one needs to
compare holomorphic half-form bundles together with “equivariant” group- or semigroup actions.
Examples show that half-form bundles which are equivalent as vector bundles may very well
carry several essentially different actions of a given group. This observation naturally leads to
the problem of describing and classifying such objects; it will be taken up elsewhere.

1. Definition of geometric Bergman- and Hardy spaces

1.1. Bergman spaces of holomorphic sections. Before defining geometric Hardy-
spaces, it is useful to recall quickly the definition and basic properties of geometric Bergman
spaces (cf. [KN69, p.163]). For any complex manifold M of dimension n we denote by KM

the canonical bundle
∧n T ∗M whose holomorphic sections are the holomorphic n-forms. The

exterior product of a holomorphic n-form ω1 with an antiholomorphic n-form ω2 gives, up to a
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factor in
2

, a real 2n-form. Since M , viewed as a real manifold, is automatically orientable this
form can be integrated over M and the resulting number, if finite, is the inner product (ω1 | ω2).
The Bergman space is then the space

(1.1.1) B2(M) := {ω ∈ O(M,KM )| in
2

∫

M
ω ∧ ω < ∞}

of holomorphic n-forms ω for which the inner product (ω | ω) is finite. It is known that this
is a Hilbert space admitting a reproducing kernel which is a holomorphic 2n-form on M ×M
(cf. Section 2). From the definition of the Bergman space it is immediately clear that the group
Aut(M) of holomorphic diffeomorphisms acts unitarily on B2(M) by (g,ω) $→ (g−1)∗ω , where
g∗ is the usual pull-back of forms.

Remark 1.1.1. (Trivialization of line bundles.) A line bundle V over a complex manifold N
is isomorphic to the trivial line bundle if and only if it admits a holomorphic nowhere vanishing
section ν . In fact, the constant function 1 is a nowhere vanishing section of the trivial bundle,
and conversely, given such a section ν , we define a bundle map

N × C → V, (p, z) $→ zνp

whose inverse is given by Vp . v $→ (p, z) with z defined by v = zνz . The corresponding
isomorphism

O(N,V) → O(N)

whose inverse is given by f $→ fν will be called the trivialization map associated to ν . Clearly
we can make similar remarks for real line bundles over real manifolds.

Applying this to the Bergman space, given a nowhere vanishing holomorphic n-form ν , we
obtain an isomorphism of Hilbert spaces

(1.1.2) B2(M) → B2(M, ν) := {f ∈ O(M)|

∫

M
|f(z)|2in

2

(ν ∧ ν)(z) < ∞}

with inverse given by f $→ fν . The function space B2(M, ν) is called a trivialization of B2(M).
Note that the unitary action of Aut(M) in the trivialized picture is no longer canonical,

but depends on ν : for every g ∈ Aut(M) there exists a function j(g) = jν(g) such that

g∗ν = j(g) · ν.

Thus g∗(fν) = g∗f · g∗ν = g∗f · j(g) · ν , implying that the action of g is transferred to

(g.f)(z) = j(g−1, z)f(g−1.z),

where j(g, ·) := j(g).

Remark 1.1.2. (Bundle-valued Bergman spaces.) If M is a complex n-dimensional manifold
and H a holomorphic vector bundle over M , then by definition a holomorphic n-form with
values in H is a holomorphic section of the bundle

(1.1.3) KM ⊗H = Hom(
n∧
TM,H);

the space of such forms is denoted by Ωn(M,H). In order to define Bergman spaces of holomor-
phic n-forms with values in H , we need the additional assumption that H is a Hermitian vector
bundle. Then to v, v′ ∈ Hz and α,α′ ∈

∧n T ∗
z M , we associate a scalar valued (n, n)-form

(1.1.4) 〈α⊗ v,α′ ⊗ v′〉 := in
2

(v | v′)Hz
(α ∧ α′).
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In this way we obtain a sesquilinear map

(1.1.5) 〈·, ·〉:Ωn(M,H)× Ωn(M,H) → E(n,n)(MR),

where E(n,n)(MR) denotes the differential forms of type (n, n) on M considered as an almost
complex real manifold MR . With these definitions

(1.1.6) B2(M,H) := {ω ∈ Ωn(M,H)|

∫

MR

〈ω,ω〉 < ∞},

is called the Bergman space of square integrable sections (cf. [Ko68, p.639]). It turns out that
B2(M,H) is a Hilbert space with respect to the inner product

(1.1.7) (ω | ω′)B :=

∫

MR

〈ω,ω′〉.

If H is a trivial vector bundle with typical fiber Ho , then the Hermitian metric is of the form
(v | v′)Hz

= (v | P (z)v′)Ho
with a Hermitian positive definite operator P (z). If we assume

moreover that ν is a nowhere vanishing n-form on M , then the map f $→ ν ⊗ f defines an
isomorphism of

(1.1.8) B2(M,Ho, P ) := {f ∈ O(M,Ho)| i
n2

∫

MR

||P (z)f(z)||2 (ν ∧ ν)(z) < ∞}

onto B2(M,H). In case H is a line bundle, z $→ P (z) is a scalar function with positive values,
and Eqn. (1.1.8) coincides with the usual definition of weighted Bergman spaces with weight
function P .

If g is a holomorphic diffeomorphism of the complex manifold M and ω a holomorphic
n-form, then we have the equation

∫

M
(g∗ω)⊗ (g∗ω) =

∫

g(M)
ω ⊗ ω

which means that g acts unitarily on the classical Bergman space. The statement is immediately
generalized to the case of general bundle-valued Bergman spaces if we assume that g acts
isometrically on the Hermitian bundle used in the construction.

A situation that will be relevant later on arises as follows: we assume that U is a domain
in a complex manifold M , H a Hermitian vector bundle over M and Γ is a semigroup of
biholomorphic maps on M which preserves U and acts on the bundle H with isometric fiber
maps.

Proposition 1.1.3. The Bergman space B2(U) is stable under the natural pull-back ω $→ s∗ω
for s ∈ Γ , and this action is contractive.

Proof. In the scalar case, we have

∫

U

(s∗ω)⊗ (s∗ω) =

∫

s(U)
ω ⊗ ω ≤

∫

U

ω ⊗ ω

since s is a compression of U . The argument carries over to the bundle valued case with the
obvious changes.

1.2. Spaces of square integrable half-forms.
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Definition 1.2.1. A half-form bundle on a real n-dimensional manifold N is a complex line
bundle L over N such that the square L2 = L⊗L is isomorphic to the complexified line bundle
(
∧n T ∗N)C . In other words, the transition functions hαβ :U ′

α ∩ U ′
β → C× of L satisfy

(1.2.1) h2
αβ(z) = DetR

(
d(ψβ ◦ ψ−1

α )(ψα(z))
)
.

if (U ′
α,ψα)α∈A is an atlas for N . A section of a half-form bundle is called a half-form.

Example 1.2.2. Assume that N is orientable; thus there is a nowhere vanishing n-form ν on
N , and (w.r.t. an oriented atlas) the bundle (

∧n T ∗N)C is isomorphic to the trivial line bundle
which we denote by 1 (cf. Remark 1.1.1). Since 1⊗ 1 ∼= 1 , it follows that 1 is also a half-form
bundle on N . We cannot conclude, however, that in this situation all half-form bundles are
trivial. For example, if N is the circle, the complexification of the Moebius band (considered as
a real non-trivial line bundle) is a non-trivial half-form bundle.

Remark 1.2.3. Not every manifold admits half-form bundles and if they exist they are not
always uniquely determined.

To make this precise recall that the isomorphism classes of line bundles form an abelian
group, called the Picard group, under tensoring (the trivial bundle being the identity). This
group is isomorphic to H1(M,A×) where A is the sheaf of invertible differentiable maps (C∞ ,
respectively holomorphic, depending on whether M is real or complex). Thus M admits a half-
form bundle iff the isomorphism class of KM is a square in the Picard group. Consider the exact
sequence

{1}−−−−−−−→{±1}−−−−−−−→A× z '→z2

−−−−−−−→A×−−−−−−−→{1}

of sheaves of abelian groups. According to [Go73, p.174] we obtain a long exact sequence of
group homomorphisms in cohomology

. . . → H1(M, {±1})
ι

−−−−−−−→H1(M,A×)
z '→z2

−−−−−−−→H1(M,A×)
δ

−−−−−−−→H2(M, {±1}) → . . .

Thus the canonical bundle is a square iff δ(KM ) is the identity in H2(M, {±1}). Moreover, if
KM is a square, then the set of square roots is parametrized by the image of ι in H1(M, {±1}).

Inparticular we find: If Hj(M, {±1}) is trivial for j = 1, 2, then M admits a unique
half-form bundle.

For two half-forms ω(1),ω(2) the tensor product ω(1)⊗ω(2) is a density, i.e. it is a section of
the density bundle |

∧n |T ∗N which is the complex line bundle defined by the transition functions
gαβ :Uα ∩ Uβ → C× given as

gαβ(z) =
∣∣DetR

(
d(ϕβ ◦ ϕ−1

α )(ϕα(z))
)∣∣ ,

where (Uα,ϕα)α∈A is an atlas for N . The fiber of |
∧n |T ∗N at x ∈ N can be viewed as the

set of maps ρ: (TxN)n → C such that

ρ(Aη1, . . . , Aηn) = |Det(A)|ρ(η1, . . . , ηn)

for all A ∈ EndR(TxN) (cf. [GS77, p.53]). We call a density ν real, if ν(x): (TxN)n → C only
takes real values, and positive, if ν(x): (TxN)n → C take only non-negative values for all x ∈ N .

Thus, if HFN is a half-form bundle on N ,

(ω(1),ω(2)) $→ (ω(1) | ω(2))HFN
:=

∫

N
ω(1) ⊗ ω(2)

defines an inner product on the space of continuous sections of HFN with compact support
whose completion we denote by L2(N,HFN ).



Geometric Bergman and Hardy spaces 7

Example 1.2.4. (Trivialization) Assume that HFN has a nowhere vanishing section ωo , then
ν := ωo ⊗ ωo is a nowhere vanishing positive density on N defining a measure dn on N , and

L2(N, dn) → L2(N,HFN ), f $→ fωo

is an isomorphism of Hilbert spaces (cf. Remark 1.2.1). Densities can be pulled back under
smooth maps via

ϕ∗ν(x)(η1 , . . . , ηn) = ν
(
ϕ(x)

)
(dϕ(x)η1, . . . , dϕ(x)ηn).

Thus, for any diffeomorphism g of N there is a strictly positive function j(g) such that

g∗ν = j(g) · ν.

Then

(g.f)(x) = j(g−1)1/2 · (f ◦ g−1)

defines a unitary action of the group G of diffeomorphisms of N in L2(N,HFN ). It corresponds
to an action ω $→ g∗ω of G on the space of sections of HFN such that g∗ω ⊗ g∗ω = g∗(ω ⊗ ω).

In the special case where N = V is a vector space, the bundle
∧n T ∗V clearly is trivial,

and thus the trivial bundle is isomorphic to a half-form bundle. The forms ωo and ν can both
be chosen translation-invariant; we will use also the notation (dx)1/2 for ν . Then

L2(V, dx) → L2(V,HFV ), f $→ f(dx)1/2

is the trivialization map. We have j(g)(x) = |Det(dg(x))| , and thus the action of G is given in
the trivialized picture by

(g.f)(x) = |dg−1(x)|−1/2f(g−1.x).

In this case the unitarity of the action can be seen as a direct consequence of the transformation
formula for integrals.

Remark 1.2.5. In general, given a half-form bundle HF , there is no natural pullback action
of the group of all diffeomorphisms on HF which is compatible with the natural action on the
bundle

∧n T ∗N in the sense that g∗(ω⊗ ρ) = g∗ω⊗ g∗ρ . However, one is not very far from this
situation. One can prove:

(1) A single diffeomeorphism of M can always be lifted to a diffeomorphism of the half-form
bundle which is compatible with the pullback of holomorphic forms.

(2) The lifting can be done simultaneously for all elements of a connected topological semigroup
in such a way that one gets a representation of a double cover of the semigroup.

1.3. Hardy spaces of holomorphic half-forms.

Definition 1.3.1. Let M be a complex manifold. A holomorphic line bundle L → M
is called a holomorphic half-form bundle if L ⊗ L is isomorphic to the canonical line bundle
KM =

∧n T ∗M . A holomorphic half-form is a holomorphic section of a holomorphic half-form
bundle.

In order to define Hardy spaces, we have to integrate holomorphic half-forms over real forms
of M . For this we need the following proposition.
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Proposition 1.3.2. Let M be a complex manifold and HF a holomorphic half-form bundle
on M . If N ⊆ M is a real form (i.e. a totally real real-analytic submanifold with dimR N =
dimC M ), then HF|N is a half-form bundle on the real manifold N , and (HF ⊗ HF)|N is a
density bundle on the real manifold N .

Proof. We can find an atlas (Uα,ϕα) for M such that ϕα(N ∩ Uα) ⊆ Rn for each of the
coordinate functions ϕα:Uα → Cn . In fact, such charts are obtained by parametrizing a piece
of N by a real-analytic map f :U → N , where U is a neighborhood of 0 in Rn , and then
complexifying f to get a holomorphic map from a neighborhood of 0 in Cn onto a piece of M .
(In a local chart on M all we do is write f as a power series in real variables (x1, ..., xn) and
then make x complex; the power series will converge in some neighborhood of the origin.) Total
reality of N ensures that the extended f is locally biholomorphic, and its inverse is then a local
chart on M that is compatible with N .

With respect to this atlas, (Uα ∩N,ϕα,N )α∈A with ϕα,N :N ∩Uα → Rn is an atlas for N
and

ϕα ◦ ϕ−1
β :ϕβ(Uα) ∩ R

n → ϕα(Uα) ∩R
n.

In particular, for x ∈ N ∩ Uα ∩ Uβ we find

DetR
(
d(ϕα,N ◦ ϕ−1

β,N )(ϕβ(x))
)
= DetC

(
d(ϕα ◦ ϕ−1

β )(ϕβ(x))
)
= hβα(x)

2

for x ∈ N ∩ Uα ∩ Uβ . This also implies

hαβ(x)hαβ(x) =
∣∣∣DetR

(
d(ϕα,N ◦ ϕ−1

β,N )(ϕβ(x))
)∣∣∣

and hence the claim.

Note that, if ω is a holomorphic half-form and N as in the proposition, the restriction ω|N
is a half-form on the real manifold N and thus we can integrate ωN ⊗ωN over N . Hardy-spaces
are defined by a finiteness-condition on such integrals. However, in order to obtain Hilbert-
spaces, one needs the more specific geometric situation where N plays the role of a boundary of
the domain on which the holomorphic half-forms live.

Definition 1.3.3. A quadruple (U , N,HF,Γ) is called Hardy space data if

(1) U is a domain in a complex manifold M ,

(2) HF is a holomorphic half-form bundle over M ,

(3) N is a real form of M such that N is contained in the boundary ∂U of U ,

(4) Γ is a semigroup of compressions of U acting by local automorphisms of HF . More
precisely, s ∈ Γ acts by a local holomorphic diffeomorphism

s : Ds $→ s(Ds),

where Ds ⊂ M is a domain containing U . The assumption that s is a compression of U
means that s(U) ⊂ U . Moreover, we assume to each s a bundle isomorphism

s∗ : HF|s(Ds) → HF|Ds

is given (thus we assume that p ◦ s∗ = s ◦ p , where p is the projection onto the base space
of HF) such that s∗2 ◦ s

∗
1 = (s1s2)∗ and

s∗(vy ⊗ wy) = s∗vy ⊗ s∗wy

for all vy, wy ∈ HFy .
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It is clear that the manifold M and the domains Ds can be replaced by smaller neighbor-
hoods of U ; thus we omit M in our notation, and we are in fact only interested in equivalence
classes when considering two elements s, s′ as equivalent if they coincide on U .

We denote by Γo the semigroup ideal

Γo = {s ∈ Γ| s(U) ⊂ Uo}.

Then under the above assumptions s.N is a real form of U for all s ∈ Γo . Therefore we are in
the situation of Proposition 1.3.2, implying that for any holomorphic section ω of HF we have
a density ω ⊗ ω on s.N .

Definition 1.3.4. Given Hardy space data (U , N,HF,Γ), we set for any holomorphic section
ω of HF

‖ω‖2H := sups∈Γo

∫

s.N
ω|s.N ⊗ ω|s.N

and define a Hardy space

H2(U) := H2(U , N,HF,Γ) := {ω ∈ O(U ,HF) | ‖ω‖2H < ∞}.

One can also define general bundle-valued Hardy spaces in the same spirit as we passed
from the Bergman space of scalar valued forms to bundle-valued forms. However, in order to let
notation not become too heavy, we stick to the case of scalar valued half-forms. At the moment
we do not even know whether the Hardy space is a vector space.

Proposition 1.3.5.

(i) The Hardy space H2(U) together with ‖ · ‖2H is a normed complex vector space.

(ii) The semigroup Γ acts naturally by contractions on the Hardy space.

(iii) If Γ is a monoid, i.e. a multiplicative semigroup with a neutral element 1 , and the element
1 acts as the identity on U and HF , then the group G = Γ ∩ Γ−1 of units acts naturally
by isometries on the Hardy space and hence also on its norm completion.

Proof. (i) Using property (4) of the Hardy space data, we calculate

∫

s.N
ω|s.N ⊗ ω|s.N =

∫

s.N
(ω ⊗ ω)|s.N =

∫

N
s∗ω ⊗ s∗ω = ‖(s∗ω|N)‖2L2(N,HFN ),

thus

‖ω‖2H = sups∈Γo ‖(s∗ω)|N‖L2(N,HFN ).

Using the triangle inequality in L2(N,HFN ), it follows that, if ‖ω‖H < ∞, ‖ν‖H < ∞ , we have
also ‖ω + ν‖H < ∞ . The claim follows.
(ii) Using the calculation from part (i), we have

‖s∗ω‖2H = supg∈Γo ‖(g∗s∗ω)|N‖L2(N,HFN ) = supg∈sΓo ‖(g∗ω)|N‖L2(N,HFN )

≤ supg∈Γo ‖(g∗ω)|N‖L2(N,HFN )

≤ ‖ω‖2H.

(iii) This is immediate with (ii).
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Note that it is by no means clear at this point that the Hardy space H2(U) is an inner
product space. In other words, we do not have the means to show that the norm ‖ · ‖2H satisfies
the parallelogram identity

2‖ω‖2H + 2‖ω′‖2H = ‖ω + ω′‖2H + ‖ω − ω′‖2H.

1.4. The boundary value map. From the theory of Hardy spaces of functions one
expects an isometric boundary value map b : H2(U , N,HF,Γ) → L2(N,HFN ). We formulate
an assumption on the geometry of U , N and Γ under which this is indeed the case:

Assumption 1.4.1. (Polar decomposition.) In addition to the data given by Def. 1.3.3, assume
that (1) G preserves N , (2) Γ is a locally compact semigroup for which the group G = Γ∩ Γ−1

is a Lie group such that Γ admits a polar decomposition

Γ = G exp(iC)

with a Ad(G)-invariant regular (i.e. convex, open and pointed) cone C in the Lie algebra g of
G . In more detail, this means: each element s ∈ Γ can be uniquely written as s = gp , where g
belongs to G and p belongs to a one-parameter subsemigroup t $→ γ(t) of Γ for which the vector
field X(x) := i d

dt |t=0γ(t)x is of the form x $→ d
dt |t=0 exp(tY ).x for Y in C . Here multiplication

by i on the tangent space of M is given by the almost complex structure of M .

Theorem 1.4.2. Let (U , N,HF,Γ) be Hardy space data satisfying Assumption 1.4.1. Then
there is an isometric boundary value map given by

b : H2(U , N,HF,Γ) → L2(N,HFN ), ω $→ lim
t→0

((exp(itX)∗ω)|N )

which is independent of the element X ∈ intC .

Proof. This can be proved in the same way as the corresponding statement for Hardy-spaces
of functions on Ol’shanskĭı-semigroups, cf. e.g. [HN93, p. 277 – 279]. Let us briefly recall the
main points: We write Γ = G exp(iC) and let X ∈ int(iC). For a fixed ω ∈ H2(U , N,HF,Γ)
we consider the map

F : {z ∈ C| Re z > 0} → L2(N,HFN ), z $→ (exp(zX)∗ω)|N .

In this situation, a Paley-Wiener type lemma due to G. Ol’shanskĭı (cf. [HN93, Lemma 9.11])
implies that bX(ω) := limz→0 F (z) exists in L2(N,HFN ). Now it is proved by standard
arguments that bX is an isometry which does not depend on X (cf. [HN93, p. 278/279]).

We note the following consequences of Theorem 1.4.2 for later use

Corollary 1.4.3. Let (U , N,HF,Γ) be Hardy space data satisfying Assumption 1.4.1. Then
we have:

(i) The Hardy space H2(U , N,HF,Γ) is an inner product space.

(ii) The space of sections of HF which are holomorphic in some neighborhood of U is dense
in H2(U , N,HF,Γ) .

Recall the basic concepts of the holomorphic representation theory for involutive semigroups
from [Ne99] : An involutive semigroup is a pair (Γ, ,), where Γ is a semigroup and ,:Γ → Γ
is an involutive anti-automorphism. A Hermitian semigroup-representation of a semigroup Γ
with involution , on a pre-Hilbert space H0 is a semigroup homomorphism π:Γ → B0(H0)
preserving the involutions, i.e. π(s&) = π(s)∗ . Here B0(H0) is the vector space of linear operators
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A:H0 → H0 for which a formal adjoint exists. This is an involutive semigroup, so the above
definition makes sense. π is called bounded if π(s) is a bounded operator for all s ∈ Γ . If Γ
is a topological semigroup with a continuous involution, then a bounded representation π on
a Hilbert space H is called continuous if π:Γ → B(H) is continuous w.r.t. the weak operator
topology on the algebra B(H) of bounded operators on H .

If Γ in addition is a complex manifold and , is anti-holomorphic, then (Γ, ,) is called a
complex involutive semigroup and a bounded representation π:Γ → B(H) is called holomorphic
if it is holomorphic as a map when B(H) is endowed with its natural Banach space structure.

Remark 1.4.4. Note that the existence of a polar decomposition for Γ automatically shows
that we have an involutive self-map s $→ s& of Γ via (g expX)& = (expX)g−1 . In fact, we
calculate

(s&)& = exp(Ad(g)X)g = g(expX)g−1g = g expX.

But the equality (s1s2)& = s&2s
&
1 cannot automatically be deduced from this definition unless Γ

is abelian. Below we will encounter various examples of semigroups with polar decomposition
such that the associated involutive selfmap is actually an involution defined as follows: there is
a “complex conjugation” τ of M w.r.t. the real form N , and then the equation s& = τ ◦ s−1 ◦ τ
holds on some neighborhood of U .

Theorem 1.4.5. Suppose that Assumption 1.4.1 holds. In addition we assume that (Γ, ,) is
a complex involutive semigroup such that

(g expX)& = (expX)g−1 = g−1 exp(Ad(g)X).

Then the representation of Γ from Proposition 1.3.5 on the completion of H2(U , N,HF,Γ) is a
holomorphic Hermitian representation.

Proof. We set π(s)ω = s∗ω for ω ∈ H2(U , N,HF,Γ) and use Proposition 1.3.5 to extend
π(s) to a contraction on the completion H of H2(U , N,HF,Γ). In this way we obtain, again by
Proposition 1.3.5, a bounded representation π:Γ → B(H). Once more from Proposition 1.3.5
we see that the restriction of π to G = Γ ∩ Γ−1 is unitary representation.

Using charts and a suitable partition of unity we can view the integrals which give the norms
of the half-forms involved as ordinary integrals of functions. Since Γ acts by contractions we
can use Lebesgue’s theorem of dominated convergence to see that π is holomorphic (cf. [HN93,
Lemma 9.7]).

It remains to be shown that π(s&) = π(s)∗ . The unitarity of π|G shows that it suffices to
show that π(expX) is self adjoint for X ∈ iC . Consider the derived representation dπ of g on
H . Since iX ∈ g we know that dπ(X) is a self adjoint operator on H which is the infinitesimal
generator of the unitary one-parameter group π

(
exp(itX)

)
. Let P be the spectral measure of

dπ(X) and set A = P (]−∞, 0])dπ(X).
Now for ω ∈ H2(U , N,HF,Γ) consider the function z $→ Fω(z) = π

(
exp(zX)

)
ω =

(exp zX)∗ω which is defined on C+ = {z ∈ C | Re z ≥ 0} . Then Fω(z + it) = π(exp itX)Fω(z)
and Ol’shanskĭı’s Paley-Wiener Lemma ([HN93, Lemma 9.11]) shows that there exists a ξ ∈ H
such that Fω(z) = ezAξ for z ∈ C+ . Since Fω(0) = ω we see that ξ = ω which implies

π
(
exp(zX)

)
ω = ezAω.

By continuity we now find π
(
exp(zX)

)
= ezA . Since A is self adjoint the claim follows from

the case z = 1.
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Remark 1.4.6. There is an analog of Theorem 1.4.5 for Bergman spaces: Suppose that (Γ, ,)
satisfies the assumptions of Th. 1.4.5. Then the representation of Γ on B2(U) from Proposition
1.1.3 is a holomorphic Hermitian representation.

In fact, we can obtain this result copying the proof of Theorem 1.4.5 with B2(U) instead
of H2(U , N,HF,Γ). It even gets a little simpler since B2(U) already is complete.

1.5. Completeness of Hardy spaces. In general the normed vector space from Def.
1.3.4 will not be complete. We introduce a sufficient condition on the Hardy space data which
will allow us to prove completeness in various cases.

Definition 1.5.1. Hardy space data (U , N,HF,Γ) are called complete if Assumption 1.4.1 is
satisfied and the inclusion map

H2(U , N,HF,Γ) ↪→ O(U ,HF)

is continuous, where H2(U , N,HF,Γ) carries the norm topology and O(U ,HF) the topology of
compact open convergence.

In the following proposition we use the concept of a reproducing kernel for a Hilbert space
of sections as explained in the appendix.

Proposition 1.5.2. Let (U , N,HF,Γ) be complete Hardy space data. Then H2(U , N,HF,Γ)
is a Hilbert space which admits a reproducing kernel.

Proof. In view of Theorem 1.4.2 this can be proved just as the corresponding result [HN93,
Theorem 9.31, in particular p. 280].

In general it is not easy to check the completeness of Hardy space data. In fact, we don’t
have a general criterion that covers all the known cases of complete data.

Proposition 1.5.3. Consider the Hardy space data (U , N,HF,Γ) and assume

(a) They satisfy Assumption 1.4.1 (polar decomposition).

(b) The map Γo ×N → U , (s, n) $→ s.n is a submersion.
Then (U , N,HF,Γ) is a set of complete Hardy space data.

Proof. Since the question is of local nature we may assume that the bundle HF admits a
trivialization on some neighborhood of U . So let us assume that ν is a global nowhere vanishing
section of HF on some neighborhood of U . Identifying holomorphic sections ω of HF with
holomorphic functions f via ω = fν , the semigroup Γ acts by

(s∗f)(z) = j(s, z)f(s.z)

with j(s, z) defined by s∗ν = j(s, ·)ν (cf. Remark 1.1.1). Let dµ be the measure defined by the
density ν ⊗ ν on N . Then the trivialized picture of the Hardy space H2 is

H2 = {f ∈ O(U)| sups∈Γo

∫

N
|f(s.u)|2|j(s, u)|2 dµ(u) < ∞}.

Now we follow the proof for the case of Hardy spaces on Ol’shanskĭı semigroups (cf. [HN93,
p.279 – 280] or [Ne98, Lemma 1.3]): the main point is to prove that for any compact subset K ⊂ U
we can find a constant cK depending only on K such that

supz∈K |f(z)| ≤ cK ||f ||H2

for all f ∈ H2 . For the proof of this estimate Assumption (b) is essential, since it permits
to introduce local coordinates adapted to the problem and thus to show that f satisfies a local
Bergman-type condition. The absolute value of the cocycle factor j(s, z) can locally be estimated
from above and from below and does not affect this way of reasoning.
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We note here that Assumption (b) of Proposition 1.5.3 is not necessary. In fact, it is not
satisfied for the data leading to the classical Hardy spaces H2(D) with D a bounded symmetric
domain of complex dimension n greater than one (cf. Section 2.3): In that case Γ is one-
dimensional, therefore ΓN is n+ 1-dimensional and hence not open in the real 2n-dimensional
D .

Remark 1.5.4. If one strengthens the assumptions on Γ by saying that Γ is a complex
Ol’shanskĭı semigroup (cf. [Ne98]), then the proof of [Ne98, Prop. 2.4] can be adapted to yield
the following result: If the Hardy space data (U , N,HF,Γ) are complete, then the subspace
b(H2(U , N,HF,Γ)) ⊂ L2(N,HFN ) is the largest subspace F ⊂ L2(N,HFN ) such that all the
self-adjoint operators iX , X ∈ C , are negative on F .

2. Bergman- and Hardy spaces on tube type domains

2.1. Bergman spaces on bounded symmetric domains. In the following we assume
that D = G/K is a Hermitian symmetric space. Then D has a canonical realization as a circled
bounded symmetric domain in a complex vector space VC = Cn (cf. [Lo77] or [Sa80]). The
vector space VC in turn is realized as an open dense subset in the compact dual (VC)c of D .
The imbedding D ⊂ VC ⊂ (VC)c is called the Borel-imbedding. The space (VC)c is a complex
manifold and can be written as the quotient (VC)c = GC/Q of complex Lie groups. Then Q is
a maximal parabolic subgroup of GC containing the translation group tVC

.
There exist unbounded realizations of the Hermitian symmetric space G/K as Siegel

domains of the second kind. In case G/K is of tube type, this expression reduces to a Siegel
domain of the first kind which is by definition a tube domain TΩ = V + iΩ over a homogeneous
self-dual cone Ω in a Euclidean vector space V . This space carries the structure of a Euclidean
Jordan algebra with unit element e , and the Cayley transform C relating these two realizations
via C(D) = TΩ can be written in terms of this algebra as C(z) = i(e + z)(e− z)−1 (cf. [FK94,
p. 190]).

One defines a Bergman space of holomorphic functions on the bounded symmetric domain
D by

B2(D) := {f ∈ O(D)|

∫

D
|f(z)|2dz < ∞}.

If we denote by dz also the translation invariant holomorphic top-degree form on VC , restricted
to D , then

(2.1.1) B2(D) → B2(D), f $→ f(dz)

is an isomorphism of Hilbert spaces. One deduces that B2(D) is non-trivial since B2(D) contains
all holomorphic polynomials. It follows that the Bergman-kernel K is non-zero. The following
explicit formula for the Bergman-kernel is well-known. In order to show that it can be proved
by geometric methods we indicate a short proof. One defines a polynomial on VC by

B(x, y) := idVC
− 2x y + P (x)P (y),

where (x y)z = T (x, y, z) and P (x)z = T (x, z, x) are defined via the Jordan triple product
T (x, y, z) associated to the bounded symmetric domain D (cf. [Lo77] or [Sa80] where the notation
{xyz} for T (x, y, z) is used).
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Theorem 2.1.1. The reproducing kernel of B2(D) is (up to a non-zero constant factor) given
by

k(z, w) = DetB(z, w)−1,

and the reproducing kernel of B2(D) by K(z, w) = k(z, w)dz× dw .

Proof. The group Aut(D) acts unitarily on the geometric Bergman space. Therefore its
reproducing kernel is G-invariant (Thm. A.2.1). Since G acts transitively on D , the kernel
K(z, z) is uniquely determined by its value at a base point, and by holomorphy K(z, w) is
then also determined. In other words, the reproducing kernel is determined up to a factor by
its invariance property. In the trivialized picture the invariance translates into the covariance
property

k(g.z, g.z) = Det(dg(z))−2k(z, z).

It can be proved by geometric methods that the function z $→ DetB(z, z)−1 has precisely this
covariance property (cf. [Lo77]; in [Be98, Section 1.4] a more direct proof is given which in fact
does not need the trivialization). Since the Bergman-kernel is not zero, we conclude that there
is a scalar λ )= 0 with k(z, w) = λDet(B(z, w))−1 .

Moreover, since the group G acts transitively on D by holomorphic diffeomorphisms, a
theorem of S. Kobayashi (cf. [Ko68] or [BH98a, Thm. 2.5]) implies that B2(D) is an irreducible
unitary G-module. Next one defines a family of weighted Bergman spaces of holomorphic
functions by

B2
m(D) := {f ∈ O(D)|

∫

D
|f(z)|2DetB(z, z)m−1 dz < ∞}

(cf. [FK94, Ch.XIII]). This is the trivialized picture of the bundle-valued Bergman space
B2(D,Km−1

D ) with values in the line bundle Km−1
D with the Hermitian metric given by the

(m−1)th power of the Bergman kernel function. Since this metric is G-invariant, we have again
a unitary and irreducible G-representation on this space.

2.2. The geometric Hardy space of a tube-type domain. We are going to define
Hardy-space data associated to a bounded symmetric domain D of tube type. On M = VC we
choose the natural trivial half-form bundle HF and denote its translation-invariant section by
(dz)1/2 . The space N will be given by the Shilov-boundary which is described in terms of the
complex Jordan algebra VC by

Σ = {z ∈ VC| z
−1 = z};

this shows that Σ is indeed a real form of VC (if D is not of tube type, then the Shilov boundary
is not a real form of VC ). As semigroup Γ we take the double covering S̃2(D) of the compression
semigroup

S(D) = {s ∈ GC| s(D) ⊂ D}.

(For the definition of this double cover and the double cover G̃2 of G cf. [BH98b, Remark 2.2.3]
or [KØ97].)

Lemma 2.2.1. The data (D,Σ,HF, S̃2(D)) define Hardy space data on D .

Proof. Using the trivialization f $→ f(dz)1/2 , the group G̃2 acts on the space of holomorphic
sections of HF|D via

(2.2.1) (g.f)(z) = ((Det dg−1)(z))1/2f(g−1.z).

The definition of the group G̃2 assures that this is indeed a representation. The map z $→
(Det dg−1(z))−1 is a holomorphic polynomial on VC which vanishes precisely at the points
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z ∈ VC with g−1(z) /∈ VC (cf. [Be98] or [Lo77]). In particular, it does not vanish on the
open neighborhood U1 = g−1(VC) ∩ VC of D . Choose a connected simply connected open
neighborhood U of D inside U1 . Then the holomorphic function z $→ (Det dg−1(z))1/2 has a
unique extension to a holomorphic function on U , and therefore (2.2.1) defines an action of g
by a local automorphism of HF in the sense of Def. 1.3.3 (4). All arguments go through for G̃2

replaced by the semigroup S̃2(D). Thus assumption (4) of the Hardy space data (Def. 1.3.3) is
verified.

Definition 2.2.2. The geometric Hardy space given by the Hardy space data from Lemma
2.2.1 is denoted by H2(D, S̃2(D)) or just by H2(D).

Theorem 2.2.3.

(i) The Hardy space H2(D) is complete, has a reproducing kernel S and admits a boundary
value map.

(ii) There is a constant λ ∈ C , λ )= 0 , such that

S ⊗ S = λK,

where K is the Bergman kernel of D . In particular, H2(D) is not reduced to zero.

Proof. (i) We verify the assumptions of Thm. 1.4.2 and Prop. 1.5.3: it is well-known that
G(D) preserves Σ , and according to a result of G. Ol’shanskĭı, the semigroup S(D) admits a
polar decomposition S(D) = G exp(iC) where C = Cmax is in fact a maximal invariant regular
Ad(G)-invariant cone in g . Thus Assumption 1.4.1 is verified. In order to prove completeness
of the Hardy-space data, it remains to show that Γo × Σ → D is a submersion. But since any
element of Γo maps Σ into D and G , which is contained in Γ , acts transitively on D , this is
clear.

(ii) We use the same arguments as in the proof of Thm. 2.1.1: the group G̃2 acts
unitarily both on H2 and on B2 ; thus according to Thm. 2.2.1 the kernels S and K are
G̃2 -invariant. The invariance of S implies that also S ⊗ S is an invariant kernel. It is a section
of (HF⊗HF)× (HF ⊗HF) = KD×KD , and is uniquely determined by its restriction to the
diagonal. This restriction is an invariant section of KD . Since G̃2 acts transitively on D , there
is up to a factor λ ∈ C just one invariant section of the line bundle KD : S ⊗ S = λK .

It remains to prove that λ )= 0, i.e. that H2(D) is not reduced to zero. Here we have to
use some specific information on the geometric situation. We proceed in steps:

1. We trivialize H2(D) via (dz)1/2 : If f is a holomorphic function on D , we let

||f ||2 := ||f ||2H2(D) := sup
s∈S̃2(D)o

∫

Σ
|f(s.u)|2|Det ds(u)| dσ(u),

where dσ is the (normalized) K -invariant measure on Σ . Then we define a Hardy space of
holomorphic functions

(2.2.2) H2(D, S̃2(D)) := {f ∈ O(D)| ||f ||2 < ∞}.

We claim that
H2(D, S̃2(D)) → H2(D), f $→ f (dz)1/2

is a Hilbert space isomorphism. In fact, the group K is a subgroup of the unitary group of VC .
Therefore the density |dz| = (dz)1/2 ⊗ (dz)1/2 is K -invariant, and so is the restriction of this
density to Σ . It thus defines a K -invariant measure on Σ . Such a measure being unique up to
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a constant factor, it must be proportional to dσ . Now formula (2.2.1) shows that the definitions
of both Hardy spaces correspond to each other under the trivialization.

2. Let f be a function which is holomorphic on some neighborhood of D . We will prove
that then

(2.2.3) ||f ||H2(D) ≤

∫

Σ
|f(u)|2 dσ(u) = ||f ||L2(Σ)

(actually, we will have equality). Since f is continuous on the compact space Σ , this integral is
finite, and it follows that f ∈ H2(D, S̃2(D)). This proves that H2(D, S̃2(D)) contains e.g. all
holomorphic polyomials and therefore is not reduced to zero.

Since S(D) = G exp(iC) and G preserves the Hardy-space norm, it is enough to take the
supremum in the definition of the Hardy space over exp(iC). But then, letting for any X ∈ iC ,

Ft := ||(exp(tX)∗)(ω)||
2
L2(Σ,HF) =

∫

Σ
|f(u)|2|Det d(exp(tX))(u)| dσ(u)

(where ω = f(dz)1/2 ), it is enough to prove that Ft is bounded from above by ||f ||L2(Σ) for all
t ∈ R+ .

3. The function t $→ Ft , being a composition of a holomorphic map and a norm-function,
is subharmonic on a half-plane. It is constant in imaginary direction, and therefore its restriction
to R+ is convex. We will prove that

(2.2.4) lim
t→∞

Ft = 0.

Together with the convexity this implies that t $→ Ft is decreasing on R+ . Then its supremum
is obtained by taking the limit for t → 0, proving that this supremum is ||f ||L2(Σ) .

4. Since exp(X) is a strict compression of D , i.e. exp(X).D ⊂ D , there is by compactness
a real number r < 1 with exp(X).D ⊂ rD . Let d(x, y) be the distance of x and y w.r.t. the
Bergman metric on D . Then on rD the Bergman metric and the Euclidean metric of VC are
equivalent in the sense that there exist constants c0 < 1 and c1 > 1 such that for all x, y ∈ rD
the inequality

(2.2.5) c0d(x, y) < |x− y| < c1d(x, y)

holds. This follows from the fact that the Bergman metric is given by

hz(u, v) = 〈B(z, z)−1u, v〉,

where 〈u, v〉 is the Euclidean scalar product on VC (cf. [Lo77, Th. 2.10]).
5. By a result of J.-L. Clerc ([Cl98]; note that its proof requires only standard facts on

the geometry of D ), the map exp(X) is a strict contraction of the Bergman distance on D , i.e.
there exists a constant k < 1 with d(exp(X).x, exp(X).y) ≤ kd(x, y) for all x, y ∈ D . Taking
powers of exp(X), we can find s > 0 and a < 1 such that for all x, y ∈ D

(2.2.6) d(exp(sX).x, exp(sX).y) ≤ a
c0
c1
d(x, y).

6. For g = exp(sX) we estimate for all x, y ∈ rD , using (2.2.5) and (2.2.6):

|g.x− g.y| < c1d(g.x, g.y) < ac0d(x, y) < a|x− y|,
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i.e. g is a strict contraction for the Euclidean metric on rD . (Using Banach’s fixed point
theorem, we can now conclude that g has a fixed point in rD , but we don’t need that at this
point.) It follows that for all z ∈ rD and N ∈ N

|Det dgN(z)| ≤ anN

where n := dimV .
7. Using the chain rule, we have for all N ∈ N and u ∈ Σ ,

d(exp(NsX) exp(X))(u) = (d exp(NsX))(exp(X).u) ◦ d(exp(X))(u).

Now we take determinants and put M := supu∈Σ |Det(d exp(X))(u)| . Note that exp(X).u ∈ rD .
We get

|Det(d(exp(NsX) exp(X))(u)| < ManN .

From this we get

FNs+1 =

∫

Σ
|f(u)|2|Det d(exp(Ns+ 1)X)(u)|dσ(u) ≤ ManN

∫

Σ
|f(u)|2dσ(u).

Since ||f ||L2(Σ) < ∞ by boundedness of f on D , this tends to zero as N tends to infinity.
Together with the convexity of t $→ Ft this implies that limt→∞ Ft = 0, and as explained in
Steps 2 and 3 the claim follows.

Remark 2.2.4.

(i) The proof of Theorem 2.2.3 shows that the dynamical system exp(R+X) behaves very
much like the dynamical system R+idVC

: it has precisely one fixed point in D which is
an attractor for all points in some neighborhood of D . This makes the proof work. The
behavior of one-parameter semigroups of compressions which are not strict is in general
much more complicated.

(ii) The proof works for any f ∈ O(D) such that f has almost everywhere a pointwise limit
on Σ defining a square integrable function there. It would be interesting to know whether
this condition already describes the Hardy space (i.e. is the boundary value map pointwise
almost everywhere?)

2.3. Classical versus geometric Hardy spaces. Theorem 2.2.3 gives a satisfactory
explanation of Facts 1 and 3 (Introduction) for the geometric Hardy space. Next we will discuss
the relation of the geometric Hardy space with the classical Hardy spaces (Fact 2). To this end
we define a semigroup

C
< = {z $→ tz| t ∈ C

∗, |t| < 1} ⊂ S(D).

It is clear that (D,Σ,HF,C<) are Hardy space data on D . The corresponding Hardy-space of
half-forms is denoted by H2(D,C<).

Theorem 2.3.1. We have an equality of normed vector spaces

H2(D, S̃2(D)) = H2(D,C<).

In particular, H2(D,C<) is a complete Hilbert space admitting a reproducing kernel.

Proof. The inclusion “⊂” follows from the fact that the supremum in the definition of
H2(D,C<) is taken over a subsemigroup of S̃2(D) (strictly speaking, we should use the pre-
image of C< under the covering S̃2(D) → S(D), but this doesn’t change the Hardy-norm).
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Moreover, this inclusion is isometric: first we check that H2(D,C<) satisfies Assumption 1.4.1
and thus admits an isometric boundary value map (Thm. 1.4.2). Since the boundary value map
is independent of X ∈ int(C), we choose −X to be the Euler vector field (i.e. X(p) = −p) and
have for all ω ∈ H2(D,C<)

||ω||H2(D,C<) = lim
t→0

||(exp tX)∗ω)||L2(Σ) = ||ω||
H2(D,S̃2(D))

.

For the proof of the inclusion “⊃” we use the proof of Theorem 2.2.3: There we have seen
that the subspace Ho of sections of HF which are holomorphic on some neighborhood of D is
contained in H2(D, S̃2(D)). On the other hand, according to Corollary 1.4.3, Ho is dense in
H2(D,C<). Thus H2(D, S̃2(D)) is dense in H2(D,C<), and since this subspace is complete, we
actually have equality.

Note that the preceding theorem together with Thm. 2.2.3 shows that H2(D) is a re-
producing kernel space and yields a proof for the formula of the reproducing kernel which is
independent of other known proofs. Thus Facts 1 and 3 (Introduction) are explained for H2(D).

For the Hardy space H2(TΩ) of the tube TΩ the situation is slightly more difficult: it is
easily verified that Hardy space data are given by (TΩ, V,HF, tV +iΩ), where

tV+iΩ := {z $→ z + v + iu| v ∈ V, u ∈ Ω}

is a semigroup of strict compressions of the domain TΩ ⊂ VC and HF is the trivial half-form
bundle induced from VC . Moreover, it is clear that H2(TΩ) is the trivialized picture of the
geometric Hardy space associated to these data.

The reason for the problems is the fact that the semigroup tV+iΩ is not a semigroup of
strict compressions of the bounded domain D = C(TΩ) equivalent to TΩ . In fact, the points of
the Shilov-boundary lying “at infinity”, i.e. in Σ \C(V ), are not mapped into the interior of D
under CtV +iΩC−1 . In other words, CtV +iΩC−1 is a semigroup belonging to the boundary of
S(D).

Proposition 2.3.2. The contractive semigroup representation

S̃2(D)o → B(H2(D))

has a unique continuous extension to a contractive semigroup representation

S̃2(D) → B(H2(D)).

The extension agrees with the representation of S̃2(D) on the holomorphic sections of HF|D
given by the formula (2.2.1).

Proof. We know from Theorem 1.4.5 that the representation of S̃2(D)o on H2(D) is a
holomorphic Hermitian representation by contractions. Since S̃2(D)o contains an approximate
identity we can use [Ne99, Thm. IV.1.27] to show that a continuous extension to S̃2(D) exists.
This extension is unique and automatically contractive.

To show also the last claim, we recall that convergence w.r.t. the Hardy norm implies
convergence w.r.t. the compact open topology so that the density of S̃2(D)o in S̃2(D) and the
continuity of the representation (2.2.1) imply the claim.

For ω ∈ H2(D) we write ||ω|Σ||L2(Σ) for the norm of the boundary value bω . Then the
fact that the extended semigroup representation from the preceding proposition is contractive
implies that

sup
s∈S̃2(D)

||s∗ω|Σ||L2(Σ) ≤ ||ω||H2(D);

on the other hand, by definition of the Hardy space we have the converse inequality, and thus
equality holds. In other words, the Hardy space H2(D) can also be defined by the taking the
supremum over the whole contraction semigroup and not only over its interior.
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Theorem 2.3.3. We have an equality of Hilbert spaces

H2(D, S̃2(D)) = H2(D,C(V ),HF, CtV +iΩC
−1).

Proof. “⊂”: Note that C(V ) is open dense in Σ . Therefore

sups∈tV +iΩ
||s∗ω||L2(C(V )) = sups∈tV +iΩ

||s∗ω||L2(Σ) ≤ sup
s∈S̃2(D)

||s∗ω||L2(Σ).

As was remarked before stating the theorem, the last term defines the Hardy space norm of
H2(D, S̃2(D)), and the desired inclusion follows.

“⊃”: This follows by the same arguments as in the proof of Thm. 2.3.1.

Remark 2.3.4.

(i) Let n be the real dimension and r be the rank of the Euclidean Jordan algebra V . If V
is simple and n

2r is an integer, one can define the half-form bundle HF on all of (VC)c via
an induced represenation. If it is a half-integer, this is no longer possible.

(ii) There is no immediate generalization of the preceding results to bounded symmetric do-
mains which are not of tube type. The reason for this is that in the non-tube type case the
Shilov boundary is not a totally real submanifold of M (it contains subspaces of the form
Ck with k > 0). There is still a generalization of a Hardy space of functions on a Siegel
domain of second kind (cf. [KS72]), but we have no evidence that its reproducing kernel
is still a square root of the Bergman kernel. Also no reasonable unitary G-action on this
space is known. For these reasons it seems not advisable to try to interprete the Hardy
space of non-tube type domains in terms of half-forms.

(iii) The Hardy spaces H2
m(TΩ) defined in [FK94, p.270] do carry a unitary G-action. In these

cases the Shilov boundary is replaced by other G-orbits N in ∂TΩ . However, if N )= Σ ,
then N contains holomorphic arc components, i.e. it is no longer a totally real submanifold.
Thus one could try to interprete these spaces as “Hardy spaces with values in Bergman
spaces”.

3. Bergman- and Hardy spaces on generalized tube domains

3.1. Bergman spaces. Let Ξ be an open domain in a complex homogeneous space
MC = GC/HC , where GC is a complex Lie group and HC a complex closed subgroup. Then the
geometric Bergman space B2(Ξ) is canonically defined. On the other hand, in harmonic analysis
one considers Bergman spaces of functions which are defined under the assumption that there
exists a GC -invariant measure µ on MC . The Bergman space associated to such a measure is

B2(Ξ, µ) := {f ∈ O(Ξ)|

∫

Ξ
|f(z)|2dµ(z) < ∞}

(cf. e.g. [Kr98], [HK98], [Pe96]). The point one has to observe here is that the measure µ is in
general not defined by a volume form, and therefore B2(Ξ, µ) is in general not just the trivialized
picture of B2(Ξ). However, there is a an important class of examples for which one comes close
to that situation (cf. [Wa72, Appendix]): Suppose that GC is reductive so that its modular
function | det ◦Ad |−1 is the constant function 1. Then the existence of the invariant measure
implies that the image of the complex representation

δ : HC → C
∗, h $→ det(doh)
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(determinant of the differential at the base point o = eH ) is contained in the unit circle.
Therefore it is constant on each connected component of HC and in particular trivial on the
identity component. If HC has only finitely many components, δ(HC) is a finite subgroup of the
unit circle and hence the kernel H1 of δ is a normal subgroup of finite index m in HC . Thus
the map

p : M̃C := GC/H1 → MC, gH $→ gH1

is an m-fold covering.
Suppose that MC is actually a complexification of a real homogeneous space M , i.e. that

there are closed real forms G and H of GC and HC such that M = G/H . Then the restriction
of δ to H is real valued. This means the only possible values for δ(h) are ±1. If now each

component of HC intersects H we conclude that M̃C is at most a double cover of MC .
The space M̃C clearly admits a non-trivial holomorphic GC -invariant n-form ν which

defines a GC -invariant measure µ̃ on M̃C . Let Ξ̃ := p−1(Ξ). Now B2(Ξ̃, µ̃) is the usual
trivialization of B2(Ξ̃) w.r.t. ν . Up to a constant factor, the pullbacks

p∗ : B2(Ξ) → B2(Ξ̃), p∗ : B2(Ξ, µ) → B2(Ξ̃, µ̃)

are isometric imbeddings with image being the respective spaces of “even” elements, i.e. those
which are invariant under the group of decktransformations.

Since for m > 1 the form ν is “odd”, i.e. not preserved under decktransformations, the
trivialization map f $→ fµ̃ does not respect the spaces of “even” elements.

3.2. Hardy-spaces. The same remarks as above apply, but dealing with half-form bundles
leads to additional and more subtle complications. First, as usual for Hardy spaces, we need a
more specific geometric set-up. Here the framework of compactly causal symmetric spaces is
natural (cf. [HOØ91], [HØ96], [Ol91]). To such a space M = G/H one associates a domain
Ξ = G exp(iW ).o in its complexification MC = GC/HC . Here W is a certain open convex
Ad(G)-invariant cone in the Lie algebra g of G . Then ΓW := G exp(iW ) ⊂ GC is a complex
semigroup. Now one defines a Hardy space of holomorphic functions by

H2(Ξ) := {f ∈ O(Ξ)| sups∈ΓW

∫

M
|f(sx)|2dρ(x) < ∞},

where ρ is a G-invariant measure on M (cf. [HOØ91]). When trying to relate this space to a
geometric Hardy space, we are faced with two problems:

(a) Existence: We do not know whether holomorphic half-form bundles exist on Ξ . This

can be remedied using the double cover M̃C introduced in the preceding section: The canonical
bundle K

M̃C

is trivial and admits a non-trivial invariant section, and thus there is a holomorphic

half-form bundle HF0 having the same properties. It is then easy to see that (Ξ̃, M̃ ,HF0,ΓW )
defines (complete) Hardy space data on Ξ and that the trivialization map

H2(Ξ̃) → H2(Ξ̃, M̃ ,HF0,ΓW )

is an isometric bijection. As for Bergman spaces, the pull-back p∗ : H2(Ξ) → H2(Ξ̃) is (up to a
factor) an isometric imbedding.

(b) Uniqueness: We do not know how many essentially different Hardy space data on
Ξ exist. This is a subtle question: already in the case where the trivial bundle over Ξ is a
holomorphic half-form bundle it may very well be that two inequivalent actions of the same
semigroup Γ exist. Once again this can be remedied by introducing a double covering of Ξ
(as is done by Koufany and Ørsted [KØ97] for the group case M = Sp(n,R) for n even, and
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more generally by Betten and Ólafsson [BO98] for the cases which, in the language of [BH98b],
correspond to the case “ 1

4 non-admissible, but 1
2 admissible”). The nature of this covering is

very different from the covering needed for Problem (a). In fact, in the worst case it may be
necessary to combine both coverings, leading to a covering of order 4 (as already introduced in
[BO98]; this corresponds to the case “ 1

4 and 1
2 non-admissible” from [BH98b]). The questions

related to this problem are fairly involved and will be taken up elsewhere.

3.3. Further problems. Besides the geometric and group-theoretic problem just men-
tioned, the major problem in the theory of geometric Hardy spaces is to explain the analogues of
Facts 1 – 3 (cf. the introduction) for Hardy spaces on Ξ . More precisely, is there an analogue of
our Theorem 2.2.3 for Hardy spaces on Ξ? In some important cases the answer is “yes” – this is
just the invariant formulation of the main result from [BH98b, Thm. 4]. However, as mentioned
in [BH98b, Section 4], the proof of this result is not yet geometric, and the general problem of
the relation between Bergman- and Hardy spaces remains open.

Appendix: Reproducing kernels and semigroup actions

A.1. Reproducing kernels on vector bundles. We have seen that geometric Bergman
spaces and some geometric Hardy spaces have the property that point evaluations are continuous.
This means that they have a reproducing kernel which, in the geometric setting we use, is a section
of a vector bundle. Therefore we quickly recall how the standard theory of reproducing kernels
can be adapted to a vector bundle setting (cf. [BH98a] for details).

Let M be a topological space and p:V → M a complex vector bundle. We assume that the
fibers Vz over z ∈ M are finite dimensional and denote the complex antilinear dual bundle by
q:V∗ → M . This means that the fiber V∗

z of V∗ consists of the complex antilinear functionals
on Vz . The corresponding evaluation map will be denoted by 〈·, ·〉z :V∗

z × Vz → C . We will
use the canonical identification Vz ↔ (V∗

z)
∗, v $→ v̂ , given by v̂(ξ) = ξ(v) , and its global analog

V ∼= V∗∗ without further mentioning. If we reverse the complex structure on the fibers of V we
write V instead of V . Then V is still a complex vector bundle. If V is given by a collection of
transition functions gαβ :Uα ∩ Uβ → Gl(Ck), then V is given by the transition functions gαβ .

We write C(M,V) for the continuous sections of V . There is a natural complex conjugation
map C(M,V) → C(M,V), f $→ f . It is defined by the ordinary complex conjugation in the local
trivializations. With this complex conjugation the identification Vz⊗Vw

∼= HomC(V∗
w,Vz) can

be written as

(A.1.1)
(
f1(z)⊗ f2(w)

)
(η) = 〈η, f2(w)〉wf1(z)

for η ∈ V∗
w . The point evaluations f $→ f(z) will be denoted evz :C(M,V) → Vz .

If M is a manifold and V a smooth vector bundle, we write C∞(M,V) for the smooth
sections. Moreover, if M is a complex manifold and V is a holomorphic vector bundle, then
we denote the holomorphic sections of V by O(M,V). In this case we denote the manifold M ,
when equipped with the opposite complex structure, by M . Given f ∈ O(M,V) one finds that
f is an antiholomorphic section of V or, in other words, an element of O(M,V).

Definition A.1.1.

(i) A complex vector subspace H ⊆ C(M,V) is called a Hilbert space of sections if it carries
a Hilbert space structure for which the point evaluations evz:H → Vz, f $→ f(z) are
continuous.
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(ii) A section K ∈ C(M × M,V×V) is called a positive definite kernel if for every finite
sequence ξ1, . . . , ξn ∈ V∗ the expression

n∑

j,k=1

〈ξk,K
(
q(ξk), q(ξj)

)
ξj〉q(ξk)

is real and non-negative.

The basic result now is

Theorem A.1.2. Let M be a topological space and p:V → M a complex vector bundle.
Suppose that K ∈ C(M ×M,V×V) . Then the following statements are equivalent:

(1) K is a positive definite kernel for V .

(2) There exists a Hilbert space HK ⊆ C(M,V) such that evz |HK
:HK → Vz is continuous

and K(z, w) = evz ◦ ev∗w ∈ HomC(V∗
w ,Vz) for all z, w ∈ M .

The reproducing property of the kernel K in this context is

(A.1.2) (Kξ | f)HK
= 〈ξ, f ◦ q(ξ)〉q(ξ),

where Kξ = ev∗z(ξ) ∈ HK ⊆ C(M,V) for ξ ∈ V∗
z . The Hilbert space HK is called the reproducing

kernel Hilbert space associated to the kernel K , and K is called the reproducing kernel of HK .
Theorem A.1.2 shows that any positive definite kernel can be viewed as the reproducing kernel
of Hilbert space of sections. Therefore will call such a kernel simply a reproducing kernel.
The argument given in [Ne99, Lemma I.5] shows that for any reproducing kernel Hilbert space
H ⊆ C(M,V) with reproducing kernel K(z, w) = evz ◦ ev∗w we have H = HK .

Suppose that M is a complex manifold and V → M a holomorphic vector bundle.
If a reproducing kernel K:M × M → V×V is holomorphic in the first variable, then the
space HK consists of holomorphic sections of V and K is holomorphic when viewed as a map
K:M×M → V×V . Thus a Hilbert space of holomorphic sections is given by a positive definite
kernel in O(M ×M,V×V).

A.2. Semigroup actions and invariance properties. We suppose in addition to the
notation and assumptions introduced above that S is a semigroup acting from the left on V∗ by
vector bundle morphisms. This means that S also acts on M from the left by continuous maps
and we have

(i) q(s.ξ) = s.q(ξ) for all ξ ∈ V∗ and s ∈ S .

(ii) sz:V∗
z → V∗

s.z, ξ $→ s.ξ is C-linear.
Then the dual maps s∗z :Vs.z → Vz , defined by 〈sz(ξ), v〉s.z = 〈ξ, s∗z(v)〉z yield a right S -action
on C(M,V) via

(A.2.1) (f.s)(z) := (sz)
∗ ◦ f(s.z)

for z ∈ M , f ∈ C(M,V), and s ∈ S .

Theorem A.2.1. Let M be a topological space and p:V → M a complex vector bundle.
Suppose that HK ⊆ C(M,V) is a reproducing kernel space. Further let (S, ∗) be an involutive
semigroup acting from the left on V∗ by vector bundle morphisms. Then the following are
equivalent.

(1) (sz)∗ ◦K(s.z, w) = K(z, s&.w) ◦ (s&)w for all z, w ∈ M and s ∈ S .

(2) H0
K is invariant under the right action f $→ f.s of S on C(M,V) , and this action defines

a Hermitian representation of S on H0
K .

Proof. [BH98a, Thm.2.1] (which is the adaptation to the vector bundle case of well-known
results in the function case, cf. e.g. [Ne99]).
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If under the hypotheses of Theorem A.2.1 the positive definite kernel K satisfies the
equivalent conditions (1) and (2) we call it an S -invariant kernel and denote the representation
of S on H0

K by πK . Note that, if, in the situation of the theorem, the semigroup is a group and
the involution is the group inversion, then πK is a unitary representation of S , and property (1)
takes the form

K(g.z, g.w) = ((gz)
∗)−1 ◦K(z, w) ◦ (gw)

−1

for g ∈ G . This means that K is a G-invariant section of the bundle V×V over M ×M in
the usual sense.
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